Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Maladaptive consequences of inflammatory events shape individual immune identity

Abstract

The vertebrate immune system develops in layers, as modes of immunity have evolved on top of each other through time with the expansion of organismal complexity. The maturation timing of immune cell subsets, such as innate immune cells, innate-like cells and adaptive cells, corresponds to their physiological roles in protective immunity. While various cell subsets have specialized roles, they also complement each other to clear pathogens, resolve inflammation and maintain homeostasis, especially at barrier sites with high microbial density. Immune cells adapt to inflammatory insults through mechanisms including epigenetic and metabolic reprogramming, clonal expansion and enhanced communication with the surrounding tissue environment. Over time, these adaptations shape an individual immune identity, reflective of the overlay between the genetic predisposition and the antigenic and environmental exposures of each individual. While some aspects of this immune shaping are natural consequences of immune maturation over time, others are maladaptive and predispose to irreversible pathology. In this Perspective, we provide a framework for categorizing the shaping events of the immune response, in terms of mechanisms, contexts and functional outcomes. We aim to clarify how these terms can be appropriately applied to future findings that impact immune function.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Inflammatory stimuli shape individual immune identity over the course of a lifetime.
Fig. 2: Imprinting defines immune shaping triggered by perturbations during early-life immune development.
Fig. 3: Reprogramming events can enhance protective immunity or lead to immunological scarring.
Fig. 4: Cellular reconfigurations with permanent immune consequences.
Fig. 5: Immune remodeling occurs through anatomic alterations to lymphatics and neuro–immune axis changes.

Similar content being viewed by others

References

  1. Mayassi, T., Barreiro, L. B., Rossjohn, J. & Jabri, B. A multilayered immune system through the lens of unconventional T cells. Nature 595, 501–510 (2021).

    Article  CAS  Google Scholar 

  2. Levy, M., Kolodziejczyk, A. A., Thaiss, C. A. & Elinav, E. Dysbiosis and the immune system. Nat. Rev. Immunol. 17, 219–232 (2017).

    Article  CAS  Google Scholar 

  3. Godfrey, D. I., Uldrich, A. P., McCluskey, J., Rossjohn, J. & Moody, D. B. The burgeoning family of unconventional T cells. Nat. Immunol. 16, 1114–1123 (2015).

    Article  CAS  Google Scholar 

  4. Bendelac, A., Savage, P. B. & Teyton, L. The biology of NKT cells. Annu Rev. Immunol. 25, 297–336 (2007).

    Article  CAS  Google Scholar 

  5. Olszak, T. et al. Microbial exposure during early life has persistent effects on natural killer T cell function. Science 336, 489–493 (2012).

    Article  CAS  Google Scholar 

  6. An, D. et al. Sphingolipids from a symbiotic microbe regulate homeostasis of host intestinal natural killer T cells. Cell 156, 123–133 (2014).

    Article  CAS  Google Scholar 

  7. Cahenzli, J., Köller, Y., Wyss, M., Geuking, M. B. & McCoy, K. D. Intestinal microbial diversity during early-life colonization shapes long-term IgE levels. Cell Host Microbe 14, 559–570 (2013).

    Article  CAS  Google Scholar 

  8. Yang, S., Fujikado, N., Kolodin, D., Benoist, C. & Mathis, D. Regulatory T cells generated early in life play a distinct role in maintaining self-tolerance. Science 348, 589–594 (2015).

    Article  CAS  Google Scholar 

  9. Scharschmidt, T. C. et al. A wave of regulatory T cells into neonatal skin mediates tolerance to commensal microbes. Immunity 43, 1011–1021 (2015).

    Article  CAS  Google Scholar 

  10. Gollwitzer, E. S. et al. Lung microbiota promotes tolerance to allergens in neonates via PD-L1. Nat. Med. 20, 642–647 (2014).

    Article  CAS  Google Scholar 

  11. Mubanga, M. et al. Association of early life exposure to antibiotics with risk of atopic dermatitis in Sweden. JAMA Netw. Open 4, e215245 (2021).

    Article  Google Scholar 

  12. Kronman, M. P., Zaoutis, T. E., Haynes, K., Feng, R. & Coffin, S. E. Antibiotic exposure and IBD development among children: a population-based cohort study. Pediatrics 130, e794–e803 (2012).

    Article  Google Scholar 

  13. Shaw, S. Y., Blanchard, J. F. & Bernstein, C. N. Association between the use of antibiotics in the first year of life and pediatric inflammatory bowel disease. Am. J. Gastroenterol. 105, 2687–2692 (2010).

    Article  Google Scholar 

  14. Constantinides, M. G. et al. MAIT cells are imprinted by the microbiota in early life and promote tissue repair. Science 366, eaax6624 (2019).

    Article  CAS  Google Scholar 

  15. Legoux, F. et al. Microbial metabolites control the thymic development of mucosal-associated invariant T cells. Science 366, 494–499 (2019).

    Article  CAS  Google Scholar 

  16. Godfrey, D. I., Koay, H.-F., McCluskey, J. & Gherardin, N. A. The biology and functional importance of MAIT cells. Nat. Immunol. 20, 1110–1128 (2019).

    Article  CAS  Google Scholar 

  17. McDonald, B. D., Jabri, B. & Bendelac, A. Diverse developmental pathways of intestinal intraepithelial lymphocytes. Nat. Rev. Immunol. 18, 514–525 (2018).

    Article  CAS  Google Scholar 

  18. Barros, R. D. M. et al. Epithelia use butyrophilin-like molecules to shape organ-specific γδ T. Cell Compartments. Cell 167, 203–218.e17 (2016).

    Google Scholar 

  19. Boyden, L. M. et al. Skint1, the prototype of a newly identified immunoglobulin superfamily gene cluster, positively selects epidermal γδ T cells. Nat. Genet. 40, 656–662 (2008).

    Article  CAS  Google Scholar 

  20. Barbee, S. D. et al. Skint-1 is a highly specific, unique selecting component for epidermal T cells. Proc. Natl Acad. Sci. USA 108, 3330–3335 (2011).

    Article  CAS  Google Scholar 

  21. Lim, A. I. et al. Prenatal maternal infection promotes tissue-specific immunity and inflammation in offspring. Science 373, eabf3002 (2021).

  22. Angelosanto, J. M., Blackburn, S. D., Crawford, A. & Wherry, E. J. Progressive loss of memory T cell potential and commitment to exhaustion during chronic viral infection. J. Virol. 86, 8161–8170 (2012).

    Article  CAS  Google Scholar 

  23. Pauken, K. E. et al. Epigenetic stability of exhausted T cells limits durability of reinvigoration by PD-1 blockade. Science 354, 1160–1165 (2016).

    Article  CAS  Google Scholar 

  24. Yates, K. B. et al. Epigenetic scars of CD8+ T cell exhaustion persist after cure of chronic infection in humans. Nat. Immunol. 22, 1020–1029 (2021).

    Article  CAS  Google Scholar 

  25. Hensel, N. et al. Memory-like HCV-specific CD8+ T cells retain a molecular scar after cure of chronic HCV infection. Nat. Immunol. 22, 229–239 (2021).

    Article  CAS  Google Scholar 

  26. Netea, M. G. et al. Defining trained immunity and its role in health and disease. Nat. Rev. Immunol. 20, 375–388 (2020).

    Article  CAS  Google Scholar 

  27. Luzio, N. R. D. & Williams, D. L. Protective effect of glucan against systemic Staphylococcus aureus septicemia in normal and leukemic mice. Infect. Immun. 20, 804–810 (1978).

    Article  Google Scholar 

  28. Moorlag, S. J. C. F. M. et al. β-glucan induces protective trained immunity against Mycobacterium tuberculosis infection: a key role for IL-1. Cell Rep. 31, 107634 (2020).

    Article  CAS  Google Scholar 

  29. Arts, R. J. W. et al. BCG vaccination protects against experimental viral infection in humans through the induction of cytokines associated with trained immunity. Cell Host Microbe 23, 89–100 (2018).

    Article  CAS  Google Scholar 

  30. WOUT, J. W., POELL, R. & FURTH, R. The role of BCG/PPD‐activated macrophages in resistance against systemic candidiasis in mice. Scand. J. Immunol. 36, 713–720 (1992).

    Article  Google Scholar 

  31. Walk, J. et al. Outcomes of controlled human malaria infection after BCG vaccination. Nat. Commun. 10, 874 (2019).

    Article  Google Scholar 

  32. Tribouley, J., Tribouley-Duret, J. & Appriou, M. [Effect of Bacillus Callmette Guerin (BCG) on the receptivity of nude mice to Schistosoma mansoni]. C. R. Seances Soc. Biol. Fil. 172, 902–904 (1978).

  33. Barton, E. S. et al. Herpesvirus latency confers symbiotic protection from bacterial infection. Nature 447, 326–329 (2007).

    Article  CAS  Google Scholar 

  34. Khan, N. et al. M. tuberculosis reprograms hematopoietic stemcells limit myelopoiesis and impair trained immunity. Cell 183, 752–770 (2020).

    Article  CAS  Google Scholar 

  35. Lau, C. M. et al. Epigenetic control of innate and adaptive immune memory. Nat. Immunol. 19, 963–972 (2018).

    Article  CAS  Google Scholar 

  36. Sun, J. C., Beilke, J. N. & Lanier, L. L. Adaptive immune features of natural killer cells. Nature 457, 557–561 (2009).

    Article  CAS  Google Scholar 

  37. Peng, H. et al. Liver-resident NK cells confer adaptive immunity in skin-contact inflammation. J. Clin. Invest. 123, 1444–1456 (2013).

    Article  CAS  Google Scholar 

  38. Cooper, M. A. et al. Cytokine-induced memory-like natural killer cells. Proc. Natl Acad. Sci. USA 106, 1915–1919 (2010).

  39. Wang, X. et al. Memory formation and long-term maintenance of IL-7Rα+ ILC1s via a lymph node–liver axis. Nat. Commun. 9, 4854 (2018).

    Article  Google Scholar 

  40. Martinez-Gonzalez, I. et al. Allergen-experienced group 2 innate lymphoid cells acquire memory-like properties and enhance allergic lung inflammation. Immunity 45, 198–208 (2016).

    Article  CAS  Google Scholar 

  41. Naik, S. et al. Inflammatory memory sensitizes skin epithelial stem cells to tissue damage. Nature 550, 475–480 (2017).

    Article  CAS  Google Scholar 

  42. Gonzales, K. A. U. et al. Stem cells expand potency and alter tissue fitness by accumulating diverse epigenetic memories. Science 374, eabh2444 (2021).

    Article  CAS  Google Scholar 

  43. Mayassi, T. et al. Chronic inflammation permanently reshapes tissue-resident immunity in celiac disease. Cell 176, 967–981 (2019).

    Article  CAS  Google Scholar 

  44. Emilsson, L., Semrad, C., Lebwohl, B., Green, P. H. R. & Ludvigsson, J. F. Risk of small bowel adenocarcinoma, adenomas, and carcinoids in a nationwide cohort of individuals with celiac disease. Gastroenterology 159, 1686–1694 (2020).

    Article  Google Scholar 

  45. Zaid, A. et al. Persistence of skin-resident memory T cells within an epidermal niche. Proc. Natl Acad. Sci. USA 111, 5307–5312 (2014).

    Article  CAS  Google Scholar 

  46. Park, S.-H. et al. Selection and expansion of CD8α/α1 T cell receptor α/β1 intestinal intraepithelial lymphocytes in the absence of both classical major histocompatibility complex class I and nonclassical Cd1 molecules. J. Exp. Med. 190, 885–890 (1999).

    Article  CAS  Google Scholar 

  47. Constantinides, M. G. & Belkaid, Y. Early-life imprinting of unconventional T cells and tissue homeostasis. Science 374, eabf0095 (2021).

    Article  CAS  Google Scholar 

  48. Shi, C. et al. Reduced immune response to Borrelia burgdorferi in the absence of γδ T cells. Infect. Immun. 79, 3940–3946 (2011).

    Article  CAS  Google Scholar 

  49. Sullivan, Z. A. et al. γδ T cells regulate the intestinal response to nutrient sensing. Science 371, eaba8310 (2021).

    Article  CAS  Google Scholar 

  50. Kumar, B. V., Connors, T. J. & Farber, D. L. Human T cell development, localization, and function throughout life. Immunity 48, 202–213 (2018).

    Article  CAS  Google Scholar 

  51. Allie, S. R. et al. The establishment of resident memory B cells in the lung requires local antigen encounter. Nat. Immunol. 20, 97–108 (2019).

    Article  CAS  Google Scholar 

  52. Schenkel, J. M. & Masopust, D. Tissue-resident memory T cells. Immunity 41, 886–897 (2014).

    Article  CAS  Google Scholar 

  53. Wijeyesinghe, S. et al. Expansible residence decentralizes immune homeostasis. Nature 592, 457–462 (2021).

    Article  CAS  Google Scholar 

  54. Risnes, L. F. et al. Disease-driving CD4+ T cell clonotypes persist for decades in celiac disease. J. Clin. Invest. 128, 2642–2650 (2018).

    Article  Google Scholar 

  55. Fransen, N. L. et al. Tissue-resident memory T cells invade the brain parenchyma in multiple sclerosis white matter lesions. Brain 143, 1714–1730 (2020).

    Article  Google Scholar 

  56. Weyand, C. M. New insights into the pathogenesis of rheumatoid arthritis. Rheumatology 39, 3–8 (2000).

    Article  Google Scholar 

  57. Choi, J., Kim, S. T. & Craft, J. The pathogenesis of systemic lupus erythematosus—an update. Curr. Opin. Immunol. 24, 651–657 (2012).

    Article  CAS  Google Scholar 

  58. Christophersen, A. et al. Tetramer‐visualized gluten‐specific CD4+ T cells in blood as a potential diagnostic marker for coeliac disease without oral gluten challenge. United European Gastroenterol. J. 2, 268–278 (2014).

    Article  Google Scholar 

  59. Christophersen, A. et al. Distinct phenotype of CD4+ T cells driving celiac disease identified in multiple autoimmune conditions. Nat. Med. 25, 734–737 (2019).

    Article  CAS  Google Scholar 

  60. Bouziat, R. et al. Murine norovirus infection induces TH1 inflammatory responses to dietary antigens. Cell Host Microbe 24, 677–688 (2018).

    Article  CAS  Google Scholar 

  61. Bouziat, R. et al. Reovirus infection triggers inflammatory responses to dietary antigens and development of celiac disease. Science 356, 44–50 (2017).

    Article  CAS  Google Scholar 

  62. Han, A. et al. Dietary gluten triggers concomitant activation of CD4+ and CD8+ αβ T cells and γδ T cells in celiac disease. Proc. Natl Acad. Sci. USA 110, 13073–13078 (2013).

    Article  CAS  Google Scholar 

  63. Jabri, B. & Abadie, V. IL-15 functions as a danger signal to regulate tissue-resident T cells and tissue destruction. Nat. Rev. Immunol. 15, 771–783 (2015).

    Article  CAS  Google Scholar 

  64. Saligrama, N. et al. Opposing T cell responses in experimental autoimmune encephalomyelitis. Nature 572, 481–487 (2019).

    Article  CAS  Google Scholar 

  65. Rao, D. A. et al. Pathologically expanded peripheral T helper cell subset drives B cells in rheumatoid arthritis. Nature 542, 110–114 (2017).

    Article  CAS  Google Scholar 

  66. Fonseca, D. Mda et al. Microbiota-Dependent Sequelae of Acute Infection Compromise Tissue-Specific Immunity. Cell 163, 354–366 (2015).

    Article  Google Scholar 

  67. Czepielewski, R. S. et al. Ileitis-associated tertiary lymphoid organs arise at lymphatic valves and impede mesenteric lymph flow in response to tumor necrosis factor. Immunity 54, 2795–2811.e9 (2021).

    Article  CAS  Google Scholar 

  68. Huh, J. R. & Veiga-Fernandes, H. Neuroimmune circuits in inter-organ communication. Nat. Rev. Immunol. 20, 217–228 (2020).

    Article  CAS  Google Scholar 

  69. White, J. P. et al. Intestinal dysmotility syndromes following systemic infection by flaviviruses. Cell 175, 1198–1212 (2018).

    Article  CAS  Google Scholar 

  70. Matheis, F. et al. Adrenergic signaling in muscularis macrophages limits infection-induced neuronal loss. Cell 180, 64–78 (2020).

    Article  CAS  Google Scholar 

  71. Klose, C. S. N. et al. The neuropeptide neuromedin U stimulates innate lymphoid cells and type 2 inflammation. Nature 549, 282–286 (2017).

    Article  CAS  Google Scholar 

  72. Wallrapp, A. et al. The neuropeptide NMU amplifies ILC2-driven allergic lung inflammation. Nature 549, 351–356 (2017).

    Article  CAS  Google Scholar 

  73. Rosas-Ballina, M. et al. Acetylcholine-synthesizing T cells relay neural signals in a vagus nerve circuit. Science 334, 98–101 (2011)

  74. Besedovsky, L., Lange, T. & Haack, M. The sleep–immune crosstalk in health and disease. Physiol. Rev. 99, 1325–1380 (2019).

    Article  Google Scholar 

  75. Xu, Y. et al. Pituitary hormone α-MSH promotes tumor-induced myelopoiesis and immunosuppression. Science 377, 1085–1091 (2022).

    Article  CAS  Google Scholar 

  76. Fonseca-Pereira, D. et al. The neurotrophic factor receptor RET drives haematopoietic stem cell survival and function. Nature 514, 98–101 (2014).

    Article  CAS  Google Scholar 

  77. Veiga-Fernandes, H. et al. Tyrosine kinase receptor RET is a key regulator of Peyer’s patch organogenesis. Nature 446, 547–551 (2007).

    Article  CAS  Google Scholar 

  78. Heuckeroth, R. O. Hirschsprung disease — integrating basic science and clinical medicine to improve outcomes. Nat. Rev. Gastroentero 15, 152–167 (2018).

    Article  Google Scholar 

  79. Belai, A., Boulos, P. B., Robson, T. & Burnstock, G. Neurochemical coding in the small intestine of patients with Crohn’s disease. Gut 40, 767 (1997).

    Article  CAS  Google Scholar 

  80. Xia, C. ‐M., Colomb, D. G., Akbarali, H. I. & Qiao, L. ‐Y. Prolonged sympathetic innervation of sensory neurons in rat thoracolumbar dorsal root ganglia during chronic colitis. Neurogastroenterol. Motil. 23, 801-e339 (2011).

    Article  Google Scholar 

  81. Berg, D. R., Colombel, J.-F. & Ungaro, R. The role of early biologic therapy in inflammatory bowel disease. Inflamm. Bowel Dis. 25, 1896–1905 (2019).

    Article  Google Scholar 

  82. Roquilly, A. et al. Alveolar macrophages are epigenetically altered after inflammation, leading to long-term lung immunoparalysis. Nat. Immunol. 21, 636–648 (2020).

    Article  CAS  Google Scholar 

  83. Seidman, J. S. et al. Niche-specific reprogramming of epigenetic landscapes drives myeloid cell diversity in nonalcoholic steatohepatitis. Immunity 52, 1057–1074 (2020).

    Article  CAS  Google Scholar 

  84. Jensen, K. E., Davenport, F. M., Hennessy, A. V. & Francis, T. Characterization of influenza antibodies by serum absorption. J. Exp. Med. 104, 199–209 (1956).

    Article  CAS  Google Scholar 

  85. Kugler, D. G. et al. Systemic toxoplasma infection triggers a long-term defect in the generation and function of naive T lymphocytes. J. Exp. Med. 213, 3041–3056 (2016).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank B. McDonald and D. Sharma for careful review of this manuscript and the many related discussions that helped strengthen the key points. We thank D. Mucida and M. Constantinides for helpful discussions that enhanced our understanding of neuro–immune axis perturbations and MAIT cells, respectively. This work was supported by the National Institutes of Health R01DK067180 (to B. J.), R01DK098435 (to B. J.), R01DK063158 (to B. J.), R01DK126487 (to B. J.) and the Digestive Diseases Research Core Center P30 C-IID DK42086 (to B. J.) at the University of Chicago, the 2019PG-CD015 Helmsley Charitable trust grant (to B. J), 5T32DK007074-49 (to A. H.-S.), Duchossois Family Institute (DFI) Fellowship Grant (to A. H.-S.), and the Gastro-Intestinal Research Foundation (GIRF) Pilot Award Grant (to A. H.-S).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bana Jabri.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Immunology thanks Daniel Mucida and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Ioana Visan was the primary editor on this article and managed its editorial process and peer review in collaboration with the rest of the editorial team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Halper-Stromberg, A., Jabri, B. Maladaptive consequences of inflammatory events shape individual immune identity. Nat Immunol 23, 1675–1686 (2022). https://doi.org/10.1038/s41590-022-01342-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41590-022-01342-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing