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Profound phenotypic and epigenetic 
heterogeneity of the HIV-1-infected CD4+ 
T cell reservoir

Vincent H. Wu    1,2, Jayme M. L. Nordin1,2, Son Nguyen    1,8, Jaimy Joy2,3, 
Felicity Mampe2,3, Perla M. del Rio Estrada4, Fernanda Torres-Ruiz    4, 
Mauricio González-Navarro4, Yara Andrea Luna-Villalobos4, 
Santiago Ávila-Ríos4, Gustavo Reyes-Terán5, Pablo Tebas2,3, Luis J. Montaner2,6, 
Katharine J. Bar2,3, Laura A. Vella    2,7,9  & Michael R. Betts    1,2,9 

Understanding the complexity of the long-lived HIV reservoir during 
antiretroviral therapy (ART) remains a considerable impediment in research 
towards a cure for HIV. To address this, we developed a single-cell strategy 
to precisely define the unperturbed peripheral blood HIV-infected memory 
CD4+ T cell reservoir from ART-treated people living with HIV (ART-PLWH) 
via the presence of integrated accessible proviral DNA in concert with 
epigenetic and cell surface protein profiling. We identified profound 
reservoir heterogeneity within and between ART-PLWH, characterized 
by new and known surface markers within total and individual memory 
CD4+ T cell subsets. We further uncovered new epigenetic profiles and 
transcription factor motifs enriched in HIV-infected cells that suggest 
infected cells with accessible provirus, irrespective of reservoir distribution, 
are poised for reactivation during ART treatment. Together, our findings 
reveal the extensive inter- and intrapersonal cellular heterogeneity of the 
HIV reservoir, and establish an initial multiomic atlas to develop targeted 
reservoir elimination strategies.

HIV reservoir establishment and persistence remains the main barrier 
preventing a functional cure in PLWH. This reservoir, composed pri-
marily of infected long-lived memory CD4+ T cells1–3, resides in blood 
and tissues throughout the body and almost invariably reactivates 
upon ART interruption4–7. Reservoir persistence results from the 
stable integration of viral DNA into the host cell genome, enabling 
lifetime infection for the cell and its progeny. Great progress has 

been made in understanding HIV reservoir virological attributes, 
including proviral intactness, reactivation potential and integration 
site landscapes8,9; however, beyond superficial characterization 
and quantification, the cellular identity of the HIV reservoir in vivo 
remains an enigma. Defining a surface and or epigenetic signature 
to target the cellular HIV reservoir is of central importance to the 
HIV cure agenda.
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that passed both ATAC and antibody-derived tag (ADT) component 
quality checks (Supplementary Table 1 and Extended Data Fig. 1a). Fol-
lowing sequencing alignment to both human and viral genomes, 1,323 
cells (18.6%) contained an integrated HIV genome (HIV+; Fig. 1a,b). A 
smaller proportion of the infected cells expressed p24 protein (5.1%; 
Extended Data Fig. 1b), consistent with known discrepancies between 
HIV integration and p24 production25. To confirm provirus detection 
specificity, we aligned an unrelated ASAPseq dataset of uninfected 
peripheral blood (PB) mononuclear cells (PBMCs)23 using chimeric 
human–virus genomes (human (hg38) + SUMA HIV and hg38 + HXB2 
HIV). No cells contained reads aligning to either HIV genome (Extended 
Data Fig. 1c). Within the HIV+ CD4+ T cells, proviral reads spanned the 
viral genome but were most prevalent in long terminal repeats (LTRs) 
as well as in gag and env (Extended Data Fig. 1d). Fewer reads spanned 
pol, consistent with previous findings26. A total of 28% of HIV fragments 
were in LTR regions, 0.01% spanned both LTR and internal (that is, not 
LTR) and the remaining fragments (71%) were internal.

We next examined the phenotypic identity of HIV+ versus HIV– 
cells. We clustered the cells using the epigenetic data and annotated 
based on imputed gene scores from chromatin accessibility and the 
ADT component (Fig. 1a, Extended Data Fig. 1e, Extended Data Fig. 2 
and Supplementary Table 2). Based on the previous CD4+ T cell enrich-
ment, most clusters were composed of CD4+ T cells, with some B and 
antigen presenting (APC) cells. Most HIV+ cells (78.6% of HIV+ cells;  
Fig. 1b–d) were found within activated and/or effector memory CD4+ 
T cell clusters. We observed some HIV+ cells in other CD4+ T cell pheno-
types (18.3%) and a small proportion in monocytes (1.8%). The presence 
of virus within monocytes could be genuine given the ability for in vitro 
infection of monocytic cells27, or result from the phagocytic and antigen 
presentation capabilities of B and monocytic cells. These detections 
could also be multiplets or have insufficient data for correct calling. 
Regardless of origin, we excluded these cells from downstream analyses 
and focused on cells bearing definitive T cell surface and epigenetic sig-
natures. These findings reflect the known phenomenon of preferential 
in vitro HIV infection of activated CD4+ T cells and demonstrate that 
this feature can be resolved on a single-cell level by ASAPseq.

Comparing all HIV+ and uninfected T cells, we observed signifi-
cantly higher expression of many surface markers, including those 
associated with T cell activation on HIV+ cells (Extended Data Fig. 3a 
and Supplementary Table 3). The top five upregulated markers by 
π-score28 on HIV+ cells included CCR5, SLAM, PD-1, CD49a and CD161, 
whereas the top five upregulated markers on HIV– cells were CD31, 
CD62L, CD55, CD27 and CD7 (Extended Data Fig. 3a). The significant 
upregulation of CCR5 in HIV+ cells is consistent with CCR5 usage as a 
HIV-1 coreceptor29. The other differentially expressed surface mark-
ers in HIV+ cells reflect the known preferential infection of activated 
CD4+ T cells30,31. We therefore examined whether any surface protein 
distinguished infected from uninfected cells, specifically in activated 
clusters (Fig. 1e, Extended Data Fig. 4 and Supplementary Table 3). In 
activated HIV+ cells, we found that CCR5, SLAM, CD2, GPR56 and PD-1 
were the top upregulated markers, whereas CD62L, CD127, CD49f, 
CXCR5 and CCR4 were increased in activated HIV– CD4+ cells. This 
suggests that, even within the activated/effector CD4+ clusters, HIV+ 
cells have higher expression of CCR5 and other activation markers. In 
the early differentiated HIV+ T cells, we found significantly increased 
expression of ICOS, CD25, CXCR3, CD11a and CD49b, whereas the early 
differentiated HIV– cells were enriched in CD62L, CD55, CD127, CD162 
and CD45RA (Extended Data Fig. 3b and Supplementary Table 3).

Epigenetics and ADT predictions of in vitro infected cells
We next examined potential genomic accessibility differences between 
activated HIV+ and HIV– cells. We observed heightened accessibility in 
several genomic regions in activated HIV+ cells (Fig. 2a,b and Supple-
mentary Table 4). We observed greater accessibility at a peak around 
1 kb upstream of the CCR5 transcription start site (Fig. 2c) in activated 

The main impediment to our understanding of the cellular reser-
voir is the challenge of identifying infected cells. On average, during 
ART, fewer than 1 per 1,000 CD4+ T cells are infected with HIV in the 
blood10, most of which have little-to-no viral RNA production11,12. To 
overcome this, studies have used in vitro models13,14, exogenous stimu-
lation strategies15,16, clonal enrichment analysis17 and marker-targeted 
analysis (many studies18–20) to identify surface protein and/or tran-
scriptomic properties of the HIV reservoir. These studies have made 
inroads into the identity of infected cells but have been limited by the 
systems employed. These limitations, including (1) infected CD4+ T cell 
heterogeneity within bulk or intraclonal populations, (2) incomplete 
representation of the reservoir after sorting for viral RNA+ and/or 
protein-expressing cells and (3) activation-induced malleability of the 
cell surface proteome and underlying transcriptome, have obfuscated 
precise characterization of infected cells and highlight the need to 
develop new strategies to characterize the cellular HIV reservoir at 
steady state.

Here, we used the presence of integrated provirus as a molecular 
beacon to directly identify infected cells from treated and untreated 
PLWH using a single-cell assay for transposase accessible chromatin 
(scATACseq)21 and employing a human–viral alignment strategy first 
developed in a chimeric antigen receptor (CAR) T cell model22. scATAC-
seq provides unbiased, single-cell epigenetic profiles and can therefore 
assign cellular identity to cells with and without detectable provirus. 
We further combined scATACseq with cell surface protein identity 
using the recently described ATAC with select antigen profiling by 
sequencing (ASAPseq)23,24 to discover cell surface protein signatures 
that may identify or enrich infected cells. Our findings provide the 
first direct and unbiased identification of experimentally and in vivo 
infected memory CD4+ T cells at single-cell resolution with cellular 
identity. Our findings also highlight the heterogeneity of HIV+ cells and 
the variation of surface and epigenetic markers between and across 
infection contexts. Together, our extensive characterization of HIV 
infection using ASAPseq results in a multimodal single-cell dataset of 
cell surface protein composition, epigenetic landscape and potential 
regulatory mechanisms to accelerate our understanding of the HIV 
reservoir for targeted therapy.

Results
ASAPseq identification of HIV-infected cells in vitro
To establish the potential for ASAPseq to detect in vitro HIV-infected 
cells (Table 1), CD4+ T cells from an HIV-uninfected individual were 
activated with anti-CD3, anti-CD28/CD49d and interleukin (IL)-2 for 
2 days, infected with HIV-1 (molecular clone, SUMA), and rested subse-
quently for 4 days. We next performed ASAPseq, obtaining 7,095 cells 

Table 1 | Donor information

Stage Donor Sex Age 
(years)

Tissues 
profiled

Plasma viral 
load (log 
copies ml–1)

Time on ART 
before trial 
start (years)

In vitro 
infection

ND492 M 37 PB – –

Chronic 
infectiona

C01 M 33 Inguinal 
LN

6.8 –

C02 M 33 Cervical 
LN

4.88 –

ART-treated 
infectiona

A01 M b PB <1.6 3.6

A08 M b PB <1.6 4.2

A09 M b PB <1.6 5.6

B45 M 43 PB <1.6 –
aAll donors were reported to be infected with HIV group M, subtype B viruses. bAge was not 
reported at the participant level for the original study. However, the age range was reported 
as between 34 and 52 years.
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HIV+ cells, showing a potential concordance between CCR5 surface 
expression, gene accessibility and infection. From these differentially 
accessible genomic regions, we assessed transcription factor motif 
enrichment. In activated HIV– cells (Fig. 2d), the top enriched motifs 
included several members of the TCF family, including TCF7 (TCF-1) 
and LEF1, regulators of CD4+ T cell development and differentiation32. 
In activated HIV+ cells (Fig. 2d), top motifs included proliferation and 
activation motifs in the AP-1 related family such as the JUN and FOS 
families33. These findings, in combination with the surface marker pro-
files, are concordant with the known immunobiology of HIV-1 infection.

Finally, we employed several supervised machine learning meth-
ods to determine whether any cell surface protein combinations could 
predict infection likelihood. We assessed logistic regression, naive 
Bayes and random forest (RF) methods using a 70/30 (training/test) 
split of our dataset. Using all CD4+ T cells, we found similar results 
between the models with area under the receiver operating curve (ROC) 
(AUC) values of 0.89, 0.88 and 0.9 respectively (Fig. 2e) suggesting a rea-
sonable classification of HIV+ cells in vitro with this current ADT panel. 
In the logistic regression, markers with the greatest odds ratio and sig-
nificance included CD2, CD49b, CD95, SLAM and T cell receptor (TCR) 
α/β for classifying HIV+ cells while CD4, NKG2D, CD62L and CD162 were 

the top markers for classifying HIV– cells (Fig. 2f). For the RF model, the 
top markers by importance (measured as mean decrease in accuracy 
when permuted) were CCR5, SLAM, CD49b, CD2 and CD95. When 
applied to only activated CD4+ T cells, the RF model and logistic regres-
sion both performed the best with an AUC of 0.78, compared with 0.74 
with naive Bayes. Compared with the total CD4+ T cell models, there 
were higher false positive rates suggesting that additional markers 
tailored to activated T cells might benefit classification efforts (Fig. 2g).  
The activated CD4+ T cell RF was driven primarily by CCR5, SLAM, 
CD69, CD2 and GPR56 in decreasing order of importance. Overall, 
these supervised machine learning models are in concordance with 
our differential expression testing and highlight the prominent roles 
of CCR5, SLAM and CD2 as markers of HIV-1 in vitro infection (Fig. 2h).

ASAPseq analysis of infected cells from untreated PLWH
We next assessed whether HIV-infected memory CD4+ T cells from 
lymph nodes (LN)—a tissue with a high burden of infected CD4+ 
T cells4,5—of viremic PLWH (Table 1) exhibited bias towards specific 
cell surface markers or epigenetic characteristics. We enriched memory 
CD4+ T cells via bead selection from inguinal (C01) or cervical (C02) LN 
(n = 2) and conducted ASAPseq, aligning to a chimeric hg38 + HXB2 
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Fig. 1 | ASAPseq identification of HIV-infected cells in vitro. a, UMAP 
representation of ATAC component colored by manually annotated cell 
phenotypes. b, UMAP representation of ATAC component colored by detection 
of HIV reads. c, Absolute count of cell numbers based on annotated clusters. 
d, Percentage of HIV+ cells found in each annotated cluster. e, Differential 
expression of surface antigens was assessed (DESeq2 method in Seurat; two-
sided with multiple comparison adjustment using the Bonferroni–Hochberg 

method) between activated HIV+ cells (n = 1,040) and activated HIV– cells 
(n = 1,194). Positive fold change (FC) values indicate higher expression in HIV+ 
cells, whereas negative FC values indicate higher expression in HIV– cells. 
Activated cells are defined as the combination of CD4 activated/effector, CD4 
activated 1, and CD4 activated 2 clusters. Markers are arranged from top to 
bottom by π-score, which is defined as (–log10(FDR) × log2(FC)). All markers 
shown have an adjusted P value (Padj) <0.05.
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genome. In one individual (C01), we profiled 2,554 cells passing quality 
checks for ATAC and ADT datasets, including 13 HIV+ cells (0.51%). In the 
second individual (C02), we profiled 6,521 cells passing quality checks, 
with 41 HIV+ cells (0.63%) leading to a combined chronic dataset of 9,075 
cells with 54 HIV+ cells (0.60%; Table 2 and Extended Data Fig. 5a). Most 
sequenced fragments were internal (74%) followed by LTR only (23%) 
and spanning both LTR and internal (2%) (Extended Data Fig. 5b). We 
also noticed a general occlusion of fragments from the pol region as 
observed from the in vitro dataset.

To assess the phenotype of HIV+ cells in LN, we performed clus-
tering into a reduced dimensional form (Extended Data Fig. 5c) and 

annotated clusters using both ADT and ATAC datasets (Fig. 3a, Extended 
Data Fig. 6 and Supplementary Table 5). Most profiled cells were 
memory CD4+ T cells (70%), with the dominant subcluster being CD4+ 
T-follicular helper (Tfh) cells (19.2%) and a few contaminating clusters 
including APC, B and follicular dendritic cells (Fig. 3a).

Of the 54 HIV+ cells detected, 64.8% were CD4+ Tfh cells, with the 
rest identified as CD4+ T resident memory (Trm) and/or T central mem-
ory cells (Tcm) (16.7%), APCs (11.1%) and CD4+ T regulatory cells (Treg; 
7.4%) (Fig. 3b–d). This distribution corresponds with the known locali-
zation of infected cells within germinal centers of secondary lymphoid 
organs, predominantly in the Tfh compartment6,34. While follicular 
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dendritic cells were detected, we found no viral DNA in this cluster, 
even with the likely trapping of infectious virions by follicular dendritic 
cells35,36, suggesting high specificity in detecting only HIV DNA.

We next assessed whether HIV+ LN CD4 T cells expressed differ-
ential surface antigens compared with HIV– LN CD4+ cells. CD71, ICOS, 
HLA-DR, PD-1 and CD151 were preferentially upregulated on HIV+ cells, 
whereas CD48, CD49f and CD47 were upregulated on HIV– cells (Fig. 3e 
and Supplementary Table 6). As several of these markers are known to 
be elevated on Tfh cells, we next asked whether any surface marker was 
enriched for HIV+ versus HIV– cells within the Tfh compartment (Fig. 3f). 
CD71 was the only marker significantly upregulated on HIV+ Tfh cells 
compared with HIV– Tfh cells, suggesting that heightened activation 
and cycling of individual cells within the Tfh subset is associated with 
preferential infection37. Within the HIV– Tfh cells, we observed higher 
expression of CD69 and CD45. Together, these analyses suggest that 
the HIV+ cells in LN of untreated PLWH are more activated/cycling, but 
that the HIV+ Tfh cell subset is otherwise quite similar to HIV– Tfh cells 
in the surface markers assessed.

To define potential differences between the HIV+ and HIV– LN 
CD4+ T cells at the epigenetic level, we used chromVAR, specifically 
designed for differential motif analysis from sparse scATACseq data38 
on all HIV+ CD4+ T cells versus HIV– CD4+ T cells. We found several motifs 
that had significant bias-corrected deviations between HIV+ CD4+ 
cells and HIV– CD4+ cells (Fig. 3g). In the HIV– CD4+ cells, we found 
significant motif signatures for the GATA transcription factor family 
that had increased genomic accessibility (Fig. 3h). In the HIV+ CD4+ 

T cells, the most significant motifs showing increased accessibility 
included POU2F3, FOSB, JUND and BACH1 (Fig. 3i). The presence of 
AP-1 related transcription factor (including FOS and JUN family) motifs 
corresponded with the observed increase in activation surface markers, 
as observed in the in vitro dataset.

Finally, we examined whether particular combinations of surface 
markers were preferentially associated with infection in viremic PLWH. 
As before, we split all CD4+ T cells into a 70/30 (training/test) split by 
infection status. Overall, the models performed less well compared with 
the in vitro analysis. For the chronic samples, the RF model attained 
an AUC value of 0.79 without downsampling, while the naive Bayes 
model performed with an AUC value of 0.83 (Fig. 3j). The top markers 
of importance for the RF model without downsampling include CD4, 
PD-1, CD71, ICOS, CD200 and CD115, which are generally in concord-
ance with our differential expression testing of surface markers and 
suggest that the pool of infected cells in LN during chronic infection 
is highly heterogeneous.

ASAPseq analysis of infected cells from ART-treated PLWH
We next applied ASAPseq to peripheral blood CD4+ T cells in the setting 
of ART to assess the HIV reservoir in the most accessible compartment 
and in a clinically relevant context. We selected four fully suppressed 
ART-PLWH, including longitudinal samples from three participants 
(A01, A08, A09; pre- and postanalytical treatment interruption (ATI)) 
from the A5340 ACTG clinical trial who received broadly neutralizing 
antibody (VRC01) and experienced differential levels of viral rebound 
during ATI39 (Table 1). All tested samples were collected while viral load 
was fully suppressed with ART, as post-ATI samples were taken after 
ART reinitiation. Given the rarity of infected cells under ART3 and the 
paucity of infected cells in blood compared with tissues, we increased 
the number of memory CD4+ T cells assessed, acquiring a combined 
ART-treated dataset containing 166,357 total cells, of which 213 (0.13%) 
cells were HIV+ (Extended Data Fig. 7a and Table 2). For all donors, we 
aligned the ATAC reads to autologous HIV sequences (near full length 
(NFL) or HIV env) and HXB2 to increase the odds of detecting infected 
cells due to the prevalence of proviral mutations in long-term PLWH8. 
With the autologous alignments, most reads were detected in the LTR 
and/or nef region (Extended Data Fig. 7b). Cells from donors A08 and 
A09 also had internal fragments that mapped to gag, pol or env genes 
(Extended Data Fig. 7b).

After clustering based on the ATAC component and annotating 
with both ADT and ATAC components (Extended Data Fig. 8 and Sup-
plementary Table 7), we identified multiple memory CD4+ T cell subsets 
with only small numbers of contaminating cells (Extended Data Fig. 7c  
and Fig. 4a,b). The T cell clusters separated based on epigenetic profiles 
associated with T cell differentiation states. For example, Tcm had distinct 
epigenetic and surface antigen profiles compared with those seen in 
effector/effector memory (Tem) cells (Extended Data Fig. 8). Across the 
ART-PWLH, we found no consistent predominately infected cell type. 

Fig. 2 | Differential chromatin accessibility in HIV-infected cells and surface 
marker based supervised machine learning in vitro. a, Volcano plot showing 
differentially accessible peaks between activated HIV+ (n = 1,040) versus 
activated HIV– (n = 1,194) cells. b, Top 15 significant peaks in activated HIV– versus 
activated HIV+ cells from a. Peaks are ranked by π-score (–log10(FDR) × log2(FC)); 
y axis labels denote nearest TSS and/or whether the peak is in a gene (marked 
by an asterisk) and numbers in parentheses indicate distance to the nearest 
TSS. Negative numbers indicate that the nearest TSS is upstream of the peak. 
c, Top, Aggregated and normalized ATAC signal between activated HIV– and 
activated HIV+ cells at the CCR5 locus. Middle, Binarized ATAC signal at a single-
cell resolution (showing random 750 cells for each group). Bottom, Gene map 
for the genomic region shown: chr3:46360853–46380854 (centered on CCR5). 
d, Significant motif enrichments found in the differential peaks (ordered by 
significance) are shown in activated HIV– cells or activated HIV+ cells (two-sided 
Wilcoxon rank sum test with multiple comparison correction using Benjamini–

Hochberg method in getMarkerFeatures function of ArchR). e, AUC plots for 
multiple supervised machine learning models for all CD4+ T cells. Ratios for 
different RF models indicate the number of HIV– cells used for each HIV+ cell 
(that is, 5:1 ratio meant that the HIV- cells in the training dataset were randomly 
downsampled to get only five times the number of HIV+ cells in the training 
dataset). f, Significant (two-sided z test) coefficients for the logistic regression 
model shown in e. Positive odds ratio indicates a marker has more weight for 
HIV+ cells while negative odds ratio indicates a marker has more weight for HIV– 
cells. NS, nonsignificant. g, AUC plots for multiple supervised machine learning 
models for activated CD4+ T cells. h, Proportion of HIV– and HIV+ activated CD4+ 
T cells with different surface marker combinations. Bottom dot plot indicates 
the combination of positive markers, which was determined by the thresholds 
indicated with the dotted line on the ridge plots. These ridge plots display the 
expression distribution of activated HIV+ CD4+ T cells, activated HIV– CD4+ T cells 
and total cells in the in vitro dataset to help with gating.

Table 2 | Cell counts stratified by individual

Individual Total cells HIV+ cells 
(percentage of 
total cells)

Total HIV DNA copies 
per million CD4+ T cells 
(percentage of CD4+ 
T cells)65

C01 2,554 13 (0.51%) –

C02 6,521 41 (0.63%) –

A01 14,021 
(pre-ATI) 
27,065 
(post-ATI)

9 (0.06%; pre-ATI) 
6 (0.02%; post-ATI)

185 (0.019% pre-ATI) 
293.8 (0.029% post-ATI)

A08 18,427 
(pre-ATI) 
17,461 
(post-ATI)

46 (0.25%; 
pre-ATI) 36 (0.22%; 
post-ATI)

1,791.2 (0.18% pre-ATI) 
1,564.5 (0.16% post-ATI)

A09 44,331 
(pre-ATI) 
32,998 
(post-ATI)

67 (0.15%; pre-ATI) 
36 (0.11%; post-ATI)

1,297.3 (0.13% pre-ATI) 
1,221.8 (0.12% post-ATI)

B45 12,054 10 (0.08%) –
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Some donors (A01 and B45) showed focusing of HIV+ cells within a single 
cell type, whereas other donors (A08 and A09) were more diverse (Fig. 4c). 
After aggregating all HIV+ cells across donors, we detected HIV+ cells within 
multiple subsets including CD4+ Tcm, Th2, circulating Tfh (cTfh), mucosal 

associated invariant T (MAIT) cells and Tem/effector cells (Fig. 4c,d). We 
also detected a small proportion of HIV+ cells within the contaminating 
APC clusters, but it is unclear whether these were in actual APCs, CD4+ 
T cells included in doublets with APCs or misidentified as APCs.
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Fig. 3 | ASAPseq identification of HIV-infected cells predominantly in Tfh 
cells from lymph nodes of untreated PLWH. a, UMAP representation of 
ATAC component colored by manually annotated cell phenotypes. b, UMAP 
representation of ATAC component colored by detection of HIV reads. fDC, 
follicular dendritic cells. c, Absolute count of cell numbers based on annotated 
clusters. d, Percentage of HIV+ cells found in each annotated cluster. e, 
Differential expression of surface antigens was assessed (DESeq2 method in 
Seurat; two-sided with multiple comparison adjustment using Bonferroni–
Hochberg method) between HIV+ CD4+ T cells versus HIV– CD4 + T cells. f, Same 
as in e but for HIV+ Tfh cells versus HIV– Tfh cells. Markers are ranked in e–f by 

π-score (see Fig. 1e legend). All markers shown have a Padj value < 0.05.  
g, Comparison of motifs associated with accessible chromatin regions of HIV+ 
CD4+ T cells versus HIV– CD4+ T cells. The volcano plot displays the differentially 
enriched motifs from chromVAR and ArchR, with a threshold of FDR <0.05 
indicating statistical significance. Mean difference values greater than zero 
indicate an enrichment in HIV+ cells, while negative mean difference values 
indicate enrichment in HIV– cells. h,i, The top 20 motifs (ordered by FDR) are 
shown for CD4+ HIV– T cells (h) and CD4+ HIV+ T cells (i). j, AUC plots for various 
supervised machine learning methods. Numbering format for RF models is 
explained in Fig. 2.
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We next assessed reservoir compositional stability after ATI in lon-
gitudinal samples from A01, A08 and A09. We observed maintenance of 
infected cell subsets between the pre- and post-ATI timepoints from donor 
A09 (Fig. 4c,d) who had a low viral rebound during ATI39, suggesting relative 
stability of the HIV reservoir cellular phenotypes after ATI. In contrast, indi-
vidual A01 had a moderate degree of phenotype maintenance, while A08 
demonstrated more prominent reservoir modulation with the appearance 

of infection within recently activated Tcm/T transitional memory (Ttm) 
cells at the post-ATI timepoint. Both A08 and A01 had higher levels of viral 
rebound compared with the level of viral rebound in A09 (ref. 39).

Heterogeneity of HIV-infected cells in blood of ART-PLWH
We next assessed differential surface marker expression between circu-
lating HIV+ CD4+ T cells and HIV– CD4+ T cells in ART-PLWH using several 
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Fig. 4 | ASAPseq identification of heterogeneous HIV-infected cells from 
peripheral blood of ART-suppressed PLWH. a, UMAP representation of 
ATAC component colored by manually annotated cell phenotypes. b, UMAP 
representation of ATAC component colored by detection of HIV reads. c, 
Absolute count of cell numbers based on annotated clusters. d, Percentage 

of HIV+ cells found by cluster separated by donor and whether the sample was 
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percent of HIV+ cells in each specific sample that were found in each annotated 
cluster. The right panel indicates the aggregate values across the entire ART-
treated dataset.
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statistical methodologies. Using Seurat and DESeq2, we found signifi-
cantly higher expression of CCR5, PD-1 and CD2 in HIV+ cells, markers 
that are associated with activation and costimulation. We found higher 
expression of several markers in the HIV– T cells including CD74, CD41, 
NKG2D and KIR3DL1 (Fig. 5a and Supplementary Table 8). By Wilcoxon 
analysis, we found additional activation markers more highly expressed 
on HIV+ CD4+ T cells including SLAM, CCR5, PD-1, CD49d, HLA-DR and 
CCR2 (Fig. 5b, Extended Data Fig. 9 and Supplementary Table 8). Similar 
to the results from the DESeq2 method, we found that CD305 were 
expressed more on HIV– CD4+ T cells. Notably, the relative increase 
in expression of some of these markers (from either test) was small 
and varied across donors as seen with PD-1 in HIV+ cells being driven 
primarily by individual A08 (Extended Data Fig. 9).

To reduce the variance caused by differential expression of mark-
ers based on memory and functional differentiation (that is, Tcm/Ttm, 
Tem/effector and MAIT cells), we conducted differential expression 
testing between HIV+ and HIV– cells in the following aggregated CD4+ 
T cell groups: Tcm/Ttm cells (Fig. 5c), Tem/effector cells (Fig. 5d) and 
MAIT cells. Other cell types were excluded from this analysis due to low 
HIV+ cell counts. In the Tcm/Ttm cells, we found increased expression of 
CD2, CCR5, CD11a, CD26, CD71, CD99 and CD18 on HIV+ cells, whereas 
there was increased expression of CD74, CD79b, CX3CR1, LOX-1 and 
CD62L on the HIV– cells, indicating that the Tcm/Ttm cells contributed 
to the differential CD2 expression within the bulk CD4+ T cell analy-
ses (Fig. 5c). In the Tem/effector cells, PD-1, HLA-DR and CCR5 were 
expressed more on HIV+ cells, while multiple markers including CD41, 
CD305 and CD101 were more expressed on HIV– Tem/effector cells 
(Fig. 5d). These results highlight the surface marker and phenotypic 
heterogeneity present in specific memory phenotypes as well as the 
inability of any marker amongst the 154 antibodies tested to uniquely 
identify HIV+ cells.

To address this heterogeneity in a more unbiased way, we assessed 
whether there were unique epigenetic signatures between the HIV+ 
and HIV– CD4+ T cells using chromVAR38 on all HIV+ versus HIV– cells 
grouped by the same three aggregate memory/functional pheno-
types (Tcm/Ttm, Tem/effector and MAIT). We identified several highly 
enriched motifs in the different groups over all other cells that were 
not in the analyzed group (collectively referred to as background 
cells). Motifs were clustered into different modules via hierarchical 
clustering (Fig. 5e). In support of our manual annotation, Tcm/Ttm 
cells showed greater enrichment of Tcf7 and Lef1 motifs (module 1) 
compared with Tem/effector cells, while Tem/effector cells showed 
enrichment of Tbx21 (T-bet), Eomes and interferon related motifs 
(modules 4, 7 and 8). MAIT cells, which can be heterogeneous in terms 
of different memory phenotypes, showed enrichment in motifs from 

the nuclear factor-kappaB (NF-κB) transcription factor family including 
NFKB1, REL, RELA and RELB (module 3).

While HIV+ and HIV– cells shared similar motifs within the aggre-
gate clusters, we observed patterns of greater enrichment of certain 
motifs in the HIV+ cells. Modules 9 and 10—which include BACH2 and 
AP-1 related family transcription factors such as Jun and Fos—were 
highly enriched for HIV+ Tcm/Ttm and Tem/effector cells compared 
with all other cells as background. When specifically comparing Tcm/
Ttm HIV+ versus Tcm/Ttm HIV– cells, we found significant enrichment 
of these motifs (Fig. 5f). HIV+ MAIT cells curiously did not show enrich-
ment in this module but did show a trend towards increased accessi-
bility in module 3 motifs (Fig. 5e). Altogether, these motif signatures 
across our dataset indicate that Tcm/Ttm and Tem/effector HIV+ cells 
share an epigenetic signature consistent with a constitutively height-
ened immune activated state.

Discussion
Targeted elimination of the HIV reservoir requires a deep understand-
ing of both the virologic and cellular characteristics of infected cells. 
While previous work has yielded extensive knowledge of the virologic 
properties of the viral reservoir, precise characterization of the cellular 
reservoir has proven more difficult due to infected cell rarity and lack 
of readily measurable defining characteristics. Here, we applied a new 
single-cell genomic and bioinformatic ASAPseq strategy to identify 
infected cells using integrated proviral DNA in the multiomic context 
of single-cell epigenetic and surface antigen profiling. We found that 
cells with proviral DNA can indeed be detected and individually char-
acterized directly ex vivo even from the most challenging scenario of 
peripheral blood of PLWH on ART. Our strategy has broad application 
for in depth analysis of the HIV reservoir within different cell popula-
tions, therapeutic interventions and HIV cure and eradication studies40.

Numerous studies have attempted to identify cell surface mark-
ers that enrich or specifically identify CD4+ T cells harboring inte-
grated proviral DNA. We profiled many individual markers previously 
associated with HIV infection, including PD-1 (ref. 34), CXCR5 (ref. 34), 
CCR6 (ref. 41), CTLA-4 (ref. 42), CD69 (ref. 43), OX40 (ref. 44), CD2 (ref. 45),  
Lag-3 (ref. 19), TIGIT18,19, CD20 (ref. 46) and CD161 (ref. 47). No single pre-
viously identified cell surface marker was associated solely with, or 
predictive of, the presence of integrated provirus. However, specific 
combinations of markers, either by presence or relative level, are 
more reliably enriched for HIV-infected cells depending on the cells 
profiled. For example, CCR5 was a top differential marker between 
HIV+ and HIV– cells for in vitro infected cells and ART-PLWH, but was 
not heightened on HIV+ cells in LN CD4+ T cells of untreated PLWH. 
Instead, activation and Tfh associated markers (CD71, ICOS, HLA-DR 

Fig. 5 | High degree of heterogeneity in HIV-infected cells from peripheral 
blood of ART-suppressed PLWH. a, Differential expression of surface antigens 
was assessed between all HIV+ CD4+ T cells (n = 205) versus HIV– CD4+ T cells 
(n = 146,016). Test performed using the DESeq2 pseudobulk method in Seurat 
(two-tailed with multiple comparison adjustment using the Bonferroni–
Hochberg method). b, Same comparison and cells as in a but using the Wilcoxon 
statistical test in Seurat (two-sided with multiple comparison adjustment using 
the Bonferroni method). c, Differential expression of surface antigens was 
assessed between Tcm/Ttm HIV+ (n = 57) versus Tcm/Ttm HIV– cells (n = 39,954) 
using the DESeq2 method in Seurat (two-tailed with multiple comparison 
adjustment using the Bonferroni–Hochberg method). Tcm/Ttm cells are defined 
by the combination of all clusters containing the terms ‘Tcm’ or ‘Ttm’ or ‘cTfh’ 
(but not MAIT or recently activated Tcm/Ttm cells) in Fig. 4a. d, Differential 
expression of surface antigens was assessed between Tem/effector HIV+ (n = 59) 
versus Tem/effector HIV– (n = 48,928) cells using the DESeq2 method in Seurat 
(two-tailed with multiple comparison adjustment using the Bonferroni–
Hochberg method). Tem cells are defined by the combination of all clusters 
containing the term ‘Tem’ in Fig. 4a. Markers in a–d are ranked by π-score (see 
Fig. 1e legend). All markers shown have an adjusted P value < 0.05. e, Comparison 
of motifs associated with accessible chromatin regions of cells grouped by 

phenotype (MAIT (n = 58 for HIV+; n  =  38,405 for HIV−), Tcm/Ttm (n = 85 for HIV+; 
n = 53,135 for HIV−; includes recently activated Tcm/Ttm cells) and Tem/effector 
(n = 59 for HIV+; n = 48,928 for HIV−)) and infection status (HIV– versus HIV+) as 
assessed through chromVAR and ArchR. Heatmap displays the mean chromVAR 
deviations (z score) of transcription factor motifs from CISBP database 
(displayed by row) that define each aggregate group (displayed by column). 
Motifs were selected by FDR < 0.05 and a mean difference > 0.5, indicating a 
significant accessibility of regions that contain a given transcription factor 
motif for cells in the cluster (indicated by asterisks) as compared with all other 
cells (getMarkerFeatures function in ArchR). Each cell is colored by the mean 
deviation (z score) where values greater than zero indicate positive enrichment 
of a motif. Motifs were clustered using k-means clustering and the motifs are 
labeled to the right of the heatmap in order from top to bottom for each cluster. 
Asterisks indicate that the motif was significantly enriched in the specific group 
(column). *P < 0.05; **P < 0.01. f, Differential chromVAR motif profiles were 
assessed between HIV+ Tcm/Ttm cells and HIV– Tcm/Ttm cells. The top 20 most 
significant motifs for HIV+ cells are shown. The dotted line indicates a –log10 
transformed FDR value of 0.05. Color indicates the mean difference in chromVAR 
deviations (value greater than zero indicates enrichment in HIV+ cells).
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and PD-1) predominated among the differentially expressed surface 
proteins within the total LN CD4 population. CD71, correlated with 
cell cycling37 and ferroptosis48, was highly enriched on HIV+ Tfh cells of 
untreated PLWH, suggesting that HIV+ Tfh cells are dividing frequently 
and potentially predisposed to cell death. CD71 was also enriched on 
blood HIV+ CD4+ Tcm/Ttm cells from ART-PLWH, possibly reflecting a 
recently proliferating reservoir subset. We also observed CD2 and PD-1 
enrichment on HIV+ T cells from ART-PLWH in Tcm/Ttm HIV+ T cells 
and Tem HIV+ T cells, respectively. Our results are in concordance with 

previous studies that showed various markers can enrich (but not 
homogeneously select) for cells with HIV DNA including CD2 (ref. 45), 
PD-1 (ref. 34), HLA-DR49 and CD11a50.

Identification of cell surface markers found preferentially on HIV– 
cells is also useful. We found greater expression of CD48, an NK-cell 
coactivating ligand for CD244/2B4 (ref. 51,52), on HIV– cells during 
untreated infection. CD48 can be downregulated by HIV+ cells during 
in vitro infection to escape autologous NK-cell-mediated killing53. 
Another marker of interest increased on HIV– cells was CD305 (LAIR-1), 
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which inhibits activation via the TCR54. We also found an increase in 
CD74 (major histocompatibility complex class II invariant chain) in 
HIV– Tcm/Ttm cells. Our findings, as a whole, indicate that HIV+ cells 
are highly heterogeneous at interpersonal and intrapersonal levels, 
and that each cell subset, compartment and infection state needs to 
be evaluated individually.

Our ASAPseq epigenetic modality yielded insights into both 
known and potential differential regulatory factors that impact HIV 
infection in vitro and ex vivo. One resounding theme across in vitro 
infection, untreated and treated in vivo infection was heightened 
accessibility for AP-1 family (Fos, Jun) and Bach1/Bach2 transcription 
factor motifs. The presence of AP-1 motifs suggests that these cells 
are poised for, or have a history of, activation/proliferation, which 
may indicate an increased likelihood for viral RNA transcription and 
reactivation upon ART interruption or treatment with latency reversal 
agents. Activated in vitro infected HIV+ CD4+ T cells, which had elevated 
CCR5 protein expression, also had increased accessibility upstream of 
the CCR5 transcription start site. We further identified differentially 
accessible peaks near genes previously implicated in HIV infection, 
including DCBLD1 (increased HIV replication), GGA2 (Nef-mediated 
CD4 downregulation) and PLEKHA3 (increased HIV replication)55–57. 
During chronic infection, we observed increased transcription factor 
motif accessibility, including POU2F1 (Oct-1) and POU2F2 (Oct-2), 
previously shown to repress the HIV-1 LTR promoter58. These indicate 
a possible role in suppressing HIV activity and maintaining longevity 
of infected cells. Furthermore, the GATA1 motif was one of the most 
significant accessible motifs in HIV– cells, which is striking given its role 
in repressing CCR5 expression in human CD4+ T cells59. Taken together, 
our epigenetic analysis provides a framework and new opportunities 
for understanding the complex regulation of HIV infection and ongoing 
processes regulating uncontrolled infection.

Recent reports have suggested that Tem/effector cells are the 
prominent memory pool with active proviral transcription during 
ART11,60,61. However, we find no Tem bias in the cells harboring inte-
grated virus in ART-PLWH. The lack of memory bias may reflect the true 
heterogeneity of HIV-infected cells that constitute the HIV reservoir, 
or might be attributed to differences in when ART was initiated during 
infection and the duration of ART62–64. We also found that the degree of 
phenotype stability within the reservoir after ATI during VRC01-bNab 
therapy may be tied to rebound viral load39. Individual A08, who experi-
enced high viral rebound after ATI, demonstrated evidence of reservoir 
diversification post-ATI with a distinct appearance of virus within both 
recently activated Tcm/Ttm and Tem populations. Previous studies 
demonstrated proviral diversification39,65 in the same individual after 
ATI. Individual A09, who had the highest level of phenotype stability, 
had the lowest rebound viral load of the three individuals assessed 
and displayed VRC01-resistant provirus39,65. Until now, this degree of 
heterogeneity across individuals and longitudinal conservation of 
phenotypes across ATI has not been demonstrated and indicates the 
necessity of single-cell based approaches not solely dependent on 
viral transcription.

The main limitation of ASAPseq to identify infected cells is the 
requirement for the provirus to be in accessible chromatin, which 
may bias our surface and epigenetic profiling towards an activated 
phenotype or the ‘active’ reservoir11. Proviruses become less accessible 
over time in vitro66 and after extended ART67. Another limitation is the 
difficulty in assessing proviral intactness due to short-read sequenc-
ing and our transposase-based methodology. However, alignments 
towards multiple proviral genes in a single cell can be used as a proxy for 
intactness given that most defective proviruses from ART-PLWH have 
large deletions8. We also observed a dropoff in sequence recovery from 
pol regions, possibly explained by nucleosomal occupancy68 or more 
persistent transcription factor binding69. While it is likely that many 
of our detections from ex vivo samples are defective proviruses, these 
cells are still relevant as viral proteins can still be produced70,71, which 

may interface with the immune system and potentially complicate 
latency reversal studies. As such, our focus on HIV DNA+ cells, regard-
less of intactness or transcription, is still relevant given that these cells 
survived clearance by the immune system and/or the short half-life 
associated with HIV infection kinetics72.

Overall, we have highlighted the complex heterogeneity of the 
HIV reservoir using a new unbiased genomic strategy to identify HIV 
infected cells at single-cell resolution with simultaneous surface anti-
gen and epigenetic data. With this unparalleled resolution via ASAPseq 
compared with currently published strategies for studying the HIV 
reservoir, we uncovered both known and new surface markers of HIV 
infection as well as accessible transcription factor motifs that may 
regulate, or be indicative of, HIV infection. Together, our strategy and 
data initiate a multiomic atlas of HIV-infected cells with phenotypic 
and epigenetic characteristics, thus contributing towards the united 
goal of identifying the HIV reservoir for a targeted HIV cure strategy.
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org/licenses/by/4.0/.
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Methods
Study approval
This study was approved by the Institutional Review Boards at the Univer-
sity of Pennsylvania and the University of Alabama at Birmingham. This 
study complies with all relevant ethical regulations. PLWH (n = 2) were 
originally recruited by the Centro de Investigación en Enfermedades 
Infecciosas at the Instituto Nacional de Enfermedades Respiratorias 
(CIENI-INER) in Mexico City, Mexico. All donors provided informed con-
sent for LN tissue donation in compliance with protocols set forth by 
the Ethics Committee and the Ethics in Research Committee of the INER 
(study number: B03-16) and the Institutional Review Board at the Univer-
sity of Pennsylvania. ART-treated samples (n = 3), A01, A08 and A09, were 
provided from the ACTG clinical trial A5340, which was conducted with 
protocols set forth by the Institutional Review Boards at the University 
of Pennsylvania and the University of Alabama at Birmingham and was 
previously published39. The original clinical trial included provisions 
for research related to this study. All donors for this study provided 
informed consent in compliance with protocols set forth by the respective 
institutional review boards. Another ART-treated PLWH (n = 1), B45, was 
recruited from the BEAT-HIV program cohort where an apheresis sample 
was collected under ART. All participants were compensated for their time 
and study visits. No additional compensation was provided for this study.

Samples
For the in vitro infection model, PBMCs were obtained from an 
HIV-negative donor apheresis from the Human Immunology Core at 
the University of Pennsylvania. PBMC were cryopreserved at the time 
of receipt. For the chronic infection model, inguinal or cervical lymph 
nodes were obtained from HIV-1+ individuals before the introduction 
of ART, and cryopreserved. For ART-treated studies, PB samples were 
acquired via apheresis and cryopreserved. Samples A01, A08 and A09 
had previously experienced therapy interruption through the ACTG 
A5340 trial, but were under at least 6 months (for the post-ATI timepoint) 
of ART suppression at the time of analysis. PBMCs were prepared using 
standard density gradient centrifugation and cryopreserved at –150 °C.

In vitro infection model
Uninfected PBMC were thawed and rested overnight in a humidified 
incubator at 37 °C. CD4+ T cells were negatively enriched (STEM-
CELL Technologies, catalog no. 19052), pelleted and resuspended 
in complete RPMI medium at a concentration of 2 × 106 cells ml–1 in 
a six-well tissue culture plate. An activation cocktail consisting of 
anti-CD3 (1 μg ml–1; Bio-Rad, catalog no. MCA463EL), recombinant 
IL-2 (100 U ml–1; Sigma Millipore catalog no. 11011456001), and 
anti-CD28 + anti-CD49d (1.5 μg ml–1; BD, catalog no. 347690) were 
added to the cells. The cells were activated for 2 days in a humidi-
fied incubator at 37 °C. Cells were then pelleted in a 15 ml tube and 
resuspended in 1 ml of complete RPMI. HIV-1 virus stock (strain SUMA; 
provided by the University of Pennsylvania CFAR Virus and Reservoirs 
Core) was thawed briefly in a 37 °C water bath; 50 ng (p24) of viral stock 
was added to the suspension and mixed by pipetting. Cells were then 
infected by spinoculation for 45 min at 400g. Cells were rested in a 
humidified incubator at 37 °C for 1 h (cap loosened to promote gas 
exchange) before washing with complete RPMI and pelleting. Cells were 
resuspended at a concentration of 2 × 106 cells ml–1 and left to rest for 
2 days in a six-well tissue culture plate. Complete RPMI was added to the 
cells after 2 days. The cells were collected after an additional 2 days and 
pelleted for dead cell removal based on Annexin V using the Dead Cell 
Removal (Annexin V) Kit (STEMCELL Technologies, catalog no. 17899).

Flow cytometric verification of HIV-1 infection
Staining and flow cytometry were based on a previously published 
protocol73. Approximately 1.5 million cells from the in vitro infection 
culture were spun down at 400g for 5 min and resuspended in 45 μl PBS. 
Live/dead staining was performed using 5 μl of a 1:60 dilution stock of 

prepared Live/Dead Fixable Aqua Dead Cell Stain (Invitrogen). Cells were 
stained for 5 min in the dark at room temperature. A staining cocktail 
with fluorescence-activated cell sorting (FACS) buffer and CD8 BV570 
(BioLegend, catalog no. 301038, clone RPA-T8; 0.3 μl per test) was added 
for a 10 min stain in the dark at room temperature. Then, 1 ml FACS buffer 
was added and the cells were spun down at 400g for 5 min. Cells were per-
meabilized with 250 μl of BD Cytofix/Cytoperm solution (BD, catalog no. 
554714) for 18 min in the dark at room temperature; 1 ml BD Perm/Wash 
Buffer (BD, catalog no. 554714) was added and cells were spun down at 
600g for 5 min. After discarding the supernatant, cells were resuspended 
in staining solution containing anti-p24 FITC (Beckman Coulter, catalog 
no. 6604665; clone KC57; 0.1 μl per test) and BD Perm/Wash Buffer for 
a final staining volume of 50 μl. Cells were stained in the dark for 1 h at 
room temperature. Cells were washed with 1 ml BD Perm/Wash Buffer 
and fixed with 350 μl 1% paraformaldehyde. Data were acquired on a 
BD FACS Symphony A5 cytometer and analyzed using FlowJo (v.10, BD).

Memory CD4+ T cell enrichment
Memory CD4+ T cells were enriched by negative selection using the 
EasySep Human Memory CD4+ T Cell Enrichment Kit (STEMCELL Tech-
nologies, catalog no. 19157) following the recommended protocol. 
After collecting enriched memory CD4+ T cells, the cells were spun 
down at 400g for 5 min and resuspended in 500 μl PBS. Cells were 
counted with Trypan blue staining using a Countess II (Invitrogen) 
before beginning the ASAPseq protocol.

ASAPseq—cell preparation and staining
Buffer and cell preparation were performed as previously published23 
and as described below. Cells (5 × 105 to 1 × 106) were resuspended in 
22.5 μl Staining Buffer and incubated with 2.5 μl TruStain FcX (BioLe-
gend, catalog no. 422302) for 10 min on ice. One test of the TotalSeq-A 
Human Universal Cocktail, v.1.0 (BioLegend, catalog no. 399907) was 
prepared according to the manufacturer’s protocol with ASAPseq 
Staining Buffer. We chose this particular cocktail of antibodies because 
this was the largest commercially available panel and would therefore 
enable a more unbiased approach to assessing the surface antigen pro-
files. Each antibody in this pool was pretitrated by BioLegend for use in 
sequencing-based methods. The antibody cocktail (25 μl) was added to 
the cells for 30 min on ice. Cells were washed with 1 ml Staining Buffer and 
pelleted (all spins at 400g for 5 min with centrifuge set at 10 °C) for a total 
of three washes. Cells were then resuspended in 450 μl PBS; 30 μl 16% 
paraformaldehyde was added to fix the cells for 10 min at RT with occa-
sional swirling and inversion. The fixation reaction was quenched with 
25.26 μl 2.5 M glycine solution. Cells were then washed and pelleted with 
1 ml ice-cold PBS for a total of two washes. Fixed cells were permeabilized 
using 100 μl OMNI lysis buffer for 3 min on ice. Cells were then washed 
and pelleted with 1 ml Wash Buffer (spin at 500g for 5 min with centrifuge 
set at 10 °C). After removing the supernatant, cells were resuspended in 
at least 150 μl (depending on original cell input) of 1× Nuclei Buffer (10x 
Genomics) and strained to remove aggregates using a 40 μm FlowMi 
strainer (Sigma, catalog no. BAH136800040-50EA). Cells were counted 
using Trypan blue staining to verify successful permeabilization (>95% 
Trypan blue positive staining). Cells were diluted as needed according 
to the scATACseq Chip H protocol (10x Genomics).

ASAPseq—library preparation
Single-cell droplets were generated using the Chromium platform and 
a scATACseq Chip H kit (10x Genomics). Modifications mentioned in 
the original ASAPseq protocol were performed to allow for capture of 
ADT23. Briefly, during the barcoding reaction (step 2.1), 0.5 μl of 1 μM 
bridge oligo A (BOA) was added to the barcoding mix. The sequence 
of the bridge oligo is: TCGTCGGCAGCGTCAGATGTGTATAAGAGACA-
GNNNNNNNNNVTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT/3InvdT/. 
To facilitate BOA annealing during GEM (Gel bead-in Emulsion, 10x 
Genomics) incubation (step 2.5), a 5 min incubation at 40 °C was added 
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at the beginning of the GEM amplification protocol. During silane bead 
elution (step 3.1o), beads were eluted in 43.5 μl of Elution Solution I 
and 3 μl was kept aside to use as input in the tag library PCR, while the 
remaining 40 μl was used to proceed with SPRI cleanup as described 
in the 10x Genomics scATACseq protocol. During SPRI cleanup (step 
3.2d), the supernatant was saved and 32 μl SPRI beads was added for 
TotalSeq-A product isolation. Beads were washed twice with 80% etha-
nol and eluted in 42 μl Qiagen EB. This fraction was combined with the 
3 μl saved from step 3.1o after the silane purification to be used as input 
in the protein tag indexing reaction. PCR reactions were set up to gener-
ate the protein tag library using P5 (AATGATACGGCGACCACCGAGA) 
and RPI-x primers (see below). Amplification settings were as followed: 
95 °C 3 min, 14 cycles of 95 °C 20 sec, 60 °C 30 sec and 72 °C 20 sec, fol-
lowed by 72 °C for 5 min and ending with hold at 4 °C. The final libraries 
were quantified using a Qubit dsDNA HS Assay kit (Invitrogen) and a 
High Sensitivity D1000 DNA tape on a Tapestation D4200 (Agilent).

RPI-x primers
Indexing primers follow the format: CAAGCAGAAGACGGCATACGAGA-
TxxxxxxGTGACTGGAGTTCCTTGGCACCCGAGAATTCCA where xxxxxx 
refers to the Illumina TruSeq Small RNA indices. Indices 1 through 8 
were used in this study.

ASAPseq—library sequencing
Sequencing runs were performed on NextSeq 550 or NovaSeq 6000 
platforms (Illumina) with a target of at least 10,000 reads per cell for 
ADT libraries and 25,000 reads per cell for ATAC libraries.

Initial ATAC data processing
Libraries sequenced via the NovaSeq were filtered for potential index 
hopping by using index-hopping-filter (10x Genomics; v.1.1) in ATAC 
mode. Filtered reads were then processed the same as other librar-
ies sequenced with the NextSeq. A chimeric genome was built using 
cellranger-atac mkref (10x Genomics; v.2.0.0) with the default hg38 
genome (10x Genomics; refdata-cellranger-arc-GRCh38-2020-A-2.0.0) 
along with either SUMA_TF1 (for in vitro), HXB2 (for chronic) or autolo-
gous sequences plus HXB2 (for ART) (Supplementary File 1 and Sup-
plementary Table 9). The motifs.pfm file from the default hg38 genome 
reference was copied over to the new chimeric genome to assist with 
quality control during downstream processing by cellranger. The reads 
were aligned and counted to their respective chimeric genome using 
cellranger-atac count. After alignment, barcodes pertaining to multi-
plets were selected using AMULET74 (using default parameters were 
false discovery rate (FDR)-corrected (Bejamini–Hochberg method) 
P value > 0.01 is denoted as a multiplet) to be filtered out from the 
dataset. Fragment files from cellranger-atac were loaded into ArchR 
(v.1.0.2)75 for downstream analysis. Arrow files were created for each 
sample. For in vitro and ART-treated samples, cells were filtered for TSS 
Enrichment greater than or equal to eight while chronic samples were 
filtered for TSS Enrichment greater than or equal to six. Barcodes that 
were selected by AMULET as being multiplets were then filtered out 
of the Arrow file. Samples, by level, continued in the ArchR pipeline. 
Briefly, iterative latent semantic indexing, Harmony (for batch effect 
correction as needed), cluster generation (via Seurat) and uniform 
manifold approximation and projection (UMAP) generation were 
performed. All specific parameters and settings are documented in 
our code (https://github.com/betts-lab/asapseq-hiv-art).

Initial ADT data processing
Sequencing reads were converted to fastq files and demultiplexed using 
bcl2fastq (Illumina). Reads were then inputted into kallisto bustools76 to 
generate cell barcode by feature matrices. These matrices were loaded 
into R and checked for empty droplets (that is, background noise) using 
the emptyDrops function from the DropletUtils77 package with a lower 
bound of 500 unique molecular identifiers (UMIs) for the in vitro/chronic 

datasets and 250 UMIs for the ART-treated dataset. Barcodes with FDRs 
< 0.01 were kept as genuine cells. This filtered matrix was then loaded into 
Seurat (v.4.1.1)78 for centered log ratio transformation with a scale factor 
of 10,000. Harmony79 was used for batch correction if several 10x GEM 
wells were used for the same individual. A Wilcoxon test (right-tailed) was 
used to select for features with a count distribution that was significantly 
different than background signal detected from isotype control antibod-
ies, as analyzed similarly in a previous report24. A feature was not included 
in downstream analyses if P > 0.05 in at least four isotype controls.

Identification of HIV+ cells
We built a custom Python pipeline (hiv-haystack; https://github.com/
betts-lab/hiv-haystack), built and derived from epiVIA22, to identify 
proviral reads from the BAM output file of cellranger-atac count. BAM 
records are parsed and selected into three groups: (1) both mates align-
ing to provirus, (2) both mates in host with a soft align clip and (3) one 
mate in provirus and one mate in host. In scenario 1, the original align-
ments were kept as bona fide proviral alignments. If there was a soft 
clip present, we aligned it to the host genome using bwa mem as done 
in epiVIA to assess whether an integration site is present. In scenario 2, 
any host soft clips were checked for exact matching to LTR sequences 
to allow for integration site detection. This was allowed only if a LTR 
alignment was reported (checked with BLAST against HXB2 5′ LTR). In 
scenario 3, the proviral mate was saved as a proviral fragment. If either 
mate had a soft clip, integration site checking was performed similar to 
scenarios 1 and 2. In all scenarios, only exact integration sites with exact 
nucleotide position are kept for downstream analyses. Our program also 
differs from epiVIA in that hiv-haystack allows for alignments to multiple 
sequences (from NFL genomes and single genome sequencing (SGS) of 
HIV Env), which enhances the detection of donor-derived sequences.

Downstream data processing
After initial ATAC and ADT processing, barcodes that passed quality con-
trol metrics in both modalities were selected for downstream analyses. 
Clusters were annotated from a base panel of ADT expression patterns, 
imputed gene scores from ATAC, and differentially expressed markers 
present in any given cluster over all other cells. UMAP embeddings in 
lower dimension were generated using ArchR’s latent semantic index-
ing implementation. Manual annotations were then used to subset cells 
for downstream ADT differential expression analysis between HIV+ 
and HIV– cells using Seurat FindMarkers (using ‘DESeq2’ (Wald test) 
or ‘wilcox’ (two-sided Wilcoxon rank sum) for the findMarkerMethod 
parameter) to limit false discoveries80 and the subset of features that 
were significantly different from background expression. All P values 
from Seurat’s FindMarkers function have been corrected for multiple 
comparisons using the Bonferroni method. For downstream ATAC 
differential expression analysis, manual clusters were grouped based 
on CD4+/– and HIV+/– (and by memory phenotype for the in vitro experi-
ment) and pseudobulk replicates were generated. Clusters with less than 
0.5% of the population were filtered out due to annotation difficulty. 
Peaks were called using the default 501-bp fixed-width method with 
ArchR and MACS2 (ref. 81). Differential peaks were assessed using ArchR’s 
getMarkerFeatures (which implements a two-sided Wilcoxon rank sum 
test and corrected for multiple tests using the Benjamini–Hochberg 
method) with bias parameters set to ‘c(TSSEnrichment’, ‘log10(nFrags’))’ 
as recommended by ArchR. Motif annotations of differential peaks 
were added using addMotifAnnotations from the CISBP dataset. For 
experiments with lower numbers of HIV+ cells, we used ArchR’s imple-
mentation of chromVAR to determine differential motifs. getMarker-
Features was called to determine differentially expressed motifs using 
the chromVAR deviation scores (that is, z score).

Supervised machine learning
Samples were split into a 70% training and 30% testing dataset using the 
caTools package in R. Logistic regression models were developed using 
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the glm function with parameters ‘family = binomial(link = ‘logit’).’ 
Naive Bayesian models were constructed using the naivebayes pack-
age in R. RF models were constructed using the RF package in R with 
ntree = 4,000. Classifier performances (true positive rate and false 
positive rate) were calculated using the ROCR package in R and plotted  
using ggplot2.

NFL SGS of proviral DNA from resting CD4+ T cells
DNA was extracted from multiples of 4 million resting CD4+ 
T cells according to the manufacturer’s instructions (QIAamp DNA 
Mini and Blood Mini Kit, Qiagen). Amplification of NFL genomes 
was performed by limiting dilution, nested PCR using Platinum 
Taq High Fidelity Polymerase (Life Technologies, Thermo Fisher 
Scientific), adapted for NFL genomes with primary forward and 
reverse primers 5′-AAATCTCTAGCAGTGGCGCCCGAACAG-3′ and 
5′-TGAGGGATCTCTAGTTACCAGAGTC-3′, respectively, followed by nested 
forward and reverse primers 5′-GCGGAGGCTAGAAGGAGAGAGATGG-3′ 
and 5′-GCACTCAAGGCAAGCTTTATTGAGGCTTA-3′, respectively39. 
Amplicons of appropriate size were sequenced directly on the Illumina 
MiSeq platform, inspected for evidence of priming from multiple tem-
plates, stop codons, large deletions or introduction of PCR error in early 
cycles; a threshold of 85% identity at each nucleotide position was used.

HIV custom sequence annotation
HIV custom sequences from untreated and treated PLWH were loaded 
into the Gene Cutter tool (HIV LANL Database) for alignment to HIV 
genes/regions. The output was then loaded into our custom tool gene-
CutterParser (https://github.com/wuv21/geneCutterParser) to extract 
the coordinate locations for any alignments. The coordinate locations 
were then used for alignment graphs in the Extended Data figures.

Graphics
All figures were made in R with the following packages: gridExtra, 
ggplot2 (ref. 82), ArchR and patchwork. All code to produce graphs can 
be found in the study GitHub repository.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
Raw fastq files and processed cellranger-atac files are deposited in 
the NCBI Gene Expression Omnibus (GEO) under accession number 
GSE199727. Additional data for consensus alignments are provided in 
Supplementary File 1.

Code availability
All code for downstream analysis is available at https://github.com/
betts-lab/asapseq-hiv-art.
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Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | Properties of ASAPseq library for in vitro model. (A) 
UpSet plot of unique cell barcodes that were collected from each modality (ATAC 
versus ADT) and whether or not the barcode was associated with proviral reads 
(HIV). Barcodes that passed ATAC and ADT quality checks (see Methods) were 
used for downstream analyses. (B) Flow cytometry plot of cell culture before 
conducting ASAPseq analysis. Top two plots (from left to right) indicate gating 
strategy. Value in the highlighted box for the bottom plot is the percent of total 
live singlets that are p24 + . (C) Reported mapped and unmapped read-segments 
by chromosome (as determined by samtools idxstats) from alignment of 
ASAPseq dataset of uninfected PBMC (Mimitou et al., 2021) to chimeric reference 
genomes with HXB2 (left) or SUMA (right). HIV genomes were added as a separate 
chromosome during creation of the chimeric reference genome. (D) (top) 

Sequenced regions that are aligned by bwa mem to the proviral genome (SUMA) 
and recovered by hiv-haystack. Each row is a cell and each column is a base pair 
spanning the proviral genome. Regions in orange indicate actual reported 
coverage while regions in blue indicate inferred coverage if provirus was intact 
as paired-end sequencing can only obtain at most 50 bp from either end of the 
genomic/transposed fragment if the genomic fragment is > 50 bp. Many LTR 
alignments can be ambiguous and it is unclear whether the actual read is in the 3’ 
LTR or 5’ LTR. The primary alignment from bwa-mem is recorded here. (middle) 
Proportion of coverage is reported across all cells spanning the entire proviral 
genome. (bottom) Genome map of SUMA. (E) UMAP representation of the ATAC 
component with numeric labeling prior to manual annotation.
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Extended Data Fig. 2 | Cluster annotation panels for in vitro model. (A) Each 
subplot shows the ADT signal for a specific surface antigen for each cluster 
as seen in Extended Data Fig. 1E. X-axis values are normalized count values as 
processed via Seurat. (B) Each subplot shows the imputed gene activity score 

overlaid on the UMAP coordinate space as seen in Extended Data Fig. 1E. Gene 
activity score was calculated by ArchR and imputed using MAGIC to aid in visual 
interpretation as recommended by ArchR. Color scale indicates log2(normalized 
counts + 1).
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Extended Data Fig. 3 | Differential expression of select antigens for in vitro 
model. Differential expression of surface antigens was assessed (DESeq2 method 
in Seurat; two-sided with multiple comparison adjustment using Bonferroni-
Hochberg method) to compare between HIV- or HIV + cells in specific cell 

groupings: (A) all CD4 + T-cells (n = 1279 cells for HIV + and n = 5315 cells for HIV-) 
and (B) early differentiated CD4 + T-cells (n = 216 cells for HIV + and n = 3958 cells 
for HIV-). Markers are ranked in (A-B) by π-score (see Fig. 1E legend). All markers 
shown have an adjusted p-value < 0.05.
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Extended Data Fig. 4 | Differential expression of select antigens in activated 
T-cells for in vitro model. Violin-scatter plots are shown for the top 10 surface 
markers from Fig. 1E that are enriched in (A) activated HIV- cells and (B) activated 

HIV + cells. FALSE indicates HIV- cells while TRUE indicates HIV + cells. Markers 
are ordered from left to right; top to bottom by order of decreasing |π-score| as 
seen in Fig. 1E.
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Extended Data Fig. 5 | Properties of ASAPseq library during chronic 
infection. (A) UpSet plot of unique cell barcodes that were collected from each 
modality (ATAC versus ADT) and detection of proviral reads (HIV) separated 
by individual. (B) (top) Sequenced regions that are aligned by bwa mem to the 

proviral genome (HXB2) and recovered by hiv-haystack. Each row is a cell and 
each column is a base pair spanning the proviral genome. Refer to Extended Data 
Fig. 1 legend for more detailed information. (C) UMAP representation of the ATAC 
component with numeric labeling prior to manual annotation.
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Extended Data Fig. 6 | Cluster annotation panels during chronic infection. (A) 
Each subplot shows the ADT signal for a specific surface antigen for each cluster 
as seen in Extended Data Fig. 5C. X-axis values are normalized count values as 
processed via Seurat. (B) Each subplot shows the imputed gene activity score 

overlaid on the UMAP coordinate space as seen in Extended Data Fig. 5C. Gene 
activity score was calculated by ArchR and imputed using MAGIC to aid in visual 
interpretation as recommended by ArchR.
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Extended Data Fig. 7 | Properties of ASAPseq library during treated infection. 
(A) UpSet plot of unique cell barcodes that were collected from each modality 
(ATAC versus ADT) and detection of proviral reads (HIV) separated by individual. 
(B) Sequenced regions that are aligned by bwa mem to the proviral genome 
(autologous + HXB2) and recovered by hiv-haystack. Each column represents an 

unique infected cell, separated by the individual. The annotated HIV genomic 
region (as determined from Gene Cutter) is displayed per infected cell. (C) UMAP 
representation of the ATAC component with numeric labeling prior to manual 
annotation.
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Extended Data Fig. 8 | Cluster annotation panels during treated infection. (A) 
Each subplot shows the ADT signal for a specific surface antigen for each cluster 
as seen in Extended Data Figure 7C. X-axis values are normalized count values 
as processed via Seurat. (B) Each subplot shows the imputed gene activity score 

overlaid on the UMAP coordinate space as seen in Extended Data Figure 7C. Gene 
activity score was calculated by ArchR and imputed using MAGIC to aid in visual 
interpretation as recommended by ArchR.
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Extended Data Fig. 9 | See next page for caption.
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Extended Data Fig. 9 | Differential expression of select antigens during 
treated infection. Violin-scatter plots are shown for all significantly expressed 
(adjusted p value < 0.05; two-sided Wilcoxon with multiple comparison 
adjustment using Bonferroni method) surface markers (see Fig. 5B for 
significance and fold change values) that are enriched in (A) all CD4 + HIV + T-cells 

and (B) all CD4 + HIV- T-cells. FALSE indicates HIV- cells while TRUE indicates 
HIV + cells. Markers are ordered from left to right; top to bottom by order of 
decreasing |π-score| as seen in Fig. 5B. Cells are separated by individual and the 
aggregate data (across individuals) is also shown.
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