Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

I-Ag7 β56/57 polymorphisms regulate non-cognate negative selection to CD4+ T cell orchestrators of type 1 diabetes

Abstract

Genetic susceptibility to type 1 diabetes is associated with homozygous expression of major histocompatibility complex class II alleles that carry specific beta chain polymorphisms. Why heterozygous expression of these major histocompatibility complex class II alleles does not confer a similar predisposition is unresolved. Using a nonobese diabetic mouse model, here we show that heterozygous expression of the type 1 diabetes-protective allele I-Ag7 β56P/57D induces negative selection to the I-Ag7-restricted T cell repertoire, including beta-islet-specific CD4+ T cells. Surprisingly, negative selection occurs despite I-Ag7 β56P/57D having a reduced ability to present beta-islet antigens to CD4+ T cells. Peripheral manifestations of non-cognate negative selection include a near complete loss of beta-islet-specific CXCR6+ CD4+ T cells, an inability to cross-prime islet-specific glucose-6-phosphatase catalytic subunit-related protein and insulin-specific CD8+ T cells and disease arrest at the insulitis stage. These data reveal that negative selection on non-cognate self-antigens in the thymus can promote T cell tolerance and protection from autoimmunity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Pancreas targeting by islet-specific T cells and T1D requires exclusive I-Ag7 expression.
Fig. 2: I-Ag7 β56/57 polymorphisms regulate thymocyte negative selection at the double-positive stage.
Fig. 3: I-Ag7-PD manifests T cell tolerance on the I-Ag7-restricted T cell repertoire.
Fig. 4: I-Ag7-PD induces non-cognate negative selection of tetramerhi islet-specific CD4+ T cells.
Fig. 5: Non-cognate negative selection limits islet-specific CXCR6+ CD4+ T cell development.
Fig. 6: Loss of insulin and IGRP CD8+ T cell cross-priming in I-Ag7-PD-expressing mice.
Fig. 7: CXCR6+ CD4+ T cells orchestrate islet-specific CD8+ T cell cross-priming and T1D.

Similar content being viewed by others

Data availability

TCR sequencing data have been deposited in the NIH Sequence Read Archive under the accession codes: SRR16314909, SRR16314908,

SRR16314907, SRR16314905, SRR16314906, SRR16314942, SRR16314941, SRR16314940,

SRR16314939, SRR16314938, SRR16314937, SRR16314936, SRR16314935, SRR16314934,

SRR16314933, SRR16314932, SRR16314931, SRR16314926, SRR16314925, SRR16314924,

SRR16314930, SRR16314929, SRR16314928, SRR16314927, SRR16314923, SRR16314946,

SRR16314945, SRR16314944, SRR16314943, SRR16314921, SRR16314920, SRR16314919,

SRR16314918, SRR16314917, SRR16314916, SRR16314915, SRR16314922, SRR16314914,

SRR16314913, SRR16314912, SRR16314911, SRR16314910, SRR16313009, SRR16313011, SRR16313010, SRR16313008, SRR16313013, SRR16313012, SRR16313057, SRR16313056,SRR16313062, SRR16313061, SRR16313060, SRR16313059, SRR16313058, SRR3723003, SRR3723002, SRR3722997, SRR3722996, SRR3722995, SRR3722994, SRR3722993 and SRR3722992.

References

  1. Eisenbarth, G. S. Type I diabetes mellitus. A chronic autoimmune disease. N. Engl. J. Med. 314, 1360–1368 (1986).

    Article  CAS  PubMed  Google Scholar 

  2. Ziegler, A. G. & Nepom, G. T. Prediction and pathogenesis in type 1 diabetes. Immunity 32, 468478 (2010).

    Article  Google Scholar 

  3. Herold, K. C., Vignali, D. A., Cooke, A. & Bluestone, J. A. Type 1 diabetes: translating mechanistic observations into effective clinical outcomes. Nat. Rev. Immunol. 13, 243–256 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bendelac, A., Carnaud, C., Boitard, C. & Bach, J. F. Syngeneic transfer of autoimmune diabetes from diabetic NOD mice to healthy neonates. Requirement for both L3T4+ and Lyt-2+ T cells. J. Exp. Med. 166, 823–832 (1987).

    Article  CAS  PubMed  Google Scholar 

  5. Serreze, D. V. et al. B lymphocytes are essential for the initiation of T cell-mediated autoimmune diabetes: analysis of a new ‘speed congenic’ stock of NOD.Ig mu null mice. J. Exp. Med. 184, 2049–2053 (1996).

    Article  CAS  PubMed  Google Scholar 

  6. Carrero, J. A. et al. Resident macrophages of pancreatic islets have a seminal role in the initiation of autoimmune diabetes of NOD mice. Proc. Natl Acad. Sci. USA 114, E10418–E10427 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Anderson, M. S. & Bluestone, J. A. The NOD mouse: a model of immune dysregulation. Annu Rev. Immunol. 23, 447–485 (2005).

    Article  CAS  PubMed  Google Scholar 

  8. Atkinson, M. A. & Maclaren, N. K. The pathogenesis of insulin-dependent diabetes mellitus. N. Engl. J. Med. 331, 1428–1436 (1994).

    Article  CAS  PubMed  Google Scholar 

  9. Todd, J. A. Etiology of type 1 diabetes. Immunity 32, 457–467 (2010).

    Article  CAS  PubMed  Google Scholar 

  10. Todd, J. A., Bell, J. I. & McDevitt, H. O. HLA-DQ beta gene contributes to susceptibility and resistance to insulin-dependent diabetes mellitus. Nature 329, 599–604 (1987).

    Article  CAS  PubMed  Google Scholar 

  11. Acha-Orbea, H. & McDevitt, H. O. The first external domain of the nonobese diabetic mouse class II I-A beta chain is unique. Proc. Natl Acad. Sci. USA 84, 2435–2439 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Corper, A. L. et al. A structural framework for deciphering the link between I-Ag7 and autoimmune diabetes. Science 288, 505–511 (2000).

    Article  CAS  PubMed  Google Scholar 

  13. Latek, R. R. et al. Structural basis of peptide binding and presentation by the type I diabetes-associated MHC class II molecule of NOD mice. Immunity 12, 699–710 (2000).

    Article  CAS  PubMed  Google Scholar 

  14. Stadinski, B., Kappler, J. & Eisenbarth, G. S. Molecular targeting of islet autoantigens. Immunity 32, 446–456 (2010).

    Article  CAS  PubMed  Google Scholar 

  15. Unanue, E. R. Antigen presentation in the autoimmune diabetes of the NOD mouse. Annu Rev. Immunol. 32, 579–608 (2014).

    Article  CAS  PubMed  Google Scholar 

  16. Gioia, L. et al. Position beta57 of I-Ag7 controls early anti-insulin responses in NOD mice, linking an MHC susceptibility allele to type 1 diabetes onset. Sci. Immunol. 4, eaaw6329 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Santos Martin, J. L. et al. Different statistical models used in the calculation of the prevalence of insulin-dependent diabetes mellitus according to the polymorphism of the HLA-DQ region. Immunol. Cell Biol. 75, 351–355 (1997).

    Article  CAS  PubMed  Google Scholar 

  18. Dendrou, C. A., Petersen, J., Rossjohn, J. & Fugger, L. HLA variation and disease. Nat. Rev. Immunol. 18, 325–339 (2018).

    Article  CAS  PubMed  Google Scholar 

  19. Latorre, D. et al. T cells in patients with narcolepsy target self-antigens of hypocretin neurons. Nature 562, 63–68 (2018).

    Article  CAS  PubMed  Google Scholar 

  20. Hu, X. et al. Additive and interaction effects at three amino acid positions in HLA-DQ and HLA-DR molecules drive type 1 diabetes risk. Nat. Genet. 47, 898–905 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wicker, L. S., Miller, B. J., Chai, A., Terada, M. & Mullen, Y. Expression of genetically determined diabetes and insulitis in the nonobese diabetic (NOD) mouse at the level of bone marrowderived cells. Transfer of diabetes and insulitis to nondiabetic (NOD × B10) F1 mice with bone marrow cells from NOD mice. J. Exp. Med. 167, 1801–1810 (1988).

    Article  CAS  PubMed  Google Scholar 

  22. Wicker, L. S. et al. Autoimmune syndromes in major histocompatibility complex (MHC) congenic strains of nonobese diabetic (NOD) mice. The NOD MHC is dominant for insulitis and cyclophosphamide-induced diabetes. J. Exp. Med. 176, 67–77 (1992).

    Article  CAS  PubMed  Google Scholar 

  23. Hattori, M. et al. The Nod mouse–recessive diabetogenic gene in the major histocompatibility complex. Science 231, 733–735 (1986).

    Article  CAS  PubMed  Google Scholar 

  24. Lund, T. et al. Prevention of insulin-dependent diabetes mellitus in non-obese diabetic mice by transgenes encoding modified I-A beta-chain or normal I-E alpha-chain. Nature 345, 727–729 (1990).

    Article  CAS  PubMed  Google Scholar 

  25. Singer, S. M. et al. Prevention of diabetes in NOD mice by a mutated I-Ab transgene. Diabetes 47, 1570–1577 (1998).

    Article  CAS  PubMed  Google Scholar 

  26. Tsai, S. & Santamaria, P. MHC class II polymorphisms, autoreactive T cells, and autoimmunity. Front Immunol. 4, 321 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Ooi, J. D. et al. Dominant protection from HLA-linked autoimmunity by antigen-specific regulatory T cells. Nature 545, 243–247 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Tsai, S. et al. Antidiabetogenic MHC class II promotes the differentiation of MHC-promiscuous autoreactive T cells into FOXP3+ regulatory T cells. Proc. Natl Acad. Sci. USA 110, 3471–3476 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Gregersen, J. W. et al. Functional epistasis on a common MHC haplotype associated with multiple sclerosis. Nature 443, 574–577 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. Stadinski, B. D. et al. A temporal thymic selection switch and ligand binding kinetics constrain neonatal Foxp3+ Treg cell development. Nat. Immunol. 20, 1046–1058 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zakharov, P. N., Hu, H., Wan, X. & Unanue, E. R. Single-cell RNA sequencing of murine islets shows high cellular complexity at all stages of autoimmune diabetes. J. Exp. Med. 217, e20192362 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kim, C. H. et al. Bonzo/CXCR6 expression defines type 1-polarized T cell subsets with extralymphoid tissue homing potential. J. Clin. Invest. 107, 595–601 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kalekar, L. A. et al. CD4+ T cell anergy prevents autoimmunity and generates regulatory T cell precursors. Nat. Immunol. 17, 304–314 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Stadinski, B. D. et al. Hydrophobic CDR3 residues promote the development of self-reactive T cells. Nat. Immunol. 17, 946–955 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Stadinski, B. D. et al. Chromogranin A is an autoantigen in type 1 diabetes. Nat. Immunol. 11, 225231 (2010).

    Article  Google Scholar 

  36. Delong, T. et al. Pathogenic CD4 T cells in type 1 diabetes recognize epitopes formed by peptide fusion. Science 351, 711–714 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wan, X. et al. The MHC-II peptidome of pancreatic islets identifies key features of autoimmune peptides. Nat. Immunol. 21, 455–463 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Govern, C. C., Paczosa, M. K., Chakraborty, A. K. & Huseby, E. S. Fast on-rates allow short dwell time ligands to activate T cells. Proc. Natl Acad. Sci. USA 107, 8724–8729 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Baron, J. L., Reich, E. P., Visintin, I. & Janeway, C. A. Jr. The pathogenesis of adoptive murine autoimmune diabetes requires an interaction between alpha 4-integrins and vascular cell adhesion molecule-1. J. Clin. Invest. 93, 1700–1708 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ferris, S. T. et al. cDC1 prime and are licensed by CD4+ T cells to induce anti-tumour immunity. Nature 584, 624–629 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ridge, J. P., Di Rosa, F. & Matzinger, P. A conditioned dendritic cell can be a temporal bridge between a CD4+ T-helper and a T-killer cell. Nature 393, 474–478 (1998).

    Article  CAS  PubMed  Google Scholar 

  42. Schoenberger, S. P., Toes, R. E., van der Voort, E. I., Offringa, R. & Melief, C. J. T-cell help for cytotoxic T lymphocytes is mediated by CD40–CD40L interactions. Nature 393, 480–483 (1998).

    Article  CAS  PubMed  Google Scholar 

  43. Bennett, S. R. et al. Help for cytotoxic T cell responses is mediated by CD40 signalling. Nature 393, 478–480 (1998).

    Article  CAS  PubMed  Google Scholar 

  44. Wong, F. S. et al. Identification of an MHC class I-restricted autoantigen in type 1 diabetes by screening an organ-specific cDNA library. Nat. Med. 5, 1026–1031 (1999).

    Article  CAS  PubMed  Google Scholar 

  45. Lieberman, S. M. et al. Identification of the beta cell antigen targeted by a prevalent population of pathogenic CD8+ T cells in autoimmune diabetes. Proc. Natl Acad. Sci. USA 100, 8384–8388 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hogquist, K. A. & Jameson, S. C. The self-obsession of T cells: how TCR signaling thresholds affect fate ‘decisions’ and effector function. Nat. Immunol. 15, 815–823 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Huseby, E. S. & Teixeiro, E. The perception and response of T cells to a changing environment are based on the law of initial value. Sci. Signal. 15, eabj9842 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Felix, N. J. & Allen, P. M. Specificity of T cell alloreactivity. Nat. Rev. Immunol. 7, 942–953 (2007).

    Article  CAS  PubMed  Google Scholar 

  49. Yagi, J. & Janeway, C. A. Jr. Ligand thresholds at different stages of T cell development. Int Immunol. 2, 83–89 (1990).

    Article  CAS  PubMed  Google Scholar 

  50. Davey, G. M. et al. Preselection thymocytes are more sensitive to T cell receptor stimulation than mature T cells. J. Exp. Med. 188, 1867–1874 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lucas, B., Stefanova, I., Yasutomo, K., Dautigny, N. & Germain, R. N. Divergent changes in the sensitivity of maturing T cells to structurally related ligands underlies formation of a useful T cell repertoire. Immunity 10, 367–376 (1999).

    Article  CAS  PubMed  Google Scholar 

  52. Li, Q. J. et al. miR-181a is an intrinsic modulator of T cell sensitivity and selection. Cell 129, 147161 (2007).

    Article  Google Scholar 

  53. Sant’Angelo, D. B. & Janeway, C. A. Jr. Negative selection of thymocytes expressing the D10 TCR. Proc. Natl Acad. Sci. USA 99, 6931–6936 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Suri, A., Walters, J. J., Gross, M. L. & Unanue, E. R. Natural peptides selected by diabetogenic DQ8 and murine I-Ag7 molecules show common sequence specificity. J. Clin. Invest. 115, 2268–2276 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kishimoto, H. & Sprent, J. Negative selection in the thymus includes semimature T cells. J. Exp. Med. 185, 263–271 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Daley, S. R., Hu, D. Y. & Goodnow, C. C. Helios marks strongly autoreactive CD4+ T cells in two major waves of thymic deletion distinguished by induction of PD-1 or NF-κB. J. Exp. Med. 210, 269–285 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Klein, L., Robey, E. A. & Hsieh, C. S. Central CD4+ T cell tolerance: deletion versus regulatory T cell differentiation. Nat. Rev. Immunol. 19, 7–18 (2019).

    Article  CAS  PubMed  Google Scholar 

  58. Zhang, Y. et al. In situ beta cell death promotes priming of diabetogenic CD8+ T lymphocytes. J. Immunol. 168, 1466–1472 (2002).

    Article  CAS  PubMed  Google Scholar 

  59. Krishnamurthy, B. et al. Responses against islet antigens in NOD mice are prevented by tolerance to proinsulin but not IGRP. J. Clin. Invest. 116, 3258–3265 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Amrani, A. et al. CD154-dependent priming of diabetogenic CD4+ T cells dissociated from activation of antigen-presenting cells. Immunity 16, 719–732 (2002).

    Article  CAS  PubMed  Google Scholar 

  61. Wan, X. & Unanue, E. R. Unique features in the presentation of insulin epitopes in autoimmune diabetes: an update. Curr. Opin. Immunol. 46, 30–37 (2017).

    Article  CAS  PubMed  Google Scholar 

  62. Ferris, S. T. et al. A minor subset of Batf3-dependent antigen-presenting cells in islets of Langerhans is essential for the development of autoimmune diabetes. Immunity 41, 657–669 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Ruedl, C., Bachmann, M. F. & Kopf, M. The antigen dose determines T helper subset development by regulation of CD40 ligand. Eur. J. Immunol. 30, 2056–2064 (2000).

    Article  CAS  PubMed  Google Scholar 

  64. Stadinski, B. D. et al. A role for differential variable gene pairing in creating T cell receptors specific for unique major histocompatibility ligands. Immunity 35, 694–704 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Wong, F. S., Moustakas, A. K., Wen, L., Papadopoulos, G. K. & Janeway, C. A. Jr. Analysis of structure and function relationships of an autoantigenic peptide of insulin bound to H2-Kd that stimulates CD8+ T cells in insulin-dependent diabetes mellitus. Proc. Natl Acad. Sci. USA 99, 55515556 (2002).

    Article  Google Scholar 

  66. Huseby, E. S., Crawford, F., White, J., Kappler, J. & Marrack, P. Negative selection imparts peptide specificity to the mature T cell repertoire. Proc. Natl Acad. Sci. USA 100, 11565–11570 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Yang, X. et al. TCRklass: a new K-string-based algorithm for human and mouse TCR repertoire characterization. J. Immunol. 194, 446–454 (2015).

    Article  CAS  PubMed  Google Scholar 

  68. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNAseq data with DESeq2. Genome Biol. 15, 550 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Xing, Y. & Hogquist, K. A. Isolation, identification, and purification of murine thymic epithelial cells. J. Vis. Exp. 8, e51780 (2014).

    Google Scholar 

Download references

Acknowledgements

Supported by the US National Institutes of Health (NIH; AI143976 and AR071269) to E.S.H. S.B.C. was supported by an NIH training grant (5T32A1007349-31).

Author information

Authors and Affiliations

Authors

Contributions

B.D.S. and E.S.H. conceived and designed the project and interpreted experiments; B.D.S. performed TCR cloning and sequencing, flow cytometry, adoptive T cell transfer experiments, monitored disease and statistical analyses; S.B.C. performed histological analyses and T cell activation studies; M.A.B. and D.L.G. provided peripheral blood mononuclear cells from HLA-typed individuals with and without T1D; P.G.H. generated specific mouse lines and monitored disease; B.D.S. and E.S.H. wrote the manuscript.

Corresponding author

Correspondence to Eric S. Huseby.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Immunology thanks Ludger Klein, Maki Nakayama and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: N. Bernard, in collaboration with the Nature Immunology team. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Characterization of NOD mice carrying different combinations of I-Ag7 b56/57 polymorphisms.

(a) Genomic DNA sequence surrounding I-Ag7 b56/57 of NOD mice carrying the wild type (HS), PD or frame shift (KO) mutation. (b) MHC-II expression on B cells from I-Ag7-WT/WT (n = 11), I-Ag7-KO/WT (n = 9) and I-Ag7-KO/KO (n = 8) mice. (c) T1D incidence in I-Ag7-WT/WT mice derived from intercrossing I-Ag7-PD/WT or I-Ag7KO/WT mice. ns P > 0.05, logrank Mantel-Cox test. (d) T1D incidence in I-Ag7-KO/KO and I-Ag7-WT/WT mice derived from intercrossing I-Ag7-KO/WT mice. (e–h) Cell surface expression of MHC molecules on APC subsets. (e,f) I-Ag7 and (g,h) H2-Kd expression level and average mean fluorescence intensity (MFI) of CD19+ B cells, CD11c+ XCR1neg cDC2 and CD11c+ XCR1pos cDC1 from I-Ag7-WT/WT (n = 5) and I-Ag7-PD/PD (n = 5) mice. (i,j) Representative hematoxylin and eosin staining of a grade 3 islet and grade 1 islet from the pancreas from I-Ag7 WT/WT and I-Ag7 PD/WT bearing mice, respectively. (k) Average frequency of islet infiltration severity at 12 weeks of age (n = 8) using a four scale grade: 0 - insulitis free, 1- peri-insulitis, 2 – moderate < 50% infiltrated, 3 – severe > 50% infiltration. (l) Quantification of Foxp3+ regulatory T cell subsets within the pancreatic infiltrate of I-Ag7 WT/WT (n = 24), I-Ag7 KO/WT (n = 10), I-Ag7 PD/WT (n = 25) or I-Ag7 PD/PD (n = 10) NOD mice. n = biologically independent animals. ns P > 0.05; * P < 0.05; ** P < 0.01 (one-way ANOVA with Tukey’s multiple comparisons test).

Extended Data Fig. 2 Characterization of thymic T cell selection in 6 weeks old I-Ag7-WT/WT, I-Ag7-KO/WT, I-Ag7-PD/WT and I-Ag7-PD/PD mice.

(a) Total number of CD4CD8 and (b) semimature (SM), mature 1 (M1) and mature 2 (M2) CD4 SP thymocyte generated in each strain. (c) Percent of CD4SP and total number of Foxp3 + CD4SP thymocytes generated in each strain. (d–e) Frequencies of TCR Vβ+ T cells among (d) CD4+ and (e) CD8+ subsets in I-Ag7-WT/WT, I-Ag7-PD/WT and I-Ag7-PD/PD mice. (f) Representative dot plots of CD69 and Nur77-GFP expression on preselection TCRβ+ DP thymocytes derived from 46 weeks old Nur77-gfp+ H2-Ab1−/− B2m−/− (MHCdeficient) mice following co-culture with BM-DCs generated from I-Ag7-WT/WT, I-Ag7-PD/PD or C57BL/6 (H-2b) mice. (g) Quantification of the frequency and (h) percent of H-2g7 reactivity at which DP thymocytes from 6 mice express CD69 and Nur77-GFP following culture with BM-DC from 2 independent mice. Data are from 2 independent experiments. (i) Representative dot plots of CD69 and Nur77-GFP expression on pre-selection TCRβ+ DP thymocytes (n = 6) derived from 4–6 weeks old Nur77-gfp+ H2-Ab1−/− B2m−/− (MHC-deficient) mice following co-culture with BMDCs generated from 3 b2M−/− I-Ag7-WT/WT, b2M−/− I-Ag7-PD/PD or b2M−/− I-Ag7-KO/KO mice. (j) Quantification of the frequency and (k) percent of I-Ag7 reactivity at which DP thymocytes express CD69 and Nur77-GFP following culture with BM-DC. Data are from two independent experiments. P values are from a one-way ANOVA with Tukey’s multiple comparisons test.

Extended Data Fig. 3 HLA analyses and representative flow cytometry sorting of donors with T1D and healthy controls.

(a) HLA status of donors, including positivity or negativity for HLA-A2, HLA-DR3, HLA-DR4, and HLA-DQ usage. (b) Example of flow cytometry sorting of human samples for isolation of naïve CD4 and naïve CD8 T cells. All TCR+ lymphocytes were sorted based on being a single cell that expresses CD3 and CD4 or CD8. CD4 Tconv cells were further sorted for the expression of CD25 and CD127, and CD27, CD45RO, CCR7 and CD95. CD8 Tconv were further sorted for the expression of CD27, CD45RO, CCR7 and CD95.

Extended Data Fig. 4 Expression of I-Ag7-PD induces negative selection of tetramerbright IAg7-ChgAHIP reactive thymocytes at the DP to SP transition.

(a) Flow cytometric analysis and quantification of IAg7-ChgAHIP tetramer staining of CD4SP thymocytes following tetramer-based enrichment, isolated from I-Ag7-WT/WT (n = 6), I-Ag7-PD/WT (n = 6) mice or BDC2.5 TCR Tg on an IAg7-WT/WT genetic background (n = 7), or polyclonal CD4SP thymocyte without enrichment. (b) Mean fluorescence intensity (MFI) of tetramerbright and tetramerdim populations of CD4SP thymocytes for each mouse strain. (c–h) BDC2.5 TCR Tg thymocytes undergo negative selection at the DP to CD4SP transition. (c–h) Flow cytometric analysis of CD4 and CD8expressing thymocyte subsets from 6 weeks old BDC2.5 TCR Tg mice on a I-Ag7-WT/WT (n = 7), I-Ag7-PD/WT (n = 7) or I-Ag7-PD/PD (n = 7) genetic backgrounds, and (d) quantification of CD4SP thymocyte frequency. (e) Representative examples and (f) quantification of CD4+CD8+ thymocytes expressing CD69 and high levels of TCRβ. (g) Representative examples and (h) quantification of frequency at which BDC2.5 TCR Tg mice matured thymocytes into T cells, based on expression of MHCI and high levels of TCRb. P values are from a one-way ANOVA with Tukey’s multiple comparisons test. n = biologically independent animals.

Extended Data Fig. 5 Exclusive expression of I-Ag7-WT in bone marrow derived cells allows the development of tetramerbright IAg7-ChgAHIP reactive T cells in I-Ag7-WT/WT and I-Ag7-PD/WT hosts.

(a) Representative staining from concatenated data (n = 2 mice) of CD4SP thymocytes from radiation chimeras of I-Ag7-WT/WT bone marrow (BM) into I-Ag7-WT/WT, I-Ag7-PD/WT, I-Ag7-PD/PD or H2b expressing mice. (b) Overlay of I-Ag7-ChgAHIP tetramer+ CD4SP thymoctes from I-Ag7-WT/WT and IAg7-PD/WT chimeras with I-Ag7-WT/WT BM. (c,d) Quantification of the (c) number and (d) percentage of I-Ag7-ChgAHIP tetramerbright and tetramerdim cells among individual I-Ag7-WT/WT BM chimeric mice. (e) Overlay and (f,g) MFI of I-Ag7 staining on cortical and medullarly thymic epithelial cells of 6 weeks old I-Ag7-WT/WT (n = 5), I-Ag7-PD/WT (n = 4), I-Ag7-PD/PD (n = 5) mice. (h–j) Example and quantification of IL-2 release from BDC2.5 T cells hybridomas with co-cultured with ChgAHIP peptide and sorted (i) cTECs and (j) mTECs populations from I-Ag7-WT/WT, I-Ag7-PD/WT, I-Ag7-PD/PD mice. Example (k) contour plot and (l) plotted average % CTVdim BDC2.5 CD4 T cells proliferating in response to BM-DCs derived from I-Ag7-WT/WT and I-Ag7-PD/PD presenting β-islet cell preparations based on from 3 replicate wells per experiment using separate islet preparation per experiment. (m,n) Quantification of IL-2 release by BDC2.5 and BDC6.9 T cell hybridomas in response to BM-DCs derived from I-Ag7-WT/WT and I-Ag7-PD/PD presenting β-islet cell preparations or soluble peptide. Bars are mean values from the 6 wells. P values are from a one-way ANOVA with Dunnett’s multiple comparisons test.

Extended Data Fig. 6 Expression of I-Ag7-PD does not result in the differentiation of islet-specific CD4 T cells into Foxp3+ Tregs.

(a,b) Flow cytometric analysis of CD44 and VLA4 on (a) I-Ag7-ChgAHIP- and (b) I-Ag7-IAPPHIPspecific CD4 T cells. (c,d) Flow cytometric analysis of Foxp3-gfp and CD25 on (c) I-Ag7-ChgAHIP- and (d) I-Ag7-IAPPHIP-specific CD4 T cells. Quantification of (e,h) CD44 and VLA4 expression, (f,i) FR4 expression and (g, j) Foxp3-gfp expression on (eg) I-Ag7-ChgA and (h–j) I-Ag7-IAPP specific CD4 T cells isolated from I-Ag7-WT/WT (n = 13, 6), I-Ag7-KO/WT (n = 6, 6), I-Ag7-PD/WT (n = 15, 7) and I-Ag7-PD/PD (n = 9, 6) mice, respectively. ns P > 0.05; * P < 0.05; ** P < 0.01; **** P < 0.0001 (oneway ANOVA with Tukey’s multiple comparisons test). (k,l) Activation and quantification of EC50 values of 8 ChgAHIP-reactive T cell hybridomas in response to titrating amounts of ChgAHIP peptide co-cultured with I-Ag7-WT/WT, I-Ag7-PD/WT, I-Ag7-PD/PD splenocytes. (m,o) I-Ag7-ChgAHIP tetramer binding of (m) T cell hybridomas 80.B2 (red), 80.C1 (orange) and 82.B1 (blue), (n) T cell transfectomas 80.B2 (red), 80.C1 (orange) and 82.B1 (blue). T cell hybridomas, and T cell transfectomas expressed similar levels of TCR. (o) TCR Vα and Vβ sequences from I-Ag7-ChgAHIPreactive hybridomas isolated from I-Ag7-WT/WT, I-Ag7-PD/WT mice. (p) Influence of TCR:pMHC affinity and antigen concentration on CD4 T cell effector functions. B3K506 TCR T cells were activated with titrating concentrations of strong (3K; KD = 7 mM), medium (P-1A; KD = 26 mM), weak (P8A; KD = 92 mM) and very weak (P2A; KD = 278 mM) affinity ligands and expression of CD40L, CXCR6, VLA4 and FR4 was evaluated, as well as cellular proliferation.

Extended Data Fig. 7 I-Ag7-PD expressing mice can expand high frequencies of Kd-IGRP206–214 and Kd-insulin15–23 specific T CD8 cells following viral activation.

(a,b) Flow cytometric analysis and quantification of Kd-IGRP206–214 and (c,d) Kd-insulin15–23 specific CD8 T cells following tetramer-based enrichment, isolated from I-Ag7-WT/WT (n = 9, 9), IAg7-PD/WT (n = 6, 9) mice infected with VSV-IGRP206–214 or VSV-Insulin15–23, respectively. (e) Flow cytometric analysis and (f) quantification of CD40L expression on CXCR6+ and FR4+ CD4 T cells from BDC2.5 TCR Tg mice (n = 4) following 4hrs in vitro stimulation with anti-CD3/CD28. ns P > 0.05; **** P < 0.0001 (unpaired two-tailed t-test). (g) Purity of flow cytometry sorting of mouse CXCR6+ and FR4+ T cells for adoptive transfer. n = biologically independent animals.

Supplementary information

Reporting Summary

Peer Review File

Supplementary Table 1

Table of mouse and human antibodies used.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stadinski, B.D., Cleveland, S.B., Brehm, M.A. et al. I-Ag7 β56/57 polymorphisms regulate non-cognate negative selection to CD4+ T cell orchestrators of type 1 diabetes. Nat Immunol 24, 652–663 (2023). https://doi.org/10.1038/s41590-023-01441-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41590-023-01441-0

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing