Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Epithelial Nlrp10 inflammasome mediates protection against intestinal autoinflammation

Abstract

Unlike other nucleotide oligomerization domain-like receptors, Nlrp10 lacks a canonical leucine-rich repeat domain, suggesting that it is incapable of signal sensing and inflammasome formation. Here we show that mouse Nlrp10 is expressed in distal colonic intestinal epithelial cells (IECs) and modulated by the intestinal microbiome. In vitro, Nlrp10 forms an Apoptosis-associated speck-like protein containing a caspase-recruitment domain (ASC)-dependent, m-3M3FBS-activated, polyinosinic:polycytidylic acid-modulated inflammasome driving interleukin-1β and interleukin-18 secretion. In vivo, Nlrp10 signaling is dispensable during steady state but becomes functional during autoinflammation in antagonizing mucosal damage. Importantly, whole-body or conditional IEC Nlrp10 depletion leads to reduced IEC caspase-1 activation, coupled with enhanced susceptibility to dextran sodium sulfate-induced colitis, mediated by altered inflammatory and healing programs. Collectively, understanding Nlrp10 inflammasome-dependent and independent activity, regulation and possible human relevance might facilitate the development of new innate immune anti-inflammatory interventions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Nlrp10 expressed in mouse distal colon IECs forms an in vitro and ex vivo inflammasome.
Fig. 2: Nlrp10 inflammasome is inactivated at steady state.
Fig. 3: Nlrp10 inflammasome forms during the induction of DSS colitis.
Fig. 4: Nlrp10-deficient mice have greater DSS-induced intestinal inflammation.
Fig. 5: Nlrp10 activates protective mucosal pathways during the induction of autoinflammation.

Similar content being viewed by others

Data availability

RNA sequences are available at the European Nucleotide Archive under accession no. PRJEB50590. Metagenomics sequences are available at the European Nucleotide Archive under accession no. PRJEB50590. The single-cell data analysis was performed using count data for WT mice downloaded from Gene Expression Omnibus accession no. GSE148794. Source data are provided with this paper.

References

  1. Franchi, L., Warner, N., Viani, K. & Nuñez, G. Function of Nod-like receptors in microbial recognition and host defense. Immunol. Rev. 227, 106–128 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Strowig, T., Henao-Mejia, J., Elinav, E. & Flavell, R. Inflammasomes in health and disease. Nature 481, 278–286 (2012).

    Article  CAS  PubMed  Google Scholar 

  3. Franchi, L. et al. NLRC4-driven production of IL-1β discriminates between pathogenic and commensal bacteria and promotes host intestinal defense. Nat. Immunol. 13, 449–456 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Elinav, E. et al. NLRP6 inflammasome regulates colonic microbial ecology and risk for colitis. Cell 145, 745–757 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Zhu, S. et al. Nlrp9b inflammasome restricts rotavirus infection in intestinal epithelial cells. Nature 546, 667–670 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Elinav, E., Henao-Mejia, J. & Flavell, R. A. Integrative inflammasome activity in the regulation of intestinal mucosal immune responses. Mucosal Immunol. 6, 4–13 (2013).

    Article  CAS  PubMed  Google Scholar 

  7. Levy, M. et al. Microbiota-modulated metabolites shape the intestinal microenvironment by regulating NLRP6 inflammasome signaling. Cell 163, 1428–1443 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Imamura, R. et al. Anti-inflammatory activity of PYNOD and its mechanism in humans and mice. J. Immunol. 184, 5874–5884 (2010).

    Article  CAS  PubMed  Google Scholar 

  9. Wang, Y. et al. PYNOD, a novel Apaf‐1/CED4‐like protein is an inhibitor of ASC and caspase‐1. Int. Immunol. 16, 777–786 (2004).

    Article  CAS  PubMed  Google Scholar 

  10. Murphy, N., Grehan, B. & Lynch, M. A. Glial uptake of amyloid beta induces NLRP3 inflammasome formation via cathepsin-dependent degradation of NLRP10. Neuromolecular Med. 16, 205–215 (2014).

    Article  CAS  PubMed  Google Scholar 

  11. Eisenbarth, S. C. et al. NLRP10 is a NOD-like receptor essential to initiate adaptive immunity by dendritic cells. Nature 484, 510–513 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Eisenbarth, S. C. et al. Corrigendum: NLRP10 is a NOD-like receptor essential to initiate adaptive immunity by dendritic cells. Nature 530, 504 (2016).

    Article  CAS  PubMed  Google Scholar 

  13. Nakajima, S. et al. Characterization of innate and adaptive immune responses in PYNOD-deficient mice. Immunohorizons 2, 129–141 (2018).

    Article  CAS  PubMed  Google Scholar 

  14. Vacca, M. et al. NLRP10 enhances CD4+ T-cell-mediated IFNγ response via regulation of dendritic cell-derived IL-12 release. Front. Immunol. 8, 1462 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Joly, S. et al. Cutting edge: Nlrp10 is essential for protective antifungal adaptive immunity against Candida albicans. J. Immunol. 189, 4713–4717 (2012).

    Article  CAS  PubMed  Google Scholar 

  16. Clay, G. M. et al. An anti-inflammatory role for NLRP10 in murine cutaneous leishmaniasis. J. Immunol. 199, 2823–2833 (2017).

    Article  CAS  PubMed  Google Scholar 

  17. Damm, A., Giebeler, N., Zamek, J., Zigrino, P. & Kufer, T. A. Epidermal NLRP10 contributes to contact hypersensitivity responses in mice. Eur. J. Immunol. 46, 1959–1969 (2016).

    Article  CAS  PubMed  Google Scholar 

  18. Lautz, K. et al. NLRP10 enhances Shigella-induced pro-inflammatory responses. Cell. Microbiol. 14, 1568–1583 (2012).

    Article  CAS  PubMed  Google Scholar 

  19. Lakso, M. et al. Efficient in vivo manipulation of mouse genomic sequences at the zygote stage. Proc. Natl Acad. Sci. USA 93, 5860–5865 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Próchnicki, T. et al. Mitochondrial damage activates the NLRP10 inflammasome. Nat. Immunol. https://doi.org/10.21203/rs.3.rs-1295136/v1 (2023).

    Article  PubMed  Google Scholar 

  21. Lee, G.-S. et al. The calcium-sensing receptor regulates the NLRP3 inflammasome through Ca2+ and cAMP. Nature 492, 123–127 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Schroder, K. & Tschopp, J. The inflammasomes. Cell 140, 821–832 (2010).

    Article  CAS  PubMed  Google Scholar 

  23. Hafner-Bratkovič, I. et al. NLRP3 lacking the leucine-rich repeat domain can be fully activated via the canonical inflammasome pathway. Nat. Commun. 9, 5182 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  24. MacDonald, J. A., Wijekoon, C. P., Liao, K.-C. & Muruve, D. A. Biochemical and structural aspects of the ATP-binding domain in inflammasome-forming human NLRP proteins. IUBMB Life 65, 851–862 (2013).

    Article  CAS  PubMed  Google Scholar 

  25. Nowarski, R. et al. Epithelial IL-18 equilibrium controls barrier function in colitis. Cell 163, 1444–1456 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lopez-Castejon, G. & Brough, D. Understanding the mechanism of IL-1β secretion. Cytokine Growth Factor Rev. 22, 189–195 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Mantovani, A., Dinarello, C. A., Molgora, M. & Garlanda, C. Interleukin-1 and related cytokines in the regulation of inflammation and immunity. Immunity 50, 778–795 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Seregin, S. S. et al. NLRP6 function in inflammatory monocytes reduces susceptibility to chemically induced intestinal injury. Mucosal Immunol. 10, 434–445 (2017).

    Article  CAS  PubMed  Google Scholar 

  29. Man, S. M. Inflammasomes in the gastrointestinal tract: infection, cancer and gut microbiota homeostasis. Nat. Rev. Gastroenterol. Hepatol. 15, 721–737 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zaki, M. H. et al. The NLRP3 inflammasome protects against loss of epithelial integrity and mortality during experimental colitis. Immunity 32, 379–391 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ho, Y.-T. et al. Longitudinal single-cell transcriptomics reveals a role for Serpina3n-mediated resolution of inflammation in a mouse colitis model. Cell. Mol. Gastroenterol. Hepatol. 12, 547–566 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Robertson, S. J. et al. Comparison of co-housing and littermate methods for microbiota standardization in mouse models. Cell Rep. 27, 1910–1919 (2019).

    Article  CAS  PubMed  Google Scholar 

  33. Smith, S. A. et al. Mitochondrial dysfunction in inflammatory bowel disease alters intestinal epithelial metabolism of hepatic acylcarnitines. J. Clin. Invest. 131, e133371 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Błażejewski, A. J. et al. Microbiota normalization reveals that canonical caspase-1 activation exacerbates chemically induced intestinal inflammation. Cell Rep. 19, 2319–2330 (2017).

    Article  PubMed  Google Scholar 

  35. Becker, C., Fantini, M. C. & Neurath, M. F. High resolution colonoscopy in live mice. Nat. Protoc. 1, 2900–2904 (2006).

    Article  CAS  PubMed  Google Scholar 

  36. Wirtz, S. et al. Chemically induced mouse models of acute and chronic intestinal inflammation. Nat. Protoc. 12, 1295–1309 (2017).

    Article  CAS  PubMed  Google Scholar 

  37. Sato, T. et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature 459, 262–265 (2009).

    Article  CAS  PubMed  Google Scholar 

  38. Beumer, J. et al. BMP gradient along the intestinal villus axis controls zonated enterocyte and goblet cell states. Cell Rep. 38, 110438 (2022).

    Article  CAS  PubMed  Google Scholar 

  39. Zmora, N. et al. Personalized gut mucosal colonization resistance to empiric probiotics is associated with unique host and microbiome features. Cell 174, 1388–1405 (2018).

    Article  CAS  PubMed  Google Scholar 

  40. Chen, S., Zhou, Y., Chen, Y. & Gu, J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34, i884–i890 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).

    Article  CAS  PubMed  Google Scholar 

  42. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Raudvere, U. et al. g:Profiler: a web server for functional enrichment analysis and conversions of gene lists (2019 update). Nucleic Acids Res. 47, W191–W198 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hao, Y. et al. Integrated analysis of multimodal single-cell data. Cell 184, 3573–3587 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Stuart, T. et al. Comprehensive integration of single-cell data. Cell 177, 1888–1902 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wood, D. E., Lu, J. & Langmead, B. Improved metagenomic analysis with Kraken 2. Genome Biol. 20, 257 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Lu, J., Breitwieser, F. P., Thielen, P. & Salzberg, S. L. Bracken: estimating species abundance in metagenomics data. PeerJ. Comput. Sci. 3, e104 (2017).

    Article  Google Scholar 

Download references

Acknowledgements

We thank the members of the Elinav laboratory, Weizmann Institute of Science and members of the German Cancer Research Center Microbiome & Cancer division for insightful discussions; C. Bar-Nathan for dedicated GF mouse husbandry. D.Z. is the recipient of the European Crohn’s and Colitis Organization Fellowship and is supported by the Ke Lin Program of the First Affiliated Hospital, Sun Yat‐sen University. L.K. is funded by the postdoctoral Walter Benjamin fellowship from the German Research Foundation (no. 447836288). Y.H. is supported by the Ke Lin Program of the First Affiliated Hospital, Sun Yat‐sen University. M.S.D. is supported by the Marie Skłodowska-Curie Individual Fellowship (Horizon 2020 grant no. GAP-845066). R.V.-M. is the recipient of the Weizmann Institute ‘La Caixa’ Foundation Postdoctoral Fellowship. H.S. is an incumbent of the Vera Rosenberg Schwartz Research Fellow Chair. S.K.A. is supported by the Israeli Ministry of Science and Technology Zvi Yanai Fellowship. M.H. is funded by the German Research Foundation (no. 438122637). E.E. is supported by the Adelis Foundation, Pearl Welinsky Merlo Scientific Progress Research Fund, Park Avenue Charitable Fund, Hanna and Dr. Ludwik Wallach Cancer Research Fund, Daniel Morris Trust, Wolfson Family Charitable Trust and Wolfson Foundation, Ben B. and Joyce E. Eisenberg Foundation, White Rose International Foundation, Estate of Bernard Bishin for the WIS-Clalit Program, Else Kröener-Fresenius Foundation, Jeanne and Joseph Nissim Center for Life Sciences Research and by grants funded by the European Research Council, Israel Science Foundation, Israel Ministry of Science and Technology, Israel Ministry of Health, Helmholtz Foundation, Garvan Institute of Medical Research, European Crohn’s and Colitis Organization, Deutsch-Israelische Projektkooperation, Infectious Diseases Society of America Foundation and Wellcome Trust. E.E. is the incumbent of the Sir Marc and Lady Tania Feldmann Professorial Chair, a senior fellow of the Canadian Institute of Advanced Research and an international scholar of the Bill & Melinda Gates Foundation and Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Contributions

D.Z., G.M. and L.K. conceived the study, designed, performed, analyzed and interpreted the experiments, and wrote the manuscript. Y.H., M.D.S., T.P., M.B.V., J.P., L.S., F.H., Y.S.L., M.C.R., E.C., S.S., R.J.H., S.K.A., C.K., K.G. and M.H. performed and assisted with the experiments. R.V-M. and A.K. performed the computational analyses and provided essential tools and insights. M.D-B. performed sample processing and next-generation DNA sequencing. N.S. supervised mouse experimentation and provided critical insights. A.H. analyzed the pathology specimens. H.S., M.C., R.A.F., E.L. and Y.M. provided essential tools and key insights. S.K.A. jointly supervised the study and wrote the manuscript. E.E. conceived and supervised the study and wrote the manuscript.

Corresponding authors

Correspondence to Suhaib K. Abdeen or Eran Elinav.

Ethics declarations

Competing interests

E.L. is cofounder and consultant of IFM Therapeutics and Odyssey Therapeutics as well as cofounder and board member of Dioscure Therapeutics and Stealth Biotech. E.E. is a scientific founder of DayTwo and BiomX, and a paid consultant to Hello Inside, Igen and Aposense, in topics unrelated to this manuscript. The other authors declare no competing interests.

Peer review

Peer review information

Nature Immunology thanks the anonymous reviewers for their contribution to the peer review of this work. Primary Handling Editor: N. Bernard in collaboration with the Nature Immunology team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Generation strategy of Nlrp10-deficient mice.

(a) Nlrp10, Epcam and Ptprc mRNA expression in colonic epithelial and lamina propria fractions (n = 5). IEC: intestinal epithelial cells; IEL: intraepithelial lymphocytes; LP: lamina propria (Unpaired t-test, ****P = 0.00001, **P = 0.008149, ****P = 0.000089). (b) Generation strategy of Nlrp10D/D mice. (c, d) Distal colon mRNA expression of (c) Nlrp10 (Nlrp10loxP/loxP n = 5; Nlrp10D/D n = 11) (Unpaired t-test, ****P < 0.0001) and (d) Dock8 (Unpaired t-test) (Nlrp10loxP/loxP n = 3; Nlrp10D/D n = 4) in Nlrp10loxP/loxP and Nlrp10D/D littermate mice. Mean ± SEM. *: p < 0.05, **: p < 0.01, ***: p < 0.001, ****: p < 0.0001. Statistical test used in (a), (c) and (d) was two-sided. Created with BioRender.com.

Source data

Extended Data Fig. 2 Nlrp10 forms an in vitro inflammasome complex.

(a) ASC speck formation in human ASCTagBFP HEK cells (HEKASC) and human ASCTagBFP HEK cells expressing human NLRP10mCitrine (HEKASC_Nlrp10) untreated or treated with m-3M3FBS (n = 2, in each sample 5 independent random fields were quantified) (Unpaired t-test, ****P = 0.000002). (b) IL-18 ELISA of supernatants of human ASCTagBFP HEK cells (HEKASC) and human ASCTagBFP HEK cells expressing human Nlrp10mCitrine (HEKASC_Nlrp10) transfected with human myc-caspase-1, and pro- IL-18, and treated with m-3M3FBS (n = 3) (Unpaired t-test, **P = 0.00789). (c) Representative confocal images of ASC speck formation in human ASCTagBFP HEK cells (HEKASC) and human ASCTagBFP HEK cells expressing human Nlrp10mCitrine (HEKASC_Nlrp10) untreated, or treated with poly(I:C), m-3M3FBS either alone or in combination (corresponding to Fig. 1e), scale- 50 µm. ASC-tag BFP is pseudocolored as red, nucleus is stained with DRAQ5 and pseudocolored as blue. Mean ± SEM. *: p < 0.05, **: p < 0.01, ***: p < 0.001, ****: p < 0.0001. Statistical test used in (a-b) was two-sided.

Source data

Extended Data Fig. 3 In vitro activation and modulation of the Nlrp10 inflammasome.

(a) IL-18 ELISA of supernatants of human ASCTagBFP HEK cells (HEKASC) and human ASCTagBFP HEK cells expressing human Nlrp10mCitrine (HEKASC_Nlrp10) transfected with human myc- caspase-1, and pro-IL-18, and treated with m-3M3FBS and a panel of toll-like receptor (TLR) agonists, including the TLR2 agonist HKLM, TLR2/6 agonist FSL1, TLR4 agonist LPSEK, TLR5 agonist FLAST, and TLR3 agonist poly(I:C) (LMW: low molecular weight, HMW: high molecular weight) (n = 3) (Unpaired t-test, P values are *P = 0.018948, **P = 0.005017, ***P = 0.000883). (b) Human ASCTagBFP HEK cells (HEKASC) and human ASCTagBFP HEK cells expressing human Nlrp10mCitrine (HEKASC_Nlrp10) and HEK cells expressing human Nlrp10mCitrine (HEKNlrp10) immunoprecipitated using anti-GFP beads to pull down Nlrp10 and immunoblotted with anti-GFP and anti-ASC. (c) IL-18 (Unpaired t-test, ****P < 0.0001) and (d) IL-1β (Unpaired t-test, ***P = 0.0001, **P = 0.005, ****P < 0.0001) ELISA of supernatants of Aim2−/−CRISPR immortalized mouse macrophages stably expressing full-length human Nlrp10- mCitrine (MacsAim2−/−_hNlrp10), mouse Nlrp10-mCitrine (MacsAim2−/−_mNlrp10), human Nlrp10-PYD (only)-mCitrine (MacsAim2−/−_PYD), or human Nlrp10-NACHT (only)-mCitrine (MacsAim2−/−_NACHT), treated with HMW poly(I:C), m-3M3FBS either alone or in combination (n = 3). (e) IL-1β ELISA of supernatants of differentiated organoids derived from the distal colons of Nlrp10loxP/loxPCMV-Cre+ and Nlrp10loxP/loxP littermates treated with vehicle, HMW poly(I:C), or both HMW Poly(I:C) and m-3M3FBS (n = 6, results pooled from 2 independent experiments; n = 3 in the positive control group). CMV: Cytomegalovirus. Recombinant IL-1β was used as the positive control. Mean ± SEM. *: p < 0.05, **: p < 0.01, ***: p < 0.001, ****: p < 0.0001. Statistical test used in (a), (c-d) was two-sided.

Source data

Extended Data Fig. 4 Generation of IEC- specific Nlrp10- deficient mice.

(a) Generation strategy of Nlrp10loxP/loxPVil1+ mice. (b) Expression of Nlrp10 mRNA in sorted EpCAM+ cells of Nlrp10loxP/loxPVil1+ and Nlrp10loxP/loxP littermate mice (Nlrp10loxP/loxP n = 4; Nlrp10loxP/loxPVil1+ n = 8) (Unpaired t-test, ****P < 0.0001). (c) Expression of Nlrp10 mRNA in spleens of Nlrp10loxP/loxPVil1+ and Nlrp10loxP/loxP littermate mice (Nlrp10loxP/loxP n = 6; Nlrp10loxP/loxPVil1+ n = 7) (Unpaired t-test). Mean ± SEM. *: p < 0.05, **: p < 0.01, ***: p < 0.001, ****: p < 0.0001. Statistical test used in (b-c) was two-sided.

Source data

Extended Data Fig. 5 Nlrp10 inflammasome is activated upon induction of DSS colitis.

(a) A representative Immunoblot of pro-caspase-1 (p45), cleaved caspase-1 (p20), pro-IL-18 and cleaved IL-18 (n = 6), (b) IL-18 ELISA of supernatants of distal colon explants (n = 6) in Nlrp10D/D and Nlrp10loxP/loxP littermate mice at day 4 after DSS initiation (Unpaired t-test, P = 0.073). (c) Densitometry quantification of cleaved IL-18/pro-IL-18 (Mann-Whitney U test, *P = 0.0286) (d) and cleaved IL-18/actin (Unpaired t-test. *P = 0.0303) in distal colons of Nlrp10D/D and Nlrp10loxP/loxP littermate mice at day 10 after DSS initiation (corresponding to Fig. 3d) (n = 4). (e) A representative immunoblot and (f) quantification (Mann-Whitney U test) (f) of cleaved IL-1β in distal colons of Nlrp10D/D and Nlrp10loxP/loxP littermate mice at day 10 after DSS initiation (n = 4). (g) A representative immunoblot and (h) quantification (Unpaired t-test) of cleaved GSDMD in distal colons of Nlrp10D/D and Nlrp10loxP/loxP littermate mice at day 10 after DSS initiation (n = 4). GSDMD: gasdermin D. Numbers labeled in (a), (e) and (g) represent individual mice in each group. Mean ± SEM. *: p < 0.05. Statistical test used in (b- d), (f) and (h) was two-sided.

Source data

Extended Data Fig. 6 Nlrp10D/D mice feature an exacerbated DSS- induced intestinal inflammation.

(a-d) Quantification of the severity of DSS colitis in Nlrp10D/D and Nlrp10loxP/loxP littermate mice. (a) Representative images of colonoscopy and (b) colon lengths at day 7 after DSS initiation, (c) colon length (cm) (Nlrp10loxP/loxP n = 19; Nlrp10D/D n = 18) and (Unpaired t-test, ***P = 0.0007) (d) representative images of H&E- stained colonic sections at day 12 after DSS initiation (scale bar-100 µm). (e) IL-6 ELISA (n = 4) (Unpaired t-test, ***P = 0.0002), (f) and TGF-β (Nlrp10loxP/loxP n = 4; Nlrp10D/D n = 6) in distal colon homogenates of Nlrp10D/D and Nlrp10loxP/loxP littermate mice at day 10 after DSS initiation (Unpaired t-test). Mean ± SEM. *: p < 0.05, **: p < 0.01, ***: p < 0.001. Statistical test used in (c), (e-f) was two-sided.

Source data

Extended Data Fig. 7 Induction of DSS colitis in 4-Way Bone marrow chimeric mice.

a) Schematic of bone marrow transplantation generating 4 types of bone marrow chimeric mice, using both wild-type (WT) and Nlrp10D/D mice as donors and recipients. (b-h) Quantification of colitis severity (for (b-d), WT to WT, KO to WT, WT to KO n = 7; KO to KO n = 9; for (f and h), WT to WT, KO to WT n = 7; WT to KO n = 6; KO to KO n = 8). (b) Body weight, (c) area under the curve (AUC) of the weight change (unpaired t test), (d) colitis severity score (Unpaired t-test, *P = 0.0171, Mann-Whitney U test, ***P = 0.0009), and (e) representative colonoscopy images at day 7 after DSS initiation, (f) colon length (Mann-Whitney U test, unpaired t-test, *P = 0.0472, *P = 0.0482), (g) representative images of the colon length, (h) IL-18 ELISA of supernatants of distal colon explants at day 12 after DSS initiation (unpaired t test, Mann-Whitney U test *P = 0.0196, **P = 0.002). Mean ± SEM. *: p < 0.05, **: p < 0.01, ***: p < 0.001. Statistical test used in (c-d), (f) and (h) was two- sided. Created with BioRender.com.

Source data

Extended Data Fig. 8 Exacerbated DSS- induced colitis in intestinal epithelial Nlrp10-deficient mice.

(a, b) Quantification of DSS colitis severity in Nlrp10loxP/loxPVil1+ and Nlrp10loxP/loxP littermate mice. (a) Representative colonoscopy images at day 7 after DSS initiation, (b) representative images of the colon length at day 12 after DSS initiation. (ce) ELISA of (c) IL-6 (Mann-Whitney U test), (d) TNF-α (Mann-Whitney U test) and (e) IL-10 (Mann-Whitney U test) in supernatants of distal colon explants in Nlrp10loxP/loxPVil1+ vs. Nlrp10loxP/loxP littermate mice at day 12 after DSS initiation (Nlrp10loxP/loxP n = 8; Nlrp10loxP/loxPVil1+ n = 12) Mean ± SEM. *: p < 0.05. Statistical test used in (c-e) was two-sided.

Source data

Extended Data Fig. 9 Flow cytometry assessment of colonic lamina propria immune cells.

(a, b) Flow cytometry comparison of colonic lamina propria (a) myeloid (Mann-Whitney U test, unpaired t test, *P = 0.0481, unpaired t test, *P = 0.0109) and (b) lymphocyte cell populations between Nlrp10D/D and Nlrp10loxP/loxP littermate mice at day 4 after DSS initiation (n = 5) (unpaired t test, Mann- Whitney U test). (c, d) Flow cytometry Comparison of colonic lamina propria (c) myeloid cell (unpaired t test, *P = 0.0135, **P = 0.0096) and (d) lymphocyte (unpaired t test, *P = 0.0184, **P = 0.0095, **P = 0.005, Mann-Whitney U test, *P = 0.0159) populations between Nlrp10D/D and Nlrp10loxP/loxP littermate mice at day 7 after DSS initiation (Nlrp10loxP/loxP n = 5; Nlrp10D/D n = 4). Mean ± SEM. *: p < 0.05, **: p < 0.01. Statistical test used in (a- d) was two-sided.

Source data

Extended Data Fig. 10 Severe colitis in Nlrp10D/D is associated with altered phospho NF-κB.

(a) A representative immunoblot and (b, c) quantification of phospho-NF-κB in the distal colons of Nlrp10D/D and Nlrp10loxP/loxP littermate mice at day 10 after DSS initiation (unpaired t test **P = 0.0022; Mann-Whitney U test *P = 0.0238) (Nlrp10loxP/loxP n = 3; Nlrp10D/D n = 6). (d) A representative immunoblot (e, f) and quantification of phospho-Stat1 in distal colons of Nlrp10D/D and Nlrp10loxP/loxP littermate mice at day 10 after DSS initiation (unpaired t test) (n = 4). (g) A representative immunoblot and (h-i) quantification of phospho-Stat3 in distal colons of Nlrp10D/D and Nlrp10loxP/loxP littermate mice at day 10 after DSS initiation (Mann-Whitney U test) (n = 4). (j) Systemic fluorescein isothiocyanate-dextran (FITC-Dextran) levels 3 hours following FITC-Dextran gavage to Nlrp10D/D and Nlrp10loxP/loxP littermate mice at day 4 after DSS initiation (unpaired t test) (Nlrp10loxP/loxP n = 5; Nlrp10D/D n = 6). Numbers labeled in (a), (d) and (g) represent individual mice in each group. Mean ± SEM. *: p < 0.05, **: p < 0.01. Exact p values and statistical tests are presented in Supplementary Table 1.

Source data

Supplementary information

Supplementary Information

Supplementary Figs. 1–5.

Reporting Summary

Supplementary Table 1

Statistics for the main and extended data figures.

Supplementary Data 1

Source data for supplementary figures.

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 1

Unprocessed immunoblots.

Source Data Fig. 2

Statistical source data.

Source Data Fig. 2

Unprocessed immunoblots.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 3

Unprocessed immunoblots.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 5

Statistical source data.

Source Data Extended Data Fig. 1

Statistical source data.

Source Data Extended Data Fig. 2

Statistical source data.

Source Data Extended Data Fig. 3

Statistical source data.

Source Data Extended Data Fig. 3

Unprocessed immunoblots.

Source Data Extended Data Fig. 4

Statistical source data.

Source Data Extended Data Fig. 5

Statistical source data.

Source Data Extended Data Fig. 5

Unprocessed immunoblots.

Source Data Extended Data Fig. 6

Statistical source data.

Source Data Extended Data Fig. 7

Statistical source data.

Source Data Extended Data Fig. 8

Statistical source data.

Source Data Extended Data Fig. 9

Statistical source data.

Source Data Extended Data Fig. 10

Statistical source data.

Source Data Extended Data Fig. 10

Unprocessed immunoblots.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, D., Mohapatra, G., Kern, L. et al. Epithelial Nlrp10 inflammasome mediates protection against intestinal autoinflammation. Nat Immunol 24, 585–594 (2023). https://doi.org/10.1038/s41590-023-01450-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41590-023-01450-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing