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A patient-centric modeling framework 
captures recovery from SARS-CoV-2 infection

Hélène Ruffieux    1  , Aimee L. Hanson2,3, Samantha Lodge4,5, 
Nathan G. Lawler    4,5, Luke Whiley4,5,6, Nicola Gray    4,5, Tui H. Nolan1, 
Laura Bergamaschi2,3, Federica Mescia    2,3, Lorinda Turner2,3, Aloka de Sa2,3, 
Victoria S. Pelly2,3, The Cambridge Institute of Therapeutic Immunology and 
Infectious Disease-National Institute of Health Research (CITIID-NIHR) 
BioResource COVID-19 Collaboration*, Prasanti Kotagiri    2,3, 
Nathalie Kingston7,8, John R. Bradley3,8, Elaine Holmes    4,5,9, Julien Wist    4,5,10, 
Jeremy K. Nicholson    4,5,11, Paul A. Lyons    2,3, Kenneth G. C. Smith2,3, 
Sylvia Richardson    1, Glenn R. Bantug    12,13 & Christoph Hess    2,3,12,13 

The biology driving individual patient responses to severe acute respiratory 
syndrome coronavirus 2 infection remains ill understood. Here, we developed 
a patient-centric framework leveraging detailed longitudinal phenotyping 
data and covering a year after disease onset, from 215 infected individuals with 
differing disease severities. Our analyses revealed distinct ‘systemic recovery’ 
profiles, with specific progression and resolution of the inflammatory, 
immune cell, metabolic and clinical responses. In particular, we found a strong 
inter-patient and intra-patient temporal covariation of innate immune cell 
numbers, kynurenine metabolites and lipid metabolites, which highlighted 
candidate immunologic and metabolic pathways influencing the restoration 
of homeostasis, the risk of death and that of long COVID. Based on these data, 
we identified a composite signature predictive of systemic recovery, using 
a joint model on cellular and molecular parameters measured soon after 
disease onset. New predictions can be generated using the online tool  
http://shiny.mrc-bsu.cam.ac.uk/apps/covid-19-systemic-recovery- 
prediction-app, designed to test our findings prospectively.

Coronavirus disease 2019 (COVID-19), which is caused by the severe 
acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has a wide 
spectrum of clinical manifestations and has led to over 6.6 million 
deaths worldwide by the end of 2022 (ref. 1). When acute infection 

is resolved, health is restored in most individuals, yet some develop 
prolonged symptoms, known as long COVID2–4. SARS-CoV-2 can 
induce an important acute-phase reaction (systemic inflammation), 
profound changes in organismal metabolism and alterations across 
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questionnaires for a same CovP: 5 months, IQR 1.5 month). The cohort 
also comprised 45 uninfected healthcare workers (hereafter healthy 
control, HC), defined by negative PCR test and serology, for whom 
blood samples were obtained at enrollment only.

First, to relate immunologic and metabolic changes in our cohort 
to findings from the published literature5,6, we examined the impact of 
SARS-CoV-2 infection across clinical, metabolic and cellular variables 
over a 7-week window after positive swab or symptom onset. Univariate 
linear mixed models were used, accounting for repeated participant 
measurements within the 7-week window, with each biologic parameter 
modeled as the dependent variable. A differential abundance analysis 
between HCs and CovPs across all severity groups indicated widespread 
systemic dysregulation (Extended Data Fig. 1). CovPs had a metabolic 
signature characterized by increased expression of intermediates 
from the kynurenine pathway (3-hydroxykynurenine, kynurenine, 
quinolinic acid) and depletion of the upstream amino acid trypto-
phan (Extended Data Figs. 1 and 2). Compared to HCs, plasma from 
CovPs also showed reduced abundance of other amino acids, most pro-
nounced for citrulline, histidine and ornithine (Extended Data Fig. 1). 
There was further a decrease in high-density lipoproteins compared to 
HCs, in particular apolipoproteins, and an increase in very-low-density 
lipoproteins, in particular triglycerides and free cholesterol, and in the 
N-acetyl glycoprotein signals GlycA and GlycB (Extended Data Fig. 1).  
Absolute numbers of neutrophils, plasmablasts and activated CD8+ 
T cells were increased in CovPs compared to HCs, while absolute counts 
of Vγ9 Vδ2 γδ T cells, MAIT cells, CD4+ TEMRA cells, CD4+ TEM cells and 
total BM cells (marginal zone-like B cells) were decreased (Extended 
Data Fig. 1), as previously reported9. Mixed-model association analyses, 
again accounting for serial participant measurements within the first  
7 weeks after symptom onset or positive swab, revealed significant 
linear relationships between CRP concentration in serum—an indica-
tor of the acute-phase response in COVID-19 patients11,12—and most 
metabolic and cellular variables in CovPs across all severity classes  
(A to E; Extended Data Fig. 3). Together, these analyses captured marked 
molecular and cellular abnormalities across the first 7 weeks after dis-
ease onset, and extensive covariation of these abnormalities with CRP.

Functional principal component analysis captures 
heterogeneity of patient C-reactive protein trajectories
Exploring study populations fails to provide patient-level insight. To 
overcome this limitation, we applied an FPCA framework to the param-
eter signatures discussed above. Based on the premise that inflam-
mation is a central disruptor of homeostatic functions, we first aimed 
to identify the main modes of variation of CRP trajectories in CovPs 
over the first 7 weeks after symptom onset. Time points of analysis for 
asymptomatic CovPs (class A) were measured from the date of their first 
positive swab, while time points for symptomatic CovPs (classes B to E) 
were measured from the date of their symptom onset. As such, in order 

many elements of the immune system5,6. Evolution of these parameters 
over time is highly heterogeneous between patients7,8. How failure to 
restore organismal homeostasis relates to recovery from acute infec-
tion and development of long COVID remains unclear.

In this study, we exploited existing and new data from a previ-
ously described COVID-19 cohort9. Published results using this cohort 
focused on the acute and convalescent phases of illness using clinical, 
immune cell and inflammation parameters measured up to 3 months 
after disease onset. Here we adopted a wider perspective to under-
stand organismal recovery, based on the same parameters as before9 
(immune cell subsets, serum cytokines and C-reactive protein (CRP) 
levels) but collected over an extended follow-up period of 12 months, 
as well as newly established data (polar metabolites, glycoproteins 
and lipoproteins), and patient questionnaires addressing long-term 
symptoms of disease. We devised a patient-centric longitudinal mod-
eling framework, based on functional principal component analysis 
(FPCA), to examine the cellular, metabolic and inflammatory drivers 
of patient variability in disease trajectories, and study recovery from 
COVID-19 in a broad, systemic sense.

Results
Cellular and metabolic changes associate with inflammation
We recruited 215 SARS-CoV-2 PCR-positive patients (hereafter  
COVID-19 patient, CovP) between 31 March 2020 and 7 August 2020 in 
Cambridge Hospitals (Wuhan strain). CovPs were categorized accord-
ing to five severity classes based on peak clinical severity: A, asympto-
matic (n = 18); B, mild symptomatic (n = 40); C, hospitalized without 
supplemental oxygen (n = 50); D, hospitalized with supplemental 
oxygen (n = 38); and E, hospitalized with assisted ventilation (n = 69). 
Symptomatic CovPs had onset of disease between 20 February 2020 
and 18 June 2020, and hospital outcome (discharged, other hospi-
tal or facility, or deceased) for inpatients occurred after a median of 
23 d after symptom onset (interquartile range (IQR), 32.25 d). Briefly, 
inpatient classes (C to E) were sampled at enrollment, approximately 
weekly up to 4 weeks, and then every 2 weeks up to 12 weeks. Discharged 
CovPs were asked to provide a follow-up sample 4–8 weeks after enroll-
ment. Outpatient classes (A and B) were sampled at enrollment and 
subsequently after approximately 2 and 4 weeks. Participant recall 
beyond the original study period9 occurred at approximately 3, 6 and 
12 months following recruitment. Additionally, 14 CovPs were newly 
included, after discharge from hospital. CRP levels, five serum cytokines 
(interferon (IFN)-γ, interleukin (IL)-10, IL-1β, IL-6, tumor necrosis factor 
(TNF)), 36 polar metabolites, 103 glycoproteins and lipoproteins, and 
33 immune cell subsets were quantified from the blood samples col-
lected at the above time points. Follow-up questionnaires10 assessing 
long-term symptoms were obtained from symptomatic CovPs (classes 
B to E) between 3 and 11 months after symptom onset (up to three 
questionnaires per CovP, median interval between two consecutive 

Fig. 1 | Functional principal component analysis of COVID-19 patients’ 
C-reactive protein levels. a, The first two eigenfunctions represent the 
severity of inflammation and the recovery from inflammation, respectively, 
over the 7-week window of the FPCA, accounting for 78.5% and 20.8% of the 
variability, respectively. b, Scatterplot showing the FPCA scores, FPC1 and FPC2, 
corresponding to the first and second eigenfunctions, respectively; each point 
corresponds to one CovP. x axis indicates FPC1 ‘severity’ scores (the higher 
the more severe the inflammation); y axis indicates FPC2 ‘recovery’ scores 
(the higher the more pronounced the temporal resolution of inflammation). 
‘Recovery’ groups 1, 2 and 3 were obtained by Gaussian mixture modeling; the 
opacity and diameter of the points are proportional to the estimated probability 
of assignment of each CovP to their recovery group. Log-transformed CRP 
trajectories for four CovPs with extreme severity or recovery scores (left  
and right). Gray bands, normal CRP levels corresponding to the IQR of HCs’ 
(log-transformed) CRP levels. Points correspond to the observed values; red, 
blue and gray curves, trajectories estimated using the FPCA framework; dashed 

curves delineate the 95% confidence bands (n = 113 CovPs). c, FPCA scores and 
groups by CovP clinical severity classes (B, screening symptomatic; C, hospital 
no oxygen required; D, hospital supplemental oxygen; E, hospital assisted 
ventilation). In the box plots, the center line indicates the median, box limits 
represent the upper and lower quartiles and whiskers indicate 1.5 times the 
IQR. One-versus-all two-sided t-tests: ****P < 0.0001, ***P < 0.001, **P < 0.01 and 
*P < 0.05; overall: analysis of variance (ANOVA) P < 0.0001, n = 113 CovPs. d, CRP 
trajectories conditional on the recovery groups 1–3 with 95% confidence bands, 
estimated with a longitudinal mixed model accounting for patients’ repeated 
measurements (likelihood ratio (LR) tests for the baseline group effect and 
group × time interaction effect, significance labels as in c). Points correspond to 
observed values. Group 1, inflammation absent or mild; group 2, early, resolving 
inflammation; group 3, persisting inflammation. e, Characterization of the 
recovery groups by age (one-versus-all two-sided t-tests, ANOVA P < 0.0001)  
and gender (Fisher exact test P = 0.0001). Box plots and significance labels as  
in c (n = 113 CovPs).
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to prevent bias due to temporal shifts across participant trajectories 
(Supplementary Figs. 1 and 2), and ease the interpretation of the notion 
of ‘recovery’, we only analyzed the data from the 113 symptomatic CovPs 
whose CRP was measured at least twice. We used FPCA to model the 
CRP trajectory of each CovP as a mean function, reflecting the average 
CRP course across all CovPs, plus a truncated sum of patient-specific 
random deviations from the mean. These deviations were represented 
as a linear combination of orthonormal eigenfunctions, weighted by 
patient-specific scores, where the eigenfunctions and scores were 
estimated from the CovPs’ CRP data at all time points within 7 weeks 

after symptom onset. The first two eigenfunctions jointly accounted 
for more than 99% of the variance and, along with their corresponding 
scores, they were interpretable in terms of disease profiles: the first 
eigenfunction and associated scores (FPC1) acted as a proxy for inflam-
mation severity (Fig. 1a,b). CovPs with positive FPC1 scores had higher 
CRP than the average CRP levels of all CovPs over the 7-week period 
(for example, CovP CV0047; Fig. 1b), while CovPs with negative FPC1 
scores had lower CRP than the average CovP levels (for example, CovP 
CV0046; Fig. 1b). This interpretation was independently corroborated 
by the strong association of the scores with the B to E severity classes 
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(Fig. 1c), establishing the clinical relevance of our FPCA inferences. We 
thus refer to the FPC1 scores as ‘severity scores’. The second eigenfunc-
tion and associated scores (FPC2) acted as a proxy for recovery from 
inflammation, with CovPs that had large positive FPC2 scores show-
ing a marked improvement of the inflammatory status over time (for 
example, CovP CV0115; Fig. 1b). By contrast, inflammation resolved 
more slowly, or became more severe, compared to the mean func-
tion in CovPs with negative FPC2 scores (for example, CovP CV0212;  
Fig. 1b). Hence, we refer to the FPC2 scores as ‘recovery scores’. Of note, 
of the 113 CovPs, 40 CovPs from class C, D or E had either proven or 
suspected secondary infection—mostly hospital-acquired bacterial 
pneumonia (Supplementary Figs. 3 and 4). Additional analyses indi-
cated an association between this status (infection proven, suspected 
or not suspected) and severity and recovery scores (Supplementary 
Fig. 3), in line with the expectation that a secondary infection would 
further increase inflammation levels. However, the FPCA estimates 
for CovPs with no suspected secondary infection were robust to the 
inclusion of CovPs with super-infection in the inference framework 
(Supplementary Fig. 5).

Gaussian mixture model (GMM) clustering of the severity and 
recovery scores uncovered three patient groups (Fig. 1b) with dis-
tinct inflammation trajectories. Group 1 had absent or mild inflamma-
tion over the 7-week window after symptom onset; group 2 had early, 
resolving inflammation, while group 3 had persisting inflammation  
(Fig. 1d), confirming that the patient-level FPCA estimates encom-
passed information on the magnitude and temporal profile of  
systemic inflammation as captured by CRP. Of note, all 12 CovPs who 
died belonged to group 3 (Fig. 1b). As expected13, additional analyses 
indicated that the groups were significantly associated with age and 
gender (Fig. 1e). Notably, groups 1–3 were not only entirely driven 
by disease severity, but also by the type of recovery profile (Fig. 1b).  
In particular, CovPs in group 2 had higher than average recovery scores, 
and each of the three groups comprised CovPs from multiple sever-
ity classes (Fig. 1c and Supplementary Table 1). We therefore refer to 
groups 1–3 as ‘recovery groups’.

The GMM clustering estimated probabilities of assignment of 
CovPs to the groups. Inspection of these probabilities indicated that 
some CovPs near the group boundaries were weakly allocated, that 
is, their assigned recovery group was uncertain (Fig. 1b). However, 
sensitivity analyses evaluating the impact of potential misallocation on 
all group-level findings indicated that estimates were barely changed 
by purposely reassigning all weakly allocated CovPs to another group 
(Supplementary Figs. 6–11). Collectively, these analyses showed that 
variability in CRP trajectories could be decomposed into separate 
‘severity’ and ‘recovery’ latent contributions to the patient inflamma-
tion profiles, which enabled identifying three patient recovery groups 
with distinct inflammation dynamics.

Dynamics across biologic systems are coordinated
To test how longitudinal post-infection profiles, as reflected by recovery 
groups 1, 2 and 3, related to systemic recovery, we examined all biologic 
parameters quantified for the 113 symptomatic CovPs over the 7-week 
window following symptom onset. Mixed-effect modeling with time 

encoded as a continuous variable, indicated that the trajectories of the 
cellular and molecular parameters largely reflected the inflammation 
profile that characterized each recovery group, as exemplified by five 
parameters from each of the data types (Fig. 2a). However, correlation 
analyses conducted in each recovery group—stratifying the patient data 
into an acute-infection phase (weeks 0–3 after symptom onset) and a 
protracted-infection or convalescence phase (weeks 4–7 after symptom 
onset)—further indicated significant covariations across data types, 
for all recovery groups in both time bins, which were not observed in 
data from HCs (Extended Data Fig. 4). This suggested that, irrespective 
of disease severity, as a population, infected individuals did not make 
full immune and metabolic recovery by week 7 after symptom onset.

To explore the interplay between the temporal profiles of the 
inflammatory, immune cell and metabolomic responses at the patient 
level, we performed additional multivariate FPCA studies on sets of 
parameters whose alterations were identified to be signatures of 
active SARS-CoV-2 infection in our population-level analyses, that is, 
apolipoproteins (HDA1, HDA2, VLAB), glycoproteins (GlycA, GlycB), 
kynurenine-pathway metabolites (3-hydroxykynurenine, kynure-
nine, quinolinic acid, tryptophan), serum cytokines (IFN-γ, IL-10, 
IL-1β, IL-6, TNF) and subsets of lymphocytes (CD4+ TEMRA cells, CD4+ TN 
cells, non-naive HLA-DR+CD38+ CD4+ T cells, CD8+ TEMRA cells, CD8+ TN 
cells, non-naive HLA-DR+CD38+ CD8+ T cells, total BM cells, γδ T cells, 
mucosal-associated invariant T (MAIT) cells, natural killer (NK) cells, 
NKT cells, plasmablasts). Trajectories reconstructed for three indi-
vidual CovPs (CV0261, CV0115 and CV0212) from each recovery group 
largely co-evolved over the disease course (Fig. 2b). The temporal 
profiles for quinolinic acid in these CovPs broadly agreed with the 
group-level longitudinal estimates (Fig. 2a). More generally, the 95% 
confidence bands of the estimated trajectories for CovP CV0261 (group 
1, symptomatic but not hospitalized) covered the normal levels (HCs’ 
IQR; Fig. 2b), suggesting absent or mild alterations. The trajectories 
of CovP CV0115 (group 2, supplemental oxygen) were slightly above 
or below normal levels, but with no sign of deterioration over time  
(Fig. 2b). Finally, CovP CV0212 (group 3, assisted ventilation; died 
44 d after symptom onset) exhibited a clear deterioration in all 
parameters, with the estimated trajectories departing from normal 
levels (Fig. 2b). The trajectories of cellular-level, molecular-level and 
inflammation-level parameters, and the severity and recovery scores for 
all CovP analyzed in the FPCA framework, can be inspected interactively 
at http://shiny.mrc-bsu.cam.ac.uk/apps/covid-19-patient-trajectories/, 
along with basic anthropomorphic and clinical information on each 
CovP. These reconstructed trajectories indicated that, although indi-
vidual parameter courses tended to be representative of the general 
parameter evolution within the groups, some CovPs displayed excep-
tional trajectories, emphasizing the value of patient-specific estimates 
to resolve the covariation of cellular and molecular parameters with 
inflammation at the patient level.

In addition, the FPCA studies on the cellular and metabolic 
parameters more broadly defined the interplay between data types in 
response to infection. Similarly to the CRP FPCA, the first and second 
eigenfunctions could be interpreted as proxies for ‘severity’ and ‘recov-
ery’ (or ‘normalization’) of the parameter trajectories, respectively, 

Fig. 2 | Group-level and patient-level estimates of cellular and molecular 
trajectories. a, Recovery-group trajectories estimated by longitudinal  
mixed modeling for five parameters, one from each data type (cytokines, 
lymphocytes, kynurenine-pathway metabolites, lipoproteins and glycoproteins) 
over the first 7 weeks after symptom onset, with 95% confidence bands.  
All levels have been log-transformed and the gray bands correspond to the IQR  
of HCs’ levels. False discovery rate (FDR)-adjusted P values from LR tests for 
baseline and interaction effects are indicated (****P < 0.0001, ***P < 0.001, 
**P < 0.01 and *P < 0.05). b, Trajectories of the same parameters as in a, estimated 
by FPCA for three CovPs, one from each recovery group. Dashed curves delineate 

the 95% confidence bands. c, Comparison of the severity (lower diagonal  
part) and recovery scores (upper diagonal part) obtained from the six FPCA 
studies with Pearson simple correlation (‘Cor’) and partial correlation  
(‘pCor’); significant estimates at an FDR level of 5% are highlighted in bold. 
Severity classes: B, screening symptomatic; C, hospital no oxygen required;  
D, hospital supplemental oxygen; E, hospital assisted ventilation. d, Conditional 
independence networks for the severity and recovery scores; an edge is shown  
if the pair of score types is directly associated (partial correlation) at an FDR  
level of 5%, and the opacity and width of the edge is proportional to the strength 
of the association.
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and the different sets of severity scores were highly correlated across 
data types (Fig. 2c), confirming that inflammatory, immunologic and 
metabolomic alterations were closely interlinked. Inspecting the partial 
correlation structure among severity scores further indicated direct 
relationships between the CRP severity scores and all other sever-
ity scores, except for the lipoprotein scores (with which they were 

indirectly associated through the glycoprotein and cytokine scores; 
Fig. 2d), corroborating the central role of CRP scores in assessing sever-
ity profiles. The severity scores from all data types echoed the clinical 
severity classes (B to E; Fig. 2c), indicating that the variability in the 
various trajectories reflected pathophysiologic signatures relevant 
to clinical disease. Correlation of recovery scores across the different 
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types of parameters was somewhat weaker, although still significant 
in most cases (Fig. 2c), which may reflect distinct dynamics between 
cellular compartments or differing half-lives. Alternatively, it could 
indicate persistent disruption of select biologic systems despite resolu-
tion of inflammation. Together, these data captured the complexity of 
the mostly coordinated dynamic changes observed across the immune, 
metabolic and inflammatory systems.

Disruption of biologic parameters can last for months
To examine the long-term dynamics of cellular and molecular recovery, 
we modeled differential parameter abundance between each recov-
ery group and HCs over an extended time frame of 1 year from infec-
tion, using linear mixed models and binning the CovPs data into five 
time windows (weeks 0–3, weeks 4–7, weeks 8–12, weeks 13–27, weeks 
28–52 after symptom onset; chosen so as to involve similar numbers 
of observations). As expected, group 1 (mild or absent inflammation) 

showed minor early disruptions, linked to plasmablasts, citrulline, 
glutamic acid, glutamine, ornithine and several metabolic ratios that 
were significantly different from HCs in weeks 0–3 after symptom onset  
(Fig. 3a–d). In group 2, many parameters (including several lipopro-
teins, glycoproteins and lymphocytes) were altered up to week 4 (67%) 
or week 8 (33%) after symptom onset, but were indistinguishable from 
HCs in the subsequent time windows (that is, from week 8 onwards; 
Fig. 3a–d), thus aligning with the recovery from inflammation defin-
ing the group. Group 3 (persistent inflammation) showed widespread 
and long-lasting cellular alterations. Most notably, plasmablast and 
non-naive HLA-DR+CD38+ CD8+T cell numbers were still increased, 
whereas the numbers of plasmacytoid dendritic cells, CD4+ follicular 
helper T-like cells, Vγ9 Vδ2lo γδ T cells, MAIT cells, naive B cells and 
CD4+ regulatory T (Treg) cells were still decreased in the fourth time win-
dow (weeks 13–27; Fig. 3a). Similarly, there were persistent metabolic 
alterations (weeks 13–27) in group 3 compared to HCs, such as increased 
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Fig. 3 | Long-term recovery-group trajectories for biologic parameters 
(n = 113 CovPs). a–d, Immune cell subsets (a), polar metabolites (b), 
glycoproteins and lipoproteins (c) and metabolic ratios (d) for each recovery 
group compared with the HC levels over a year after symptom onset, using mixed 

modeling. The first 5 × 3 columns indicate the t-statistics obtained for the group 
effect and corresponding significance after FDR multiplicity adjustment, and the 
last two columns indicate the significance (−log10 adjusted P value) of the baseline 
and interaction effects using the group-level longitudinal mixed models.
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kynurenine, quinolinic acid and glutamic acid, and decreased levels 
of tryptophan, indole-3-acetic acid and serotonin (Fig. 3b), as well as 
increased levels of VLAB, GlycA and GlycB (Fig. 3c). Using group-level 
longitudinal mixed models with time modeled as a continuous vari-
able, we next assessed baseline group effects (that is, group differ-
ences at symptom onset) and group × time interaction effects. Nearly 
half of the parameters included in this study had significant baseline  
and/or interaction effect(s) (for instance, NK cells, CD8+ TEM cells,  
myeloid dendritic cells, CD8+ TN cells, GlycA and GlycB displayed both 
baseline and interaction effects, CD4+ follicular helper T-like cells, 
Vγ9 Vδ2lo γδ T cells, MAIT cells, kynurenine, quinolinic acid and tryp-
tophan had significant baseline effects only, and HLA-DR+CD38+ CD8+ 
T cells had significant interaction effects only; Fig. 3a–c). These param-
eters, when measured early after infection, might therefore contain 
information regarding an individual’s ability to recover. In all, these 
results indicated that recovery groups 1–3 had dissimilar parameter 
recovery rates, with group-3 CovPs experiencing persisting biologic 
disruptions up to 6 months after symptom onset.

Biologic recovery and clinical outcomes are interlinked
We next asked how biologic recovery profiles related to long COVID, 
using questionnaires on long-term symptoms (covering respiratory, 
neurological, gastrointestinal and other physical sequelae)10. These 
questionnaires were collected from 65 CovPs (54% female, median age 
51 years old, IQR 29 years old) between months 2 and 11 after symptom 
onset. A comparison of the reported symptoms indicated that CovPs 
in group 3 reported more neurological symptoms (fatigue, muscle 
weakness, pain, difficulty eating, drinking, swallowing) compared to 
group 1 (Fig. 4a). Of note, in group 3, fatality and mechanical ventila-
tion (a source of non-infection-related sequelae) added unavoidable 
limitations. We also conducted simple and partial correlation analyses 
(Supplementary Fig. 12), which indicated that the neurological symp-
toms were largely interconnected, with the exception of anosmia and 
dysgeusia. A latent factor analysis, which aimed to characterize the joint 
manifestation of the reported symptoms, identified two latent factors, 
the first of which (LFA1) appeared to be driven by the neurological 
symptoms. In particular, new neurology in limbs, fatigue and muscle 
weakness were attributed the largest loadings for LFA1 (Fig. 4a). As it 

accounted for most of the modeled variability, LFA1 also served as a 
natural patient-level latent proxy for long-term clinical manifestations, 
and was associated with the recovery groups (Fig. 4b). As such, LFA1 was 
significantly higher for CovPs from group 3 (poorer score), and lower 
for CovPs from group 1 (Fig. 4b). However, there was substantial vari-
ability within each recovery group. In particular, two patients, CV0165 
in group 1 and CV0201 in group 2, had high composite scores, although 
their cellular, inflammatory and molecular trajectories had essentially 
returned to normal levels by week 7 after symptom onset, as estimated 
by the FPCA studies (and seen at http://shiny.mrc-bsu.cam.ac.uk/apps/
covid-19-patient-trajectories/). This suggested that systemic, subjec-
tively perceived sequelae persisted in these individuals despite absent, 
or rapidly resolving, inflammation and cellular/molecular disruption. 
Finally, a survival analysis found an increased risk of death for group 3 
compared to groups 1 and 2 (log-rank test, P = 0.0007; Fig. 4c). Together, 
these results showed that the inflammatory response to infection, as 
encompassed by the three recovery groups, was tightly linked with 
survival outcomes and long-term clinical sequelae up to 1 year after 
symptom onset, despite substantial patient-to-patient variations.

Joint model finds early markers of incomplete recovery
To test whether the type of recovery profile of individual CovPs could 
be predicted soon after infection, we trained an integrative model on 
samples collected during the early phase of the disease. Specifically, 
we applied a sparse generalized canonical correlation analysis (sGCCA) 
algorithm, extended for supervised analysis, on all cellular and molec-
ular parameters jointly, also including age and gender as a separate 
canonical vector. sGCCA involved an internal selection procedure for 
identifying a subset of parameters predictive of incomplete recovery 
from the nearly 200 candidate markers. Briefly, sGCCA implemented a 
trade-off between maximizing the correlation of biologic parameters 
(immune cell subsets, polar metabolites, glycoproteins, lipoproteins 
and diverse metabolic ratios) and maximizing the discrimination 
between unfavorable recovery profiles (group 3) and favorable recov-
ery profiles (group 1 and group 2 merged). We used the first sample 
from each CovP, provided it was taken within 3 weeks from symptom 
onset, and considered a training–test set split involving 70% and 30% 
of the samples, respectively. The signatures for the first two latent 
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components (Fig. 5a) and the circular plot (Fig. 5b) were obtained using 
the training samples, while the receiver operating characteristic (ROC) 
curves (Fig. 5c) were obtained using the left-out test samples.

The sign of the average signature parameter abundances (Fig. 5a) 
aligned with published results5,6,9. NK cells appeared with the largest 
weight in the first signature (average cell numbers lower in CovPs with 
poor prognosis; Fig. 5a). Metabolic intermediates from the kynure-
nine pathway, and corresponding ratios, also appeared as important 
markers of the type of recovery (Fig. 5a), corroborating reports on 
the involvement of the pathway in adaptive immunity and inflam-
mation14. Quinolinic acid, tryptophan, kynurenic acid, kynurenine 
and 3-hydroxykynurenine were selected in the first signature, while 
serotonin, a neurotransmitter derived from tryptophan catabolism, 

was selected in the second signature. These metabolites appeared 
together with a series of innate immune cells. The area under the curve 
(AUC) on the test set reached 90.8% (Fig. 5c). The predictive perfor-
mance when restricting the signatures to each data type was also high 
(AUCs > 84.7%), suggesting strong interdependence of the biologic pro-
cesses captured in our study. The AUC assessing the predictive value of 
age and gender was the second lowest (85.2%) after that of the cell-type 
block (84.7%), suggesting that the signal encompassed in the molecular 
markers has greater predictive value (>87.8%) compared to anthropo-
morphic characteristics only. Moreover, while age and gender already 
contain substantial information regarding the risk of incomplete recov-
ery at the population level (Fig. 5c), at the individual level—that is, clini-
cally most relevant—a low risk in terms of anthropomorphic factors 
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Fig. 5 | Predictive modeling for the recovery groups. a, Absolute loadings 
forming early predictive signatures, for the first and second latent components 
of the sGCCA, arranged per data type. The blue and red dots indicate an average 
abundance greater in groups 1 + 2 and group 3, respectively. b, Circular plot 
linking pairs of variables from the two signatures, if their absolute Pearson 
correlation exceeds 0.75. Red and blue indicating a positive and negative 

correlation, respectively. External blue and red lines show the relative average 
abundance of the selected variables within the two categories (blue indicates 
groups 1 + 2 and red indicates group 3). c, ROC curves for the predictive 
performance of sGCCA on the test set. The curves correspond to the average 
prediction based on the five data types (black), and the prediction based each 
data type separately (colors).
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does not rule out the possibility of incomplete organismal recovery, as 
our FPCA findings capture. For instance, the individual-level estimates 
for CovP CV0209, 38 years old, in group 3 (accessible at http://shiny.
mrc-bsu.cam.ac.uk/apps/covid-19-patient-trajectories) indicated 
unfavorable molecular parameter trajectories and scores; this young 
CovP did not survive. Hence, relevant biologic markers measured 
early after disease onset in young individuals may correctly predict 
a poor outcome.

Finally, we developed an interactive tool to browse predic-
tions based on selected markers from the two systemic recovery 
signatures available at http://shiny.mrc-bsu.cam.ac.uk/apps/covid
-19-systemic-recovery-prediction-app/. For any new prediction run 
through this tool, an estimated prediction score conveys the level of 
confidence in the predicted recovery profile, and the predictive per-
formance on the test set is re-evaluated based on the subset of markers 
supplied. This internal performance assessment of the sGCCA model 
on the Cambridge cohort suggested that the cellular and molecular 
markers from the estimated signatures contain valuable predictive 
information for anticipating incomplete recovery, already when meas-
ured soon after symptom onset.

Discussion
Our joint modeling framework of the longitudinal immunologic, 
metabolic and clinical data on a SARS-CoV-2 cohort indicated pro-
tracted temporal covariation patterns that highlighted acute-phase 
inflammation as a common denominator interlinked with incomplete 
clinical, immunologic and metabolic recovery up to a year after dis-
ease onset, and suggested that coordinated dynamics of the innate 
immune system, kynurenine and host lipid metabolism were likely 
underpinning restoration of overall homeostasis. Specifically, the 
reconstruction of parameter trajectories at the patient level, and the 
estimation of patient-specific latent ‘severity’ and ‘recovery’ scores, 
allowed the characterization of the inter-patient and intra-patient 
variability in responses to infection, and revealed three types of patient 
profiles in an unsupervised fashion, agnostic of any clinical assess-
ments subject to interpretation. These profiles constituted distinct 
patient ‘systemic recovery’ categories, which characterized disease 
course, risk of death and of long COVID beyond peak clinical severity. 
Furthermore, our patient-centric FPCA framework permitted con-
fronting the biology of group profiles with that of individual patients 
(http://shiny.mrc-bsu.cam.ac.uk/apps/covid-19-patient-trajectories/). 
Finally, an early prognosis of recovery for a new patient can be obtained 
from our pilot predictive model (http://shiny.mrc-bsu.cam.ac.uk/
apps/covid-19-systemic-recovery-prediction-app/), whose excellent  
performance in our cohort warrants independent validation to evalu-
ate clinical actionability.

Our data suggested that a limited number of pathophysiologic 
processes impact many of the parameters appearing together in early 
composite signatures predictive of poor prognosis. Of note, both the 
inflammatory immunopathology of severe acute SARS-CoV-2 infection 
(note that upper airway viral persistence was excluded for all severity 
classes9), and hemophagocytic lymphohistiocytosis15, a cytokine storm 
syndrome, are characterized by elevated triglycerides—likely linked 
to protracted hyper-inflammation. NK cells play a central role in anti-
viral immunity through the secretion of pro-inflammatory cytokines 
and cytotoxic activity, and NK cell dysfunction is also a key criterion 
of hemophagocytic lymphohistiocytosis15,16. NK cells had the larg-
est weight in the first predictive signature, with low absolute counts 
associated with poor outcome. This reduction of NK cells in peripheral 
blood from individuals with unresolving CRP (group 3) suggests an 
inflammation-driven perturbation of the NK cell compartment. The 
precise contribution of NK cell (dys)function to SARS-CoV-2-related 
acute and post-acute pathology remains unresolved17–19.

Pro-inflammatory cytokines activate the kynurenine pathway 
through induction of indoleamine 2,3-dioxygenase (IDO-1), as observed 

in our cohort20. Kynurenine-pathway activation has been implied in link-
ing inflammation and central nervous system alterations by favoring 
the degradation of tryptophan toward 3‐hydroxykynurenine and qui-
nolinic acid21, both of which appeared in the first predictive signature, 
and by reducing serotonin production22, which appeared in the second 
signature. It is plausible that abnormal levels of kynurenine-pathway 
intermediates, coupled with the significant reduction of serotonin 
abundance, contribute to neurological sequelae (for example, fatigue, 
weakness, chronic pain) of long COVID. Pathologic smell and taste, 
by contrast, may be related to more direct nerve sheath damage23. 
In addition, kynurenine and some of its metabolites are endogenous 
ligands of the transcription factor AhR. AhR is a regulator of balance 
between Treg and the TH17 subset of helper T cells24,25, and binding of 
kynurenine to AhR in CD4+ T cells promotes the expression of the 
transcription factor FoxP3 and Treg cell differentiation26. In addition, 
3-hydroanthranillic acid—a kynurenine-pathway metabolite—also 
enhances Treg cell differentiation27. It will be interesting to define how 
function, frequency and absolute Treg cell counts integrate to impact 
the pathophysiology of COVID-19.

The Cambridge cohort involved unvaccinated patients infected 
by the Wuhan variant and therefore constituted a clean floor for 
studying the immunologic and metabolic response triggered by the 
original strain of the SARS-CoV-2 virus. However, our study does not 
reflect the current epidemiological situation, which is also a limita-
tion. Importantly however, our statistical framework is transferable 
to new cohorts (vaccinated, treated), facilitating systematic com-
parative work. By extension, long COVID and Epstein–Barr virus 
(EBV)-associated post-acute-infection syndrome (EBV-PAIS) share 
symptoms, and EBV reactivation after SARS-CoV-2 infection has been 
described28,29. Assessing how EBV-PAIS and SARS-CoV-2-related EBV 
reactivation relate to disruption of immune and metabolic homeo-
stasis, and interlinked disease processes, using our methodology may  
be of value.

Altogether, our framework allows studying the molecular and 
clinical correlates of organismal biologic recovery. It further offers 
patient-centric lenses to dissect the heterogeneity of the immune and 
metabolic responses to SARS-CoV-2 infection, which facilitates the 
formulation of mechanistic hypotheses as well as the development 
and testing of personalized intervention strategies.
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Methods
Cohort and samples
The cohort and initial sampling timeline have been described in earlier 
work9. Late-time-point samples have subsequently been collected 
and new metabolic data have been quantified. Briefly, study partici-
pants were CovPs attending Addenbrooke’s Hospital, Royal Papworth  
Hospital NHS Foundation Trust or Cambridge and Peterborough  
Foundation Trust with a confirmed diagnosis of SARS-CoV-2 infection, 
as well as SARS-CoV-2-positive healthcare workers recruited from 
a staff screening program. The initial sampling program collected 
blood samples for 201 CovPs at enrollment (first samples collected on  
31 March 2020), and at regular intervals up to 3 months after symptom 
onset, that is, inpatients were sampled approximately weekly up to  
4 weeks after enrollment, then every 2 weeks up to 12 weeks after enroll-
ment; discharged CovPs were asked to provide a follow-up sample 
4–8 weeks after enrollment; outpatients were sampled after approxi-
mately 2 and 4 weeks after enrollment. Late-time-point samples were 
obtained up to a year after symptom onset, approximately at months 
3, 6 and 12 following recruitment. A total of 14 additional hospitalized 
CovPs were included alongside the original cohort for the long-term 
follow-up after their discharge from Addenbrooke’s Hospital, providing 
late-time-point samples from month 3 after symptom onset onwards. 
Each participant was assigned to one of following categories of clinical 
severity: A, asymptomatic healthy workers (n = 18); B, symptomatic 
healthy workers (still working or self-isolating, n = 40); C, CovPs who 
presented to hospital but never required oxygen supplementation 
(n = 50); D, CovPs who were admitted to hospital and whose maximal 
respiratory support was supplemental oxygen (n = 38); E, CovPs who 
at some point required assisted ventilation (n = 69). Controls (n = 45) 
were SARS-CoV-2 PCR-negative hospital staff members with a negative 
serology. No statistical methods were used to predetermine sample 
sizes but our sample sizes are similar to those reported in previous 
publications5,6. No randomization or blinding was applicable as this 
was not an intervention study. Blood samples were drawn in EDTA, 
sodium citrate, serum and PAXgene Blood RNA tubes (BD Biosciences) 
and processed by the CITIID-NIHR COVID BioResource Collaboration 
group. No unique material was used in this study. All study partici-
pants provided written informed consent before enrollment. Ethics 
approval was obtained from the East of England–Cambridge Central 
Research Ethics Committee (‘NIHR BioResource’ REC ref. 17/EE/0025, 
and ‘Genetic variation AND Altered Leucocyte Function in health and 
disease–GANDALF’ REC ref. 08/H0308/176).

C-reactive protein and cytokines
High-sensitivity CRP and serum cytokines (IFN-γ, IL-6, IL-10, IL-1β, TNF) 
were quantified by laboratories in Cambridge using standard assays9.

Flow immunophenotyping and CyTOF assays
The assays are detailed in previous work on the early follow-up of 
the study cohort9. Briefly, peripheral blood mononuclear cells were 
obtained from peripheral venous blood collected in 10% sodium citrate 
tubes (up to 27 ml per sample). They were isolated using Leucosep 
tubes (Greiner Bio-One) with Histopaque 1077 (Sigma) by centrifuga-
tion at 800g for 15 min at room temperature. Peripheral blood mononu-
clear cells at the interface were collected, rinsed twice with autoMACS 
running buffer (Miltenyi Biotech) and cryopreserved in FBS with 10% 
dimethylsulfoxide. All samples were processed within 4 h of collection.

Nuclear magnetic resonance spectroscopy and mass 
spectrometry based quantitative metabolic phenotyping
1H nuclear magnetic resonance (NMR) sample preparation was per-
formed according to Bruker IVDr protocols30 and recommended pro-
cedures for IVDr metabolic analysis of COVID-19 plasma samples31. 
Plasma samples were stored at −80 °C until required, defrosted and 
centrifuged at 13,000g for 10 min at 4 °C. The plasma supernatant 

was mixed with buffer (75 mM Na2HPO4, 2 mM NaN3, 4.6 mM sodium 
trimethylsilyl propionate-[2,2,3,3-2H4] in 80% deuterium oxide, pH 
7.4 ± 0.1; 1:1 ratio), and transferred into a Bruker SampleJet NMR tube 
(5 mm). NMR measurements were performed on a Bruker 600 MHz 
Avance III HD spectrometer (IVDr) equipped with a BBI probe and fit-
ted with Bruker SampleJet robot with the cooling system set to 5 °C.  
A quantitative calibration was completed before the analysis32. For each 
sample, a 1H one-dimensional experiment with solvent pre-saturation 
(32 scans, 98,304 data points, spectral width of 18,028.85 Hz) and 
a DIRE experiment was run (64 scans, 98,304 data points, spectral 
width of 18,028.85 Hz)33. Lipoprotein reports itemizing 112 lipoprotein 
parameters for each plasma sample were generated using the Bruker 
IVDr Lipoprotein Subclass Analysis (B.I.LISA) method30. ERETIC cor-
rection34 was applied to all DIRE spectra and spectra were calibrated 
by setting the spectral reference value to 0 (SR = 0). Integration of the 
alpha-1-acid glycoprotein N-acetyl signals GlycA and GlycB, and supra-
molecular phospholipid composite was performed using in-house 
scripts. GlycA, GlycB and supramolecular phospholipid composite 
integrations were performed using the following regions: δ 2.05–2.09, 
δ 2.09–2.12 and δ 3.15–3.35.

For biogenic amines, amino acids and tryptophan metabolic 
pathway analysis, plasma samples were thawed at 4 °C and prepared 
following methods previously reported35,36. For the quantification 
of biogenic amines and amino acid metabolites, separation was per-
formed by ultra-high-performance liquid chromatography (UHPLC) 
using an Acquity UPLC (Waters) coupled to a Bruker impact II QToF mass 
analyzer (Bruker Daltonics). Resulting data files were processed for 
peak integration and quantification using Target Analysis for Screen-
ing Quantification (TASQ) software v2.2 (Bruker Daltonics). For the 
measurement of tryptophan and associated catabolites, separation was 
performed using an Acquity UPLC (Waters) coupled to a Xevo TQ-XS 
mass spectrometer (Waters). Raw files were processed for peak inte-
grations and metabolite quantification using the TargetLynx package 
within MassLynx v4.2 (Waters). For both analytical assays, calibration 
curves were linearly fitted using a weighting factor of 1/x and quality 
control checks were performed.

Data preprocessing and quality control
All statistical analyses were conducted using the R software37. Except for 
ratios for which no systematic transformation was applied, CRP, 
cytokines and all other cellular and molecular variables were 
log-transformed, using x ↦ log2 (x + 1) (with the offset ‘+ 1’ accounting 
for zero counts while ensuring positivity), to stabilize variances and 
improve approximations of normality in statistical tests (although the 
normality assumption was not formally tested for each variable). For 
each molecular dataset, the presence of extreme measurements and/or 
batch effects was assessed using PCA visualization. No batch effect was 
observed. A standard box plot rule was applied to discard extreme sam-
ples, that is, with >20% of their measurements falling outside the Tukey 
outer fences. Following this procedure, two immune cell-type samples 
(1.1%) and ten metabolomic samples (1.6%) were removed from all down-
stream analyses (all glycoprotein and lipoprotein samples were retained).

Differential abundance analysis and association with 
C-reactive protein
Differential abundance analysis between CovPs and HCs was conducted 
using linear mixed modeling to account for serial patient measure-
ments over a window of 7 weeks after symptom onset or positive swab. 
Analyses also included gender and age as fixed effects. The following 
model was implemented using lmerTest R package (R notation):

dep_var ∼ covid_status + age + gender + (1|subject_id)

where the different molecular variables were taken in turn as the 
dependent variable dep_var and covid_status is a binary variable coding 
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for ‘COVID positive’ or ‘COVID negative’. Significance of the covid_status 
effect was assessed using a type 3 F test and Satterthwaite’s method (to 
estimate the degrees of freedom for fixed effects), and adjustment for 
multiple testing across each molecular dataset was performed using 
an FDR level of 5%. When significance was reached, the molecular  
variable was called ‘upregulated’ or ‘downregulated’ based on the sign 
of the fold change.

The same linear mixed-model framework was used to test the 
association between CRP and each cellular/molecular variable, 
replacing the covid_status categorical variable with the quantitative 
(log-transformed) CRP variable.

Unless specified otherwise, all the analyses described hereafter 
are adjusted for multiple testing per data type, using an FDR level of 5%.

Functional principal component analysis
FPCA was conducted to characterize the inter-patient and intra-patient 
variability and estimate individual disease trajectories using param-
eters reflecting inflammation, as well as the immunometabolic 
response to infection. These parameters were CRP levels, five cytokines 
(IFN-γ, IL-10, IL-1β, IL-6 and TNF), twelve lymphocyte subsets (CD4+  
TEMRA cells, CD4+ TN cells, non-naive HLA-DR+CD38+ CD4+ T cells, 
CD8+ TEMRA cells, CD8+ TN cells, non-naive HLA-DR+CD38+ CD8+ T cells, 
total BM cells, γδ T cells, MAIT cells, NK cells, NKT cells and plasmab-
lasts), three lipoproteins (HDA1, HDA2 and VLAB), two glycoprotein 
signals (GlycA and GlycB) and four metabolites from the kynure-
nine pathway (3-hydroxykynurenine, kynurenine, quinolinic acid  
and tryptophan).

The R packages face38 and mfaces39 were used to implement the 
univariate FPCA study (for CRP levels) and multivariate FPCA studies 
(for all other groups of parameters listed above). Briefly, FPCA mod-
eled the individual parameter trajectories as a mean function plus 
a truncated sum of random deviations from the mean, expressed as 
a linear combination of orthonormal eigenfunctions, weighted by 
patient-specific scores. In the multivariate setting, each parameter had 
a corresponding set of eigenfunctions but the scores were common 
to all parameters. Smooth estimates of variance and autocorrelation 
functions were also estimated as part of the FPCA framework, as well as 
cross-correlation functions in the multivariate setting. FPCA trajecto-
ries were estimated over a time window of 7 weeks after symptom onset. 
Asymptomatic individuals (severity class A) were not considered in the 
FPCA framework and all downstream analyses to avoid ambiguity when 
discussing recovery and to limit the risk of bias due to their different 
temporal alignment compared to individuals from the other classes 
(time was measured from the date of symptom onset for classes B to 
E, and from the date of first positive swab for class A; Supplementary 
Figs. 1 and 2).

Gaussian mixture model clustering and sensitivity analysis for 
recovery-group assignment
GMM clustering with unconstrained covariances was performed on 
the CRP scores corresponding to the first two FPCA eigenfunctions 
to uncover groups of CovPs with similar disease trajectories. For the n 
individuals, the GMM estimated an n × K matrix of probabilities, whose 
(i, k)th entry was the probability that subject i belonged to cluster k. The 
optimal classification was obtained by assigning each individual to the 
cluster corresponding to their highest probability.

To assess the impact of weakly assigned individuals on the sub-
sequent group-level analyses, we conducted cluster membership 
sensitivity analyses by purposely misassigning individuals to clusters 
as follows: we identified all weakly assigned individuals to be individu-
als with maximum cluster probability below 0.8 (that is, for which the 
probability that they do not belong to their optimal recovery group 
exceeds 20%) and reassigned them to the cluster corresponding to the 
second-highest probability (that is, their ‘next best’ cluster). We then 
re-performed all analyses based on the resulting ‘perturbed’ recovery 

groups, and compared all estimates with those based on the original 
optimal recovery-group clustering (Supplementary Figs. 6–11).

Fisher’s exact tests were used to characterize the groups based 
on gender, and ANOVA and one-versus-all t-test (two-sided) were used 
to assess differences in age. For all subsequent analyses, significance 
labels are based on FDR-adjusted P values.

Simple and partial correlation estimates
Correlation between the parameters considered in the FPCA stud-
ies (lymphocytes, lipoproteins, glycoproteins, kynurenine-pathway 
metabolites, cytokines and CRP levels) was assessed during acute 
infection (weeks 0–3 after symptom onset) and convalescence (weeks 
4–7 after symptom onset; Extended Data Fig. 4). For each time window 
and each individual, the multiple measurements per person were aver-
aged, before computing correlation within recovery groups. For HCs, 
samples were available at a single time point for each individual so a 
single correlation matrix was computed. FDR-adjusted correlation 
tests were performed using the R package TestCor separately for each 
recovery group and for the HCs.

Pairwise Pearson simple and partial correlation among the severity 
and recovery FPCA scores for lymphocytes, lipoproteins, glycopro-
teins, metabolites from the kynurenine pathway, as well as cytokines 
and CRP was also estimated.

Longitudinal modeling
Univariate mixed models were used to estimate the temporal profile 
of each cellular/molecular parameter for the recovery groups 1, 2 and 
3, that is, with random effects to account for serial measurements of 
patients. Polynomial splines of degree 2 were used to model the param-
eters with respect to the interaction between the time from symptom 
onset (time) and the recovery groups (group). The following model 
was fitted for each molecular variable (dep_var):

dep_var ∼ time × group + (1|subject_id)

The significance of baseline effects (that is, difference between 
groups at time zero) and interaction effects (that is, difference in the 
group temporal courses) were tested using LR tests and adjusted for 
multiplicity across all variables of same data type.

Direct comparisons with HC levels were also conducted using 
mixed models whereby samples were grouped into five time windows 
(involving similar numbers of samples): (0, 3), (4, 7), (8, 12), (13, 27) and 
(28, 52) weeks after symptom onset. For each molecular variable and 
each time window, the following model was fitted:

dep_var ∼ category + (1|subject_id)

where category is a categorical variable coding for the HC and three 
recovery groups, with the former used a reference factor level. To assess 
the discrepancy between each group’s parameters and HC parameters, 
the significance of the category levels was examined, adjusting for 
multiplicity over all parameters of same data type. Significance was 
not reported if ≤25 samples were available in the group and the time 
window under consideration.

Long-term symptom analyses
Long-term symptoms were collected under the form of question-
naires given to CovPs between 2 and 11 months after symptom onset 
(average of 6 months). The questionnaires have been developed from 
Turner-Stokes et al.10, and were ethically reviewed for research use. 
The list of symptoms was: dyspnea; cough; chest pain on exertion; 
palpitations or swollen ankles; persisting fever (2 months or more); 
new leg swelling in one leg or shortness of breath with chest pain; new 
skin rashes or sores; voice alteration; difficulties eating, drinking or 
swallowing; constant noisy breathing or throat whistling; anosmia 
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or dysgeusia; difficulty to gain or maintain weight, loss of appetite; 
new neurology in one or more limbs; new pain in one or more parts of 
the body; muscle weakness, balance or range of movement of joints; 
fatigue; cognition—memory, concentration and thinking skills. The 
questionnaire grades were recoded so the scores range from 0 (no 
symptom) to 5 (extreme manifestation of the symptom); the descrip-
tion of these grades for each symptom is detailed in the Supplementary 
Data Table 1. Up to three questionnaires per patient were collected, and 
the scores of CovPs with more than one questionnaire were averaged 
before the analysis. Correlation and partial correlation analyses were 
conducted on all symptoms apart from persisting fever (not expe-
rienced by any patient and hence a constant variable), adjusting for 
multiplicity (FDR 5%; Supplementary Fig. 12). Exploratory latent factor 
analysis by principal axes with oblique factor rotation was performed 
to characterize the joint manifestation of the symptoms, treating the 
data on the Likert scale. Nonparametric tests were used for overall 
comparison across recovery groups (Kruskal–Wallis rank-sum test), as 
well as for pairwise tests (two-sided Wilcoxon rank-sum tests).

Survival analysis
The risk of death was studied by Kaplan–Meier survival analysis, using 
the three recovery groups 1, 2 and 3 as strata. Difference in survival 
between the groups was assessed using a log-rank test.

Predictive modeling
Predictive modeling of systemic recovery was carried out to classify 
CovPs, shortly after disease onset, in terms of unfavorable (group 3) 
or favorable disease progression (groups 1 and 2, merged). An inte-
grative sGCCA approach, adapted for supervised analysis, DIABLO40, 
was applied on the first sample of each patient from the cohort, pro-
vided that this sample was taken within 3 weeks after symptom onset. 
CovPs were randomly assigned to a training set or a left-out test set, 
according to a 70%–30% split (using the R package caret to balance 
the recovery-category distributions within the training and test sets). 
The sGCCA framework jointly accommodated all parameters across 
the different cellular and molecular data types (33 immune cell types,  
36 polar metabolites, 103 glycoproteins and lipoproteins, and 19 
selected metabolic ratios), as well as age and gender in a separate canon-
ical vector. The training procedure used threefold cross-validation to 
select the numbers of predictors within the sparse latent components 
(composite predictive signatures).

Systemic recovery-prediction tool
The predictive model based on CovPs’ early samples allows gen-
erating predictions for new samples collected when a patient 
presents to the clinic. An interactive tool to browse recovery prog-
noses is provided at http://shiny.mrc-bsu.cam.ac.uk/apps/covid-19- 
systemic-recovery-prediction-app/. For a new patient, each marker 
from the two signatures identified by the model (Fig. 5a) can be set in 
terms of percentiles of the empirical distribution formed by all Cam-
bridge cohort patient and HC measurements. The colors appearing on 
the bar suggest normal ranges (gray, corresponding to the HCs’ IQR), 
low values (blue, smaller than the HCs’ first quartile) or high values (red, 
larger than the HCs’ third quartile). The initial values correspond to the 
median of HCs’ measurements. The tool runs the prediction based on 
the input values and it outputs the systemic recovery prognosis (1 + 2 
or 3), along with a predicted score ranging from 0.5 to 1 and conveying 
the degree of confidence about the prediction (the larger, the higher 
the confidence).

As only a subset of markers from the two signatures may be quan-
tified from blood tests collected in the clinic, the prediction can be 
based on a selection of markers chosen from the drop-down menus; the 
deselected markers are omitted in the linear combination correspond-
ing to their latent component. To assess the expected performance 
of the model when restricted to a subset of markers, ROC curves are 

recomputed based on this subset using the Cambridge left-out test 
set (the curves are updated when selecting or deselecting markers). 
A poor performance on the test set (for example, AUC < 0.7) suggests 
that the selection of markers is insufficient to provide reliable predic-
tions for the new patient. In that case, the predicted category should 
be disregarded and values for additional markers should be supplied 
where possible. As Vg9Vd2hi γδ T appears in both signatures, its slider 
bar is displayed in the first column only.

Reporting summary
Further information on research design is available in the Nature  
Portfolio Reporting Summary linked to this article.

Data availability
The immune cell type, cytokine and CRP data, and the metadata for 
the early (0–3 months) follow-up9 are available at https://www.cov-
id19cellatlas.org/patient/citiid/. The polar metabolite, glycoprotein 
and lipoprotein data for the full year post disease onset are available 
at https://doi.org/10.5281/zenodo.7277164.

Code availability
The source code for the two R Shiny Apps can be accessed at https://doi. 
org/10.5281/zenodo.7527518 and https://doi.org/10.5281/zenodo. 
7528488. A repository with the scripts used for all analyses is also  
publicly accessible at https://doi.org/10.5281/zenodo.7527330.
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Extended Data Fig. 1 | Volcano plots for differentially abundant biological 
parameters, comparing COVID- positive patients with HCs, using linear 
mixed modeling accounting for repeated subject observations (n = 215 
CovPs, n = 45 HCs). a. Immune cell subsets. x-axis, log2 fold-change; y-axis, 

−log10 adjusted p-value; dashed horizontal line, 5% FDR threshold. Red and 
blue indicate significant up- resp. downregulation in CovPs vs HCs. b. Polar 
metabolites. Axes and colors as in a. c. Main classes of glyco- & lipoproteins. Axes 
as in a. Colors refer to compounds. d. Metabolic ratios. Axes and colors as in a.
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Extended Data Fig. 2 | The kynurenine and serotonin pathways. Metabolites: 
TRP - tryptophan, FKYN - formyl-kynurenine, KYN - kynurenine, 3-HK - 
3-hyroxykynurenine, 3-HAA - 3-hydroxyanthranillic acid, ACMS - 2-amino-3-
carboxymuconate-6-semialdehyde, QA - quinolinic acid, KA - kynurenic acid,  
XA - xanthurenic acid, PA - picolinic acid, 5-HTP - 5-hydroxy-L-tryptophan,  
SER - serotonin. Enzymes: IDO - indoleamine-2,3-dioxygenase, AFMID - kynurenine  

aryl formidase, KMO - kynurenine-3-monooxygenase, KYNU - kynureninase, 
3-HAO - 3-hydroxyanthranilate dioxy-genase, ACMSD - amino-b-
carboxymuconate-semialdehyde-decarboxylase, KAT - kynurenine 
aminotransferase, TPH - tryptophan hydroxylase, AADC - aromatic-L-amino  
acid-L-tryptophan decarboxylase.
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Extended Data Fig. 3 | Association effects between biological parameters and 
CRP abundance with 95% confidence intervals (n = 215 CovPs, n = 45 HCs). 
a. Immune cell subsets. Red and blue indicate positive and negative associations, 
respectively, at FDR 5%. Effect sizes are not on the original scale as both the 

dependent (biological parameter) and independent (CRP) variables have been 
log-transformed. b. Polar metabolites. Colors and scale as in a. c. Main classes 
of glyco- & lipoproteins. Colors and scale as in a. d. Metabolic ratios. Colors and 
scale as in a.
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Extended Data Fig. 4 | Correlation among the variables modeled by FPCA for the three recovery groups during acute phase (weeks 0-3) and convalescence 
(weeks 4–7). Lower diagonal part of all heatmaps, correlations in CovPs’ data. Upper diagonal part, correlations in HCs’ data (same for all heatmaps). Stars, 
significance of correlation tests at FDR 5%.
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