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Pan-vaccine analysis reveals innate immune 
endotypes predictive of antibody responses 
to vaccination
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Several studies have shown that the pre-vaccination immune state is 
associated with the antibody response to vaccination. However, the 
generalizability and mechanisms that underlie this association remain 
poorly defined. Here, we sought to identify a common pre-vaccination 
signature and mechanisms that could predict the immune response 
across 13 different vaccines. Analysis of blood transcriptional profiles 
across studies revealed three distinct pre-vaccination endotypes, 
characterized by the differential expression of genes associated with a 
pro-inflammatory response, cell proliferation, and metabolism alterations. 
Importantly, individuals whose pre-vaccination endotype was enriched 
in pro-inflammatory response genes known to be downstream of nuclear 
factor-kappa B showed significantly higher serum antibody responses 
1 month after vaccination. This pro-inflammatory pre-vaccination 
endotype showed gene expression characteristic of the innate activation 
state triggered by Toll-like receptor ligands or adjuvants. These results 
demonstrate that wide variations in the transcriptional state of the 
immune system in humans can be a key determinant of responsiveness to 
vaccination.

Prophylactic vaccination is a cost-effective strategy to prevent or 
reduce the effect of viral and bacterial infections. Vaccine efficacy 
often varies in the population and can depend on age1, sex2, ethnicity3 
and genetics4,5. Human immune responses are also shaped by the envi-
ronment, including previous pathogenic perturbation of the immune 
system. Indeed, pre-vaccination predictors of antibody response to 
specific vaccines such as influenza, yellow fever and hepatitis B vaccines 
have been identified6–9, as well as pre-vaccination predictive signatures 
spanning both influenza and yellow fever vaccines10. However, whether 

pre-vaccination markers exist for all vaccine platforms or if universal 
pre-vaccination markers of vaccine response can be identified have 
not been addressed for a large number of vaccines.

To define the biological signatures associated with the induction of 
protective immune responses induced by vaccination, high-throughput 
transcriptomic technologies (microarray and RNA sequencing) have 
been used to profile the peripheral blood cells of vaccine recipients. 
Paired with the use of machine-learning techniques, previous studies 
have identified signatures (that is, sets of genes) of vaccine-conferred 
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time after vaccination) variables on the variance in the transcriptomic 
data (Fig. 1c). Age (14%), time points (9%) and vaccine (9%) explained 
only a small fraction of the variance observed in the transcriptomic 
data; over 62% of the variance between samples remained unexplained 
by any of the recorded clinical and experimental variables.

Pre-vaccination endotypes of the immune system
To understand the source of the variance between participants, we 
restricted our analysis to the pre-vaccination time points (Extended 
Data Fig. 1). We next used hierarchical clustering to identify subgroups 
of participants with similar transcriptomic profiles before vaccination.

Hierarchical clustering (an unsupervised method) followed by 
identification of the optimal number of clusters by the Gap statistic 
identified three groups of participants (that is, endotypes) based on 
their pre-vaccination expression of gene sets included in the MSigDB 
hallmark gene sets17 and blood transcriptomic modules (BTMs18; Fig. 2 
and Extended Data Fig. 2a). Neither age (Kruskal–Wallis test, P = 0.597), 
sex (Fisher’s exact test, P = 0.570), nor preexisting antibody levels to the 
immunogen (Kruskal–Wallis test, P = 0.103) were significantly associ-
ated with the differences in gene expression observed in these three 
endotypes (Extended Data Fig. 2b). Using samples collected 7 d before 
vaccination, those just before vaccination (day 0) and those collected at 
day 70 or beyond after vaccination from the same participants (n = 74), 
we calculated the temporal stability metric10 and confirmed the relative 
stability of these transcriptomic profiles over time (Extended Data Fig. 
2c; temporal stability metric = 0.73).

One endotype showed heightened expression of transcriptomic 
markers of monocytes and DCs, ISGs and pro-inflammatory genes 
and thus was designated a high inflammatory (inflam.hi) endotype. 
Transcriptomic markers of monocytes and DCs induced in the inflam.
hi endotype included several genes encoding innate immune sensors 
(TLR1, TLR2 and TLR4) and also genes of the TLR4 signaling cascade 
(TLR4, LY96, DNM3 and PLCG2; Extended Data Fig. 2d). The type I inter-
feron signaling cascade was also an important feature of the inflam.hi 
endotype. Receptors upstream of the interferon pathways (encoded 
by IFNA2, IFNAR1, IFNAR2 and TYK2), nucleic acid sensors that trigger 
this pathway (encoded by RIGI, TRIM25, MAVS, TRAF6 and TANK), and 
transcription factors that regulate the expression of ISGs (encoded by 
STAT1, STAT2, IRF1 and IRF7) were all upregulated in the inflam.hi endo-
type compared to the other two endotypes. The nuclear factor-kappa B 
(NF-κB) pathway, whose activation is a hallmark of inflammation, and 
its target genes, including pro-inflammatory cytokines (TNF, IL6 and 
IL1B) and their receptors (TNFRSF1A) or effector molecules regulated 
by NF-κB, including the metalloprotease ADAM17 that cleaves the ecto-
domain of tumor necrosis factor (TNF), were all elevated in the inflam.hi 
endotype. Likewise, the interleukin (IL)-6 signaling pathway (encoded 
by IL6R, JAK2 and STAT3), a pathway that triggers the proliferation of 
activated B cells, was increased in the inflam.hi endotype. Moreover, 
several genes of the inflammasome complex and IL-1 signaling, also 
downstream of NF-κB, were also upregulated in these participants, 
including IL1A, IL1B, IL1R1 and IL1RAP. Altogether, this endotype was 
characterized by genes and pathways involved in pro-inflammatory 
processes common to nucleic acid sensing, which could promote the 
development of an immune response to vaccines.

A second endotype showed significantly lower expression of the 
above-listed pro-inflammatory genes and pathways (that is, NF-κB and 
ISGs) when compared to the first endotype (Supplementary Table 2). 
This endotype was designated as the low inflammatory (inflam.lo) 
endotype. Heightened expression levels of of transcriptomic markers 
of natural killer (NK) cells, T cells, B cells and target genes of the tran-
scription factors E2F and MYC both involved in the upregulation of cell 
proliferation and cell metabolism were features specific to the inflam.
lo endotype. Transcriptomic markers of NK cells induced in the inflam.
lo endotype included cell surface markers of NK cells (encoded by 
KLRD1 and KLRB1), effector molecules of cytotoxic function (encoded 

protection and/or of protective antibody responses to immunization. 
For example, different aspects of pre-vaccination states, including the 
frequency of B cell subsets as well as the expression of genes related to 
B cell receptor signaling and antigen processing predicted antibody 
response to influenza, yellow fever and hepatitis B vaccinations6,9–11. In 
contrast, pre-vaccination expression of genes related to granulocytes 
and interferon-stimulated genes (ISGs) have been associated with a 
poor response to hepatitis B vaccination6,12. Genes related to apopto-
sis and inflammatory responses were also shown to be expressed at 
a higher level by participants with a better response to the influenza 
vaccine7,13 and worse response to the malaria vaccine14. However, a 
common pre-vaccination signature shared by all these vaccines has 
yet to be identified. Moreover, some of the biological pathways iden-
tified showed opposite associations with response between vaccines 
(for example, interferon signaling is a negative predictor of antibody 
response for hepatitis B12 but type I interferon genes are positive predic-
tor of antibody response for influenza and yellow fever vaccination10), 
or between studies for the same vaccine (for example, B cell signaling 
for influenza vaccination11,13). The interpretation of these differences 
can often be complicated by not only the vaccine type, but also fac-
tors such as geographical region (for example, whether the targeted 
pathogen is endemic versus not), age and different genes in the same 
pathway (or gene set) driving the association signals. The interaction 
of those various factors is complex, and their effect could thus elude 
robust detection using smaller-size cohort studies. Meta-analyses, 
leveraging information from multiple cohorts, can increase the statisti-
cal power to detect pre-vaccination signatures predictive of antibody 
responses to vaccines despite potentially confounding variables (for 
example, age, ethnicity and geographical region).

Identifying a universal pre-vaccination signature predictive of 
antibody responses to vaccines and understanding the biological path-
ways associated with, and therefore potentially required for, inducing 
a protective humoral response following vaccination in healthy adults 
may lead to more effective strategies (for example, administration 
of immunomodulators) to enhance vaccine response15. Those new 
strategies may particularly benefit the most vulnerable populations, 
including infants, older people and immunosuppressed individuals.

Here, we show that a common pre-vaccination peripheral blood 
transcriptional signature is predictive of antibody responses across 
13 different vaccines. Functional annotation of this signature shows 
enrichment of effector genes of pro-inflammatory responses and 
pre-exposure sensing of ligands associated with bacterial infections. 
Analysis of existing single-cell transcriptomic data from healthy par-
ticipants showed that nonclassical monocytes and myeloid dendritic 
cells (DCs) are the likely sources of this pre-vaccination signature. 
The overlap in genes between this predictive signature and the tran-
scriptomic signature following Toll-like receptor (TLR) stimulation 
or adjuvant treatment suggests the existence of naturally occurring 
pre-vaccination innate immune activation states potentially overlap-
ping with inflammatory activation induced by these immune stimu-
lants, which are associated with better responses to vaccination.

Results
Heterogeneity of transcriptional profiles before vaccination
Transcriptomic profiles of whole blood and peripheral blood mononu-
clear cells (PBMCs) of 820 adults aged 18 to 55 years before and after vac-
cination were collected from publicly available databases (referred to 
as the ‘Immune Signatures Data Resource’16). Several vaccine platforms 
ranging from live viruses (that is, yellow fever, smallpox and influenza 
vaccines), inactivated viruses (that is, influenza vaccine) and glycocon-
jugate vaccines (that is, pneumococcal and meningococcal vaccines) 
were included in this dataset (Fig. 1a,b and Supplementary Table 1). 
We assessed the contribution of different sociodemographic (age, 
biological sex and ethnicity) and experimental (vaccine, defined here 
as unique combinations of vaccine platform and the targeted pathogen; 
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by GZMB, FASLG and CASP3), and genes of the IL-12 signaling cascade 
(IL12RB1 and STAT4). Transcriptomic markers of T cells expressed in 
the inflam.lo endotype included members of the IL-2 signaling cascade 
(encoded by IL2RA, IL2RB and LCK), CD28-dependent PI3K–AKT signal-
ing cascade (encoded by CD28, CD80, PIK3CA, PIK3R1, PIK3R3 and AKT3) 
and IL-7 signaling cascade (encoded by IL7 and IL7R); the latter two 
pathways being involved in the maintenance of the naïve T cell pool. 
Transcriptomic markers expressed by B cells of the inflam.lo endotype 
included cell surface receptors (encoded by CD79A, CD79B, CD22 and 
CD19) and kinases (encoded by FYN and BTK) of the B cell receptor 
signaling complex. Known target genes of E2F and MYC induced in the 
inflam.lo endotype include cell cycle and proliferation regulators (MYC, 
CDKN2A and AURKA) and cell metabolism (LDHA, MTHFD2 and TYMS). 
Altogether, this endotype was characterized by the lower expression 
of genes downstream of innate sensing (that is, interferons and NF-κB 
target genes).

Finally, a third endotype showed a mixed transcriptomic profile 
between inflam.lo and inflam.hi endotypes and was designated as 

the middle inflammatory (inflam.mid) endotype. T cell-specific, NK 
cell-specific and B cell-specific genes were significantly upregulated 
in these participants compared to the inflam.hi endotype and signifi-
cantly higher levels of pro-inflammatory genes were found in this endo-
type compared to the inflam.lo endotype (Supplementary Table 2).

Immune cell frequencies vary between the endotypes
Flow cytometry (n = 164) and immune cell deconvolution19,20 were 
used to determine if the three pre-vaccination inflammatory endo-
types were driven by the frequency of different innate and adaptive 
immune cell subsets (Extended Data Fig. 2e). The inflam.lo endotype 
showed an increased frequency of naive B cells (CD19+CD27−IgG−IgA− 
cells with heightened expression of ABCB4, ADAM28 and BACH2)20, 
which is in line with the above-described gene expression profiles 
(Fig. 2). CD8+ T cells (CD3+CD8+CD45RA+ cells with heightened expres-
sion of CRTAM, PIK3IP1 and TRAV12-2) were also more prevalent in 
this endotype. In contrast, the inflam.hi endotype showed a statisti-
cally significant increase in monocyte frequencies (19% of immune 
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Fig. 1 | Creation of a combined dataset of transcriptional responses to 
vaccination across diverse vaccine platforms and target pathogens. 
a, Flowchart describing the collection, curation, standardization and 
preprocessing steps leading to the creation of the vaccine transcriptomics 
compendium. b, Histogram of the time points before (days −7 and 0) and after 
(days > 0) vaccination available in the Immune Signatures Data Resource. In the 
plot, each vaccine is represented by a different color, while the size of the bar 
is proportional to the number of samples with available transcriptomic data. 

Only adults aged 18–50 years, with available pre-vaccination data were included 
in the resource. c, Principal variance component analysis was used to estimate 
the proportion of the variance observed in the transcriptomic data that can be 
attributed to clinical (age, sex, ethnicity) and experimental variables (time after 
vaccination, vaccine). The proportion of the variance that could not be explained 
by those variables is depicted by the residuals (resid). Confidence intervals (95%, 
percentile method) and bar height (mean) were computed from 4,000 bootstrap 
replicates.
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cells in inflam.hi versus 16% in inflam.lo; Wilcoxon rank-sum test, 
P = 7.75 × 10−5), in line with the results from the transcriptomic profil-
ing (Fig. 2). To assess whether the change in gene expression between 
the three endotypes could be explained solely by the difference in 
immune cell frequency, differential expression analysis was per-
formed, adjusting for the immune cell frequency, and reidentified 

inflammatory genes as markers of three endotypes (Supplementary 
Table 3). This analysis suggests that the difference in inflammatory 
gene expression between the three endotypes could not be explained 
by differences in cell frequencies alone and confirmed the differen-
tial transcriptomic activity of those inflammatory genes between 
endotypes.

Inflam.lo Inflam.hiInflam.mid

Enriched in T cells (I) (M7.0)
T cell activation (I) (M7.1)

Enriched in NK cells (I) (M7.2)
Enriched in NK cells (II) (M61.0)

Enriched in NK cells (receptor activation) (M61.2)
Enriched in NK cells (III) (M157)

HALLMARK_MYC_TARGETS_V1
HALLMARK_E2F_TARGETS
Enriched in B cells (I) (M47.0)
Enriched in B cells (VI) (M69)

Enriched in B cells (II) (M47.1)
T cell activation (II) (M7.3)

T cell activation and signaling (M5.1)
T cell differentiation via ITK and PKC (M18)

T cell activation (III) (M7.4)
T cell differentiation (M14)

T cell surface signature (S0)
T cell differentiation (TH2) (M19)

T cell signaling and costimulation (M44)
Enriched in T cells (II) (M223)

CD4+ T cell surface signature TH2-stimulated (S7)
HALLMARK_MYC_TARGETS_V2

Plasma cells & B cells, immunoglobulins (M156.0)
Enriched in B cells (V) (M47.4)

Enriched in naive and memory B cells (M83)
Enriched in B cells (III) (M47.2)
Enriched in B cells (IV) (M47.3)

Naive B cell surface signature (S8)
B cell surface signature (S2)

Signaling in T cells (I) (M35.0)
Signaling in T cells (II) (M35.1)

HALLMARK_IL2_STAT5_SIGNALING
Immunoregulation–monocytes, T and B cells (M57)

T & B cell development, activation (M62.0)
Enriched in B cell differentiation (M123)

Adhesion and migration, chemotaxis (M91)
CD4+ T cell surface signature TH1-stimulated (S6)

Leukocyte migration (M88.0)
Enriched for cell migration (M122)

Interferon alpha response (I) (M158.0)
Interferon alpha response (II) (M158.1)

Memory B cell surface signature (S9)
T cell activation (IV) (M52)

Leukocyte activation and migration (M45)
Integrin-mediated leukocyte migration (M39)

Receptors, cell migration (M109)
T cell surface, activation (M36)

Cell division–E2F transcription network (M4.8)
E2F1 targets (Q3) (M10.0)
E2F1 targets (Q4) (M10.1)

Mitotic cell cycle in stimulated CD4+ T cells (M4.9)
Cell division in stimulated CD4+ T cells (M4.6)

Mitotic cell cycle in stimulated CD4+ T cells (M4.5)
Mitotic cell cycle in stimulated CD4+ T cells (M4.11)

c-MYC transcriptional network (M4.12)
E2F transcription factor network (M8)

Cell division (stimulated CD4+ T cells) (M46)
Enriched in monocytes (II) (M11.0)

HALLMARK_TNFA_SIGNALING_VIA_NFKB
Enriched in monocytes (IV) (M118.0)

Enriched in activated DCs/monocytes (M64)
Enriched in monocytes (III) (M73)

HALLMARK_IL6_JAK_STAT3_SIGNALING
HALLMARK_COMPLEMENT

HALLMARK_INFLAMMATORY_RESPONSE
CD1 and other DC receptors (M50)

Enriched in monocytes (surface) (M118.1)
B cell development (M9)

B cell development/activation (M58)
Complement and other receptors in DCs (M40)

Enriched in monocytes (I) (M4.15)
Enriched in myeloid cells and monocytes (M81)

Type I interferon response (M127)
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Fig. 2 | Participants have distinct pre-vaccination transcriptomic profiles. 
Hierarchical clustering (Euclidean distance metric and complete linkage 
agglomeration method) of pre-vaccination samples (day −7 and day 0) based on 
the expression of the BTMs and hallmark gene sets. The overall transcriptomic 
activity of gene sets/modules was estimated using sample-level enrichment 
analysis (SLEA). Three groups of participants/endotypes can be identified by 
cutting the dendrogram. Average SLEA score of the four hallmark inflammatory 

gene sets (bold row labels; inflam.gs), discretized in tertiles, is shown as sample 
annotation. Endotypes were designated as high (inflam.hi), low (inflam.lo) and 
middle (inflam.mid) inflammatory pathways. For each of the seven supersets of 
hallmark and BTM gene sets, ten canonical genes annotated to NK cells, T cells, B 
cells, E2F/MYC, inflammation, monocytes/DCs and ISGs, respectively (heat map). 
TH2, type 2 helper T cell.
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Endotypes modulate the transcriptional response to vaccines
Next, we evaluated the impact of the pre-vaccination inflammatory 
endotypes on the magnitude and kinetics of post-vaccination tran-
scriptional responses. The pre-vaccination inflammatory endotypes 
explained 12.5% of the variance in gene expression observed before and 
after vaccination (Extended Data Fig. 3a), independently of age and sex 
of participants. On average, participants from the inflam.hi endotype, 
which had the highest pre-vaccination levels of pro-inflammatory 
pathways, showed reduced vaccine-induced expression of 
pro-inflammatory pathways (for example, complement pathway and 
IL-6 signaling pathway) at days 1 and 3 after vaccination when compared 
to the participants from the inflam.lo (log2 fold change (log2FC) < −1.46; 
Wilcoxon rank-sum test, P < 0.0106) and inflam.mid (log2FC < −0.643; 
Wilcoxon rank-sum test, P < 0.0996; Fig. 3a and Extended Data Fig. 3b) 
endotypes. By day 7, levels of the pro-inflammatory pathways returned 
to pre-vaccination levels in all three endotypes and levels remained as 
such over the duration of the follow-up. Similarly, participants from 
the inflam.hi endotype showed reduced induction of ISGs at day 1 after 
vaccination when compared to the inflam.lo (log2FC = −2.81; Wilcoxon 
rank-sum test, P= 8.08 × 10−4) and inflam.mid (log2FC = −1.54; Wilcoxon 
rank-sum test, P = 0.0996; Fig. 3b and Extended Data Fig. 3c) endotypes. 
The participants from the inflam.hi endotype also had a lower B cell sig-
nature on day 7 and beyond compared to participants from the inflam.
lo endotype (log2FC = −0.866; Wilcoxon rank-sum test, P = 1.87 × 10−4; 
Fig. 3c and Extended Data Fig. 3d). The levels of B cell markers returned 
to pre-vaccination levels by day 7 in the inflam.lo group contrary to 
the inflam.hi endotype where B cell markers were sustainably induced 
compared to pre-vaccination levels (Extended Data Fig. 3e). Similarly, 
type 2 helper T cell markers, necessary to mount a humoral response, 
were induced at day 7 after vaccination in the inflam.hi group but not 
in the inflam.lo (Fig. 3d and Extended Data Fig. 3f). The inflammatory 
endotypes affected the magnitude of the transcriptomic changes trig-
gered by the vaccines, specifically at the earliest time points. However, 
peak responses occurred at the same time points in all three endotypes.

Universal signatures predict vaccine antibody responses
We then assessed the association between the pre-vaccination endo-
types and antibody responses triggered by each one of the 13 vaccines 
included in this study and measured approximately 1 month after immu-
nization (by hemagglutination-inhibition, enzyme-linked immuno-
sorbent or neutralizing assays; Supplementary Table 1). Participants 
from the inflam.hi endotype showed significantly higher antibody 
responses across all vaccines compared to participants of the inflam.
lo endotype (log2FC = 0.253, Wilcoxon rank-sum test, P = 0.00439;  
Fig. 4a) and inflam.mid endotype (log2FC = 0.167, Wilcoxon rank-sum 
test, P = 0.0595). The association between the inflammatory endotypes 
and the antibody response was statistically significant for influenza 
inactivated vaccines and exhibited a similar trend for the other vaccines 
included in our study (Extended Data Fig. 4a). The inflammatory endo-
types also tended to be associated with antibody response measured 
beyond day 28 but did not reach significance (Extended Data Fig. 4b). 
The association of inflammatory endotype with antibody response 
did not significantly differ between assays used to assess antibody 
response (hemagglutination-inhibition, enzyme-linked immuno-
sorbent, or neutralizing assays; likelihood-ratio test, P = 0.265). The 
inflammatory endotypes were not predictive of the magnitude of the 
humoral response to influenza, hepatitis B and varicella zoster vaccines 
in older people (aged 50 years and above; Extended Data Fig. 4c). Taken 
together, pre-vaccination immunological endotypes were associated 
with the magnitude of the vaccine-induced antibody response in adults.

To complement the unsupervised approach, we used a supervised 
approach to identify genes that are predictive of high (top 30%) ver-
sus low (bottom 30%) antibody response to vaccination. We trained 
a random forest classifier that predicts vaccine-specific antibody 
responses based on pre-vaccination gene expression profiles. This 

classifier achieved an area under the receiver operating characteristic 
(ROC) curve (auROC) of 62.3% as estimated by tenfold cross-validation 
(Fig. 4b). The accuracy of the classifier was greater for the vaccines 
with the largest number of samples (influenza inactivated, n = 335, 
auROC = 63.0%; yellow fever, n = 93, auROC = 51.6%) and deteriorated 
for vaccines with smaller sample sizes (Extended Data Fig. 4d; tuber-
culosis, n = 8, auROC = 37.5%). The accuracy of the classifier was equal 
to vaccine-specific classifiers trained and tested on that same vaccine 
(Extended Data Fig. 4e). We did not observe any significant associa-
tion between misclassification and the biological sex, age, ethnicities, 
geographical locations or assays used to measure antibody response of 
the participants, suggesting that the classifier accuracy is not affected 
by these parameters. For example, the yellow fever vaccine recipients 
included in the Immune Signatures Data Resource originated from five 
cohorts recruited in the United States, Canada, Switzerland, Uganda 
and China. The supervised classifier was significantly associated with 
high vaccine response in all cohorts except the one from the United 
States. The inflammatory signatures were predictive of antibody titers 
independently of the route of vaccination because our data sets include 
vaccines that were administered intramuscularly, intravenously or 
intranasally (for example, FluMIST).

The top 500 predictive genes selected by their importance in the 
classifier were enriched for inflammatory markers (50 genes of 500; 
Fisher’s exact test, P = 1.13 × 10−11; Fig. 4c). Fourteen genes contributed 
to the majority (importance > 50%) of the classifier predictions (KCNJ2, 
UTY, CNTNAP2, PTGS2, MAPK8IP1, LTC4S, ZNF124, EREG, CASP5, EGR1, 
CXCL10, ZNF248, DDX3Y and CCL20). Those fourteen genes included 
pro-inflammatory cytokines and chemokines (CXCL10/IP-10, CCL20), 
mediators of IL-1, NF-κB signaling (MAPK8IP1, CASP5and EGR1)21,22 and 
NF-κB target genes (KCNJ2, PTGS2 and ZNF248)23. Those fourteen genes 
were compared to six previously identified pre-vaccination signatures 
of vaccine responses6,7,10,12,24,25. There was no significant overlap in gene 
content between those fourteen genes and the six previously identified 
pre-vaccination gene signatures (Extended Data Fig. 4f). Notably, the 
fourteen genes were the only ones to predict antibody response across 
most of the vaccines tested. In contrast, most of the previously identi-
fied signatures, including a pro-inflammatory signature we previously 
identified that predicted influenza vaccination response7, were largely 
predictive for the vaccine types they have been trained on and less on 
the remaining vaccine types (Fig. 4d). Altogether, the signature iden-
tified here, heightened in the inflam.hi endotype, provides evidence 
that a specific inflammation signature pre-vaccination helps to mount 
a good antibody response across multiple vaccines.

Cellular sources of the pre-vaccination endotypes
To identify the cells that potentially express the inflammatory genes 
included in the classifier of vaccine-induced antibody responses, we 
utilized publicly available CITE-seq (cellular indexing of transcrip-
tomes and epitopes by sequencing) data from PBMCs collected from 
20 healthy participants before vaccination with inactivated influenza 
vaccines10. We tested if the inflammatory genes were enriched in spe-
cific cell subsets or if their expression reflected a heightened global 
state of immune cell activation before vaccination common to multiple 
cell subsets. We analyzed the expression of the inflammatory genes of 
the classifier of vaccine-induced antibody responses within clusters 
of single cells defined by the expression of more than 80 specific cell 
surface proteins (Fig. 5a and Extended Data Fig. 5). The inflammatory 
genes intersecting between the unsupervised analysis (identified in 
Fig. 2) and supervised analysis were highly enriched within the innate 
immune cell subsets compared to other cell populations, specifically 
within the CD14+CD16− classical monocytes and CD1c+CD11c+ myeloid 
DCs (Fig. 5b). These results highlight innate immune myeloid cells as 
the most likely cellular source of the pre-vaccination activated state 
found through both supervised and unsupervised analysis (as also 
suggested from Fig. 2).
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Fig. 3 | Kinetics of the vaccine response are dictated by the pre-vaccination 
endotypes. a–c, Line plots showing the expression of inflammatory pathways 
(a), ISGs (b) and B cells (c) as a function of time, separated by participants with 
low, middle or high pre-vaccination inflammation (inflam.lo, n = 235; inflam.mid, 
n = 237; inflam.hi, n = 304). Each colored line corresponds to one participant. 
LOESS regression was used to determine the average expression per pre-
vaccination endotype (black lines). d, TH2 cell markers fold change values over 

pre-vaccination data for several time points after vaccination (day 1, inflam.lo 
n = 117, inflam.mid n = 117, inflam.hi n = 139; day 3, inflam.lo n = 166, inflam.mid 
n = 165, inflam.hi n = 202; day 7, inflam.lo n = 159, inflam.mid n = 147, inflam.hi 
n = 198; day 14 inflam.lo n = 81, inflam.mid n = 103, inflam.hi n = 100). For each box 
plot, the vertical line indicates the median, the box indicates the interquartile 
range, and the whiskers indicate 1.5 times the interquartile range. Wilcoxon rank-
sum test; *P < 0.05, **P < 0.01 and ***P < 0.001.
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Pre-vaccination inflammation in seemingly healthy participants 
can presumably arise from a noninfectious etiology or from potentially 
subclinical pro-inflammatory responses induced by bacteria or viruses. 
To identify the possible upstream signals associated with the inflam-
mation described above, we used the seven-gene classifier described 
in work by Sweeney et al.26 to discriminate between inflammatory 
signatures induced in response to pathogenic bacterial (classifier 
score above 0) or viral (classifier score below 0) infections. Applying 
this classifier to our cohort of vaccinees showed that participants 
within the inflam.hi endotype and the highest antibody-response 
group expressed genes that were more associated with exposure to 
bacterial infections (Fig. 6a).

We further observed that one of the bacterial markers in this 
seven-gene classifier, TNIP1, is a known NF-κB target and that the 
classifier score was positively correlated with an induction of NF-κB 
target genes. This contrasts with IFI27, an ISG used as a viral marker 
in the seven-gene classifier, and that interferon targets negatively  
correlated with the bacterial/viral classifier score. Interestingly, vac-
cines that were correctly predicted by the antibody-response classi-
fier showed a stronger expression of NF-κB targets in high responders 
than low responders (Extended Data Fig. 6a; influenza inactivated, 
log2FC = 2.48; yellow fever, log2FC = 0.743; hepatitis B, log2FC = 1.12). 
ISGs, downstream of interferon-regulatory factor 7 (IRF-7), were 
also associated with a robust humoral response to most of the vac-
cines except vaccines using poxvirus vectors such as the smallpox or  
yellow fever vaccines, for which strong expression of ISGs were 
associated with hyporesponse (Extended Data Fig. 6a). This analy-
sis confirmed previous observations indicating that microbial ele-
ments (bacterial or viral) could be associated with the response to 
vaccines27.

In support of these observations, we queried publicly available 
transcriptomic datasets related to bacterial inflammation28, viral 
inflammation28, pathogen recognition receptor (PRR) activation29 
and antibiotic treatment27 to identify pathways associated with 
the prevalence of these inflammatory signatures that correlated 
with pan-vaccine antibody response. Again, counterintuitively, our 
inflammatory signature identified in seemingly healthy participants 
significantly overlapped with gene signatures from participants 
infected by Staphylococcus aureus and Streptococcus pneumoniae 
compared to healthy participants and to peripheral mononuclear 
cells stimulated in vitro with the TLR2/TLR6 ligand PAM2 (Extended 
Data Fig. 6b). Gene expression of DCs stimulated with bacterial 
(cGAMP, SeV, zymosan and lipopolysaccharide) and viral (polyIC) 
pattern-recognition ligands (several of them used as vaccine adju-
vants)30 showed strong induction of the inflammatory genes that 
were part of our classifier, suggesting that the heightened expres-
sion of those genes is a hallmark of a naturally adjuvanted immune 
system (Fig. 6b).

Discussion
In this work, we characterize the interindividual heterogeneity in the 
inflammatory state of the peripheral immune system before vaccina-
tion and its association with vaccine response. Indeed, we identify 
three endotypes, inflam.hi, imflam.mid and imflam.lo, defined by 
multiple blood transcriptional signatures and a distinct distribu-
tion of cell subsets before vaccination. Our results show that these 
endotypes are associated with the relative magnitude of the anti-
body response across 13 different vaccines. Our work highlights the 
impact of the pre-vaccination immune system and suggests a role for 
pre-sensitization of the innate immune system to pathogen-associated 
molecular patterns in priming the B cell response to vaccination. The 
results presented here extend earlier definitions of pre-vaccination sig-
natures to more diverse vaccines and populations; more importantly, 
they point to a framework that can lead to the inclusion of adjuvants that 
are more efficient at stimulating vaccine-induced protective immune 
responses.

Our approach consisted of training on all 13 vaccines and distin-
guishes this work from previously published reports. Importantly, the 
resulting classification model predicted the magnitude of the antibody 
response with a significant accuracy across these 13 vaccines. This 
strategy is likely the main factor that has contributed to the identifi-
cation of this pan-vaccine classifier. Training on one vaccine type did 
not confer predictive power on distinct vaccine types irrespective of 
whether this was a live, inactivated or subunit vaccine. In contrast, 
the global classifier of vaccine responses identified herein performed 
as well as a classifier trained on any given vaccine and tested on that 
same vaccine. A similar finding is described in our companion paper by 
Hagan et al.31 that focuses on post-vaccination response to the same 13 
vaccines and identified a global transcriptomic signature associated 
with antibody response when all the vaccines are synchronized before 
building a classifier.

Our results show that qualitative and quantitative features, includ-
ing transcriptional programs (MYC and E2F versus interferons and 
NF-κB target genes), can identify a pre-vaccination environment that 
leads to a heightened vaccine-induced antibody response. Expres-
sion of NF-κB, the prototypic transcription factor that controls the 
development of inflammatory responses, and its target genes are 
induced in the inflam.hi state. NF-κB is essential for driving the tran-
scription of cytokines and chemokines (for example, CXCL10) that 
trigger cells of the innate and adaptive immune responses to migrate 
to sites of vaccination and differentiate into effector cells. Consistent 
with some previous reports on pre-vaccination signatures positively 
associated with antibody responses to vaccination15, upregulation 
of ISGs is a feature of this state of participants, including IRF-7, the 
master transcription factor of the type I/type II interferons cascades. 
Type I and type II interferons regulate genes involved in antigen pro-
cessing and presentation. The level of B cell responses in blood was 

Fig. 4 | Prediction of the antibody response by the pre-vaccination 
endotypes. a, Box plot of the maximum fold change (MFC) antibody responses 
as a function of the pre-vaccination inflammation endotypes (inflam.lo, n = 212; 
inflam.mid, n = 233; inflam.hi, n = 281). The MFC was scaled to a mean of 0 and 
a standard-deviation of 1 across vaccines. For each boxplot, the vertical line 
indicates the median, the box indicates the interquartile range, and the whiskers 
indicate 1.5 times the interquartile range. A Wilcoxon rank-sum test without 
correction for multiple testing was used to assess differences in antibody 
response between the two endotypes; *P < 0.05, **P < 0.01 and ***P < 0.001. 
b, A supervised machine-learning approach was adopted to train a random 
forest classifier using pre-vaccination gene expression to distinguish high 
vaccine responders (top 70%) from low vaccine responders (bottom 30%). 
The predictive performance of the classifier was assessed by tenfold cross-
validation (10-CV). The ROC curve is presented along with the auROC and 95% 
confidence intervals estimated from the tenfold CV. c, The top 500 predictive 
genes/features included in the classifier (importance > 0%) overlapped with 

inflammatory genes identified in the unsupervised approach (two-sided Fisher’s 
exact test, P = 1.13 × 10−11). Heat map showing the pre-vaccination expression of 
the overlapping genes. Samples (columns) are ordered by increasing expression 
level of the inflammatory genes. A Wilcoxon rank-sum test was used to assess 
the association between the inflammatory signatures and high/low antibody 
response and resulted in a P value of 0.00265. d, Comparison of eight genes 
contributing the majority of the classifier prediction (importance > 50%) 
against previously identified pre-vaccination signatures of vaccine response. 
MetaIntegrator was used to calculate an auROC for each previously published 
pre-vaccination signature of vaccine response, as well as the eight genes 
identified in this work, using each of the transcriptomic studies within the 
Immune Signatures Data Resource. Circles correspond to studies that were used 
to train the pre-vaccination signatures, while asterisks indicate significantly 
better than random identification of high responders in each transcriptomic 
study as determined by a permutation test.

http://www.nature.com/natureimmunology


Nature Immunology | Volume 23 | December 2022 | 1777–1787 1784

Resource https://doi.org/10.1038/s41590-022-01329-5

lower in the inflam.hi compared to inflam.lo group, suggesting that 
antibody-producing B cells migrate to tissues instead of remaining 
in circulation. In contrast, inflam.lo participants demonstrated the 

upregulation of transcriptional networks that highlight genes and 
pathways of T cell and B cell activation and proliferation including a 
heightened expression of the E2F and MYC transcriptional programs 
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and heightened frequency of CD8+ T cells. Conversely, these same par-
ticipants showed low levels of NF-κB and IRF-7 expression. In addition, 
the inferred frequency of CD8+ T cells from a deconvolution analysis 
was negatively correlated with day-28 antibody response, suggesting 
that participants of the inflam.lo states may have an activated/com-
mitted CD8+ T cell program before vaccination.

These two pathways could plausibly be driven by acute responses 
to exposure to subclinical levels of bacterial (NF-κB) or viral (interfer-
ons) infections. Genes downstream of the NF-κB and IRF-7 transcrip-
tion factors were both associated with antibody responses to vaccines. 

This suggests that the activation of the transcriptomic programs of 
those two transcription factors in innate immune cells before vac-
cination could lead to a more efficient priming of innate immune 
responses. Indeed, both interferons, TNF and the inflammasome are 
potent inducers of adaptive immune responses and are triggered by 
alum and MF59, two adjuvants that are widely used in vaccines. Of 
note, presence of the interferon signature before vaccination was 
negatively associated with the antibody responses in live viral vaccines 
in some populations (yellow fever, smallpox and dengue vaccine32). 
This inhibitory effect of interferons is most likely due to their antiviral 
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Fig. 5 | a, Pre-vaccination endotypes in single-cell RNA-sequencing uniform 
manifold approximation and projection (UMAP) of PBMCs from 20 healthy 
participants profiled by CITE-seq10; subsets were identified based on surface 
protein expression (average dsb normalized protein expression within each 
cluster). b, Single-cell CITE-seq deconvolution of inflammatory genes, identified 
as being associated with vaccine-induced antibody response by the unsupervised 

and supervised approaches, in the blood immune cell subsets. The color 
represents average log normalized expression within each cluster with scales 
clipped at a maximum of 0.25, and the dot size represents the percentage of cells 
within that cluster with nonzero expression of the gene. HSC, hematopoietic 
stem cells; mDC, myeloid dendritic cell; pDC, plasmacytoid DC.
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activity, which could limit viral replication and antigen presentation 
by these vaccines.

The transcriptomic profile of individuals in the inflam.hi state was 
stable over a 2-month period. This pre-vaccination inflammation could 
result from (1) host genetics4, (2) the environment, for example, diet 
and previous infections33 or (3) the microbiome. To the latter point, 
our previous work showed that TLR5-mediated sensing of flagellin 
in the gut microbiota promoted influenza vaccine-specific antibody 
response by stimulating lymph node macrophages to produce plasma 
cell growth factors34. Although we observed differences in immune 
cell subset frequencies between the pre-vaccination states, those fre-
quencies could not solely explain the differences in gene expression 
observed between the pre-vaccination states, highlighting that in addi-
tion to differences in the cellular composition of blood, pre-vaccination 
states also reflect differential transcriptomic activities.

The inflammatory signature identified here was not predic-
tive of the magnitude of the humoral response to influenza, hepa-
titis B and varicella zoster vaccines in older people, suggesting that 
age-associated inflammation6 is different. Indeed, the inflammation 
signature associated with poor responses to vaccines in older people 
does not show overlapping genes with the inflam.hi signature associ-
ated with vaccination response in adults (18 to 55 years). Information 
on comorbidities and medications was not available and may constitute 
a confounder when comparing vaccine response in adults to that in 
the older population. Even so, different types of inflammation could 
lead to different responses to vaccination. Indeed, we provide direct 
evidence that distinct processes could drive diverse inflammation 
profiles across individuals.

Strategies that directly impact pre-vaccination inflammation or 
modulate the pre-vaccination commensal bacterial flora impact the 
immune response to vaccination15,27. In this study, we observed similari-
ties between the pro-inflammatory signature associated with vaccine 
response and the pro-inflammatory signatures induced by bacterial 
infections. The latter activate pattern-recognition receptor signaling 
cascades, which will trigger the activation of the NF-κB transcription 
factor complex and the induction of pro-inflammatory transcriptomic 
programs including pro-inflammatory cytokines (for example, IL-1). 
The overlap between the pro-inflammatory signatures associated 
with vaccine response and that following bacterial signaling was not 
specific to one bacterial species but was shared by different bacteria 
such as S. aureus and S. pneumoniae. Importantly, these signatures 
overlapped with that of the activation by PRR ligands of bacterial (TLR1, 
TLR2 and TLR4) or viral (polyIC) pathogens. Among the 13 vaccines that 
are part of the Immune Signatures Data Resource, only the hepatitis 
B vaccine was adjuvanted with aluminum hydroxide. The other vac-
cines did not use an adjuvant and having a pro-inflammatory signature 
pre-vaccination provides an activated innate immune state with overlap 
with states induced by adjuvant and could explain the association with 
an enhanced humoral response after vaccination. These findings are of 
even greater relevance as the quest to develop durable and efficacious 
vaccine platforms for severe acute respiratory sydrome coronavirus 2 
(SARS-CoV-2) have become a global health priority. Identifying adju-
vants that will enable the different SARS-CoV-2 vaccine platforms will 
benefit from our findings.

In conclusion, we have identified an inflammatory signature down-
stream of transcription factors NF-kB and IRF-7 in innate immune cells 
that predicts humoral response across diverse vaccines. This provides a 
mechanistic framework that can lead to the selection of adjuvants most 
efficient at stimulating vaccine-induced protective immune responses.

Online content
Any methods, additional references, Nature Research reporting 
summaries, source data, extended data, supplementary informa-
tion, acknowledgements, peer review information; details of 
author contributions and competing interests; and statements of 

data and code availability are available at https://doi.org/10.1038/
s41590-022-01329-5.
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Methods
Gene expression preprocessing
ImmPort (release June 2022) and ImmuneSpace (release December 
2021) software were used to collect the transcriptomic and phenotypic 
data. An extensive description of the preprocessing of microarray and 
RNA-sequencing datasets included in the Immune Signatures Data 
Resource can be found in ref. 16. The dataset includes 2,949 samples 
from published studies and 228 samples not included in previously 
published studies. Those 2,949 samples originate from 820 partici-
pants, 800 reported as healthy and 20 (<3%) with type 2 diabetes. All 
these samples were assembled into a single resource. Briefly, raw probe 
intensity data for Affymetrix studies were background corrected and 
summarized using the RMA algorithm implemented in R (version 4.2.0) 
and Bioconductor (version 3.14). For studies using the Illumina array 
platform, background-corrected raw probe intensities were used. 
Expression data within each study were quantile normalized and log 
transformed separately for each study.

Batch correction
An extensive description of the across-studies normalization used to 
correct for batch effects can be found in ref. 16. Briefly, a linear model 
was fit using the pre-vaccination normalized gene expression as a 
dependent variable and platform, study and blood sample type (that 
is, whole blood or PBMCs) as independent variables. The estimated 
effect of the platform, study and sample type was then subtracted from 
the entire gene expression (before and after vaccination) to obtain 
the batch-corrected gene expression used for the analysis presented 
herein. Principal variance component analysis was used to assess the 
effect of other phenotypic variables on the batch-corrected gene 
expression35. All the phenotypic variables were coded as categori-
cal variables before the principal variance component analysis; this 
included the imputed age coded as 10-year intervals and the time 
points before and after vaccination, which were left censored at 20 d 
and coded as days from vaccination.

Clustering of the samples
For functional characterization of the genes, we made use of known 
gene sets from two sources: Hallmark collection from MSigDB (ver-
sion 7.2)17 and the BTMs18. Overall activity of each gene set/pathway 
was estimated for each sample using SLEA36. Hierarchical clustering 
using Euclidean distance and complete linkage was used to cluster 
samples. The resulting dendrogram was cut to generate three clusters 
of samples. The three clusters were designated as inflam.lo, inflam.
mid and inflam.hi, based on the average SLEA z-score of four hallmark 
inflammatory gene sets (HALLMARK_INFLAMMATORY_RESPONSE, 
HALLMARK_COMPLEMENT, HALLMARK_IL6_JAK_STAT3_SIGNAL-
ING and HALLMARK_TNFA_SIGNALING_VIA_NFKB). Hallmark and 
BTM gene sets were grouped based on their name and description 
into markers of seven cell subsets or canonical pathways (T cells, NK 
cells, B cells, monocytes/DCs, inflammation, E2F/MYC and ISGs). 
Canonical genes of those seven cell subsets or canonical pathways 
were identified by looking at the genes part of the gene sets annotated 
to those cell subsets or canonical pathways and ranking them based 
on the number of GeneRIF entries associating them to cell subsets or 
canonical pathways.

Antibody response
Because some vaccines include multiple strains of viral antigens, the 
fold change in the response metric was defined as the MFC of any strain 
in the vaccine at day 28 (± 2 d) compared to before vaccination. MFC 
was calculated for all participants with neutralizing antibody response, 
hemagglutination inhibition, or IgG levels measured by ELISA16.

Identification of high and low responders
The MFC between day 28 (± 2 d) and pre-vaccination titers was used 

to quantify the antibody response to vaccination. To minimize the 
difference in antibody response between studies (for example, due to 
different vaccines or different techniques used for antibody concentra-
tion assessment), the high and low responders were identified for each 
study separately by selecting the participants with an MFC value equal 
or above the 70th percentile as high responders and participants with 
an MFC value equal or below the 30th percentile as low responders.

Strategy to identify signature predictive of vaccine response
To evaluate if participant-specific transcriptomic profiles taken before 
vaccination were predictive of antibody response 28 d after vaccine, 
we developed predictive models using the random forest algorithm. 
The training set included participants achieving a high or low antibody 
response (n = 522) based on the discretization of MFC (MFC_p30) and 
the top 500 varying genes as features (based on variance calculated 
across all pre-vaccination samples part of the Immune Signatures 
Data Resource with available antibody-response data). The predictive 
model was trained to maximize the auROC, and tuning parameters 
were estimated using tenfold cross-validation. In this final model, 
the performance was assessed using tenfold cross-validation with 
standard performance metrics including auROC, accuracy, positive 
predictive value, negative predictive value, sensitivity, specificity, as 
well as Brier score.

MetaIntegrator37 (version 2.1.3) was used to apply previously 
identified pre-vaccination signatures of vaccine response and the 
most important genes in the classifier identified in this work (impor-
tance > 50%) to the different studies of the Immune Signatures Data 
Resource. The auROC was used to assess the accuracy of the signatures. 
Significance was assessed by comparing the observed auROC against 
a background distribution generated from permuted high-response 
and low-response labels.

CITE-seq analysis
CITE-seq data consisting of pre-vaccination PBMC samples from 
healthy participants were downloaded from ref. 10. Cell type annota-
tions used in this analysis were the ‘high-resolution’ annotations from 
work by Kotliarov et. al., and are based on graph-based clustering 
using Seurat38 directly on a Euclidean distance matrix of surface pro-
tein expression. CITE-seq surface protein data were normalized and 
denoised using dsb R package39. UMAP embeddings40 were calculated 
using Seurat. Presto41 was used to generate a rank list of genes most 
specific to each cell type using 18,997 genes expressed in a minimum 
of 5 cells based on a one-cell type vs all other Wilcoxon tests, and gene 
set enrichment analysis of the predictive signature against this rank 
list was tested using the fgsea package42.

Comparison with viral/bacterial signatures
The bacterial/viral classifier was applied to the immune signature 
dataset by averaging the expression of the bacterial infection markers 
(HK3, TNIP1, GPAA1 and CTSB) and subtracting the average expression 
of the viral infection markers (IFI27, JUP and LAX1); a resulting score 
above or equal to 0 was considered more similar to bacterial infection, 
while a score below 0 was considered more similar to viral infection.

Statistical analysis
Association between categorical variables was assessed using Fisher’s 
exact test. Association between a categorical and a continuous variable 
was assessed using a Kruskal–Wallis and Wilcoxon rank-sum test. Asso-
ciation between continuous variables was assessed using a Spearman 
correlation and t-test. P values were adjusted for multiple testing using 
the Benjamini–Hochberg correction.

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this article.
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Data availability
All data used in this study are available from ImmuneSpace (www.
immunespace.org/is2.url).

Code availability
R code used to generate the figures presented in the paper can be found 
at ImmuneSpace.
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Extended Data Fig. 1 | Principal variance component analysis using pre-vaccination transcriptomic expression. All phenotypic variables were coded as 
categorical variables. The variance explained by each variable (x-axis) is indicated as the label at the top of each bar. 95% intervals of confidence were calculated by 
bootstrapping the samples (4000 bootstrap iterations). resid: residuals.
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Extended Data Fig. 2 | Identification of the pre-vaccination endotypes. (a) 
Gap statistic for different number of clusters (k). The 95% confidence interval 
were estimated by 100 Monte Carlo iterations. (b) Boxplot and barplot of age, sex 
and pre-vaccination antibody titers as a function of the inflammatory endotypes. 
For each boxplot, the vertical line indicates the median, the box indicates the 
interquartile range, and the whiskers indicate 1.5 times the interquartile range. 
(c) Lineplot showing the differences in expression of inflammatory pathways 
between 7 days before vaccination compared to just before vaccination. (d) 
Monocytes/dendritic cell markers expression in blood of pre-vaccinated 
individuals. PBMCs from 20 healthy participants profiled by CITE-seq10. 
The heatmap shows the average expression of monocyte and dendritic cell 

markers identified in bulk meta-analysis associated with the high inflammatory 
state, scale shown is the z-score of the gene across protein-based cell subsets. 
(e) Scatter plot showing inferred frequencies of immune cells estimate by 
CIBERSORT as a function of cell counts measured by flow cytometry (FCM) for 
three separate study. Linear fit (lines) is drawn for each study. (f ) Frequencies of 
immune cells, estimated by deconvolution, in the three pre-vaccination states. 
For each boxplot, the vertical line indicates the median, the box indicates the 
interquartile range, and the whiskers indicate 1.5 times the interquartile range. 
Wilcoxon rank-sum test between two endotypes: p-values less than 0.05 are 
flagged with one star (*), p-values less than 0.01 are flagged with 2 stars (**), and 
p-values less than 0.001 are flagged with three stars (***).
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Extended Data Fig. 3 | Pre-vaccination endotypes affect post-vaccination 
transcriptomic response. (a) Principal variance analysis with the inflammatory 
states. Canonical inflammatory genes (b), interferon-stimulated genes (c), and B 
cell markers (d) expression over time in the three inflammatory states. (e) Log2 
fold-change over pre-vaccination levels of B cell markers. For each boxplot, the 

vertical line indicates the median, the box indicates the interquartile range, and 
the whiskers indicate 1.5 times the interquartile range. Wilcoxon rank-sum test 
between two endotypes: p-values less than 0.05 are flagged with one star (*), 
p-values less than 0.01 are flagged with 2 stars (**), and p-values less than 0.001 
are flagged with three stars (***). (f ) Th2 cell markers over time.
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Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4 | Pre-vaccination endotypes predict antibody response 
to vaccines. (a) Association between the unsupervised pre-vaccination cluster 
and antibody response at day 28 for (right) Influenza inactivated vaccines and 
(left) other vaccines. For each boxplot, the vertical line indicates the median, 
the box indicates the interquartile range, and the whiskers indicate 1.5 times the 
interquartile range. Wilcoxon rank-sum test between two endotypes: p-values 
less than 0.05 are flagged with one star (*), p-values less than 0.01 are flagged 
with 2 stars (**), and p-values less than 0.001 are flagged with three stars (***). 
(B) Association between the unsupervised pre-vaccination cluster and antibody 
response at day 180 for the inactivated influenza vaccine (left) and day 84 yellow 
fever vaccine (right). For each boxplot, the vertical line indicates the median, 
the box indicates the interquartile range, and the whiskers indicate 1.5 times the 

interquartile range. (c) Association between the unsupervised pre-vaccination 
cluster and antibody response at day 28 for healthy adults aged 50 and above. 
For each boxplot, the vertical line indicates the median, the box indicates the 
interquartile range, and the whiskers indicate 1.5 times the interquartile range. 
(d) Accuracy of the supervised classifier to predict the antibody response 
groups per vaccine. Mean and 95% CI for auROC across the 10-folds for each 
vaccine separately. (e) Accuracy of supervised classifiers trained on a specific 
vaccine and tested on the same vaccine by cross-validation. The red line 
indicates the accuracy of the pan-vaccine classifier while the bar represents the 
95% CI calculated by 10-fold cross-validation. (f ) Venn diagram of the overlap 
of inflammatory genes and previously identified pre-vaccination signature of 
vaccine response.
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Extended Data Fig. 5 | PBMCs from 20 healthy participants profiled by CITE-seq. Subsets were identified based on surface protein expression (average dsb 
normalized protein expression within each cluster).
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Extended Data Fig. 6 | See next page for caption.
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Extended Data Fig. 6 | Upstream signaling molecules and transcription 
factors demarcate the pre-vaccination endotypes. (a) Scatter plot showing 
the discriminative power of NFκB- and Interferon-target genes for each of the 
vaccine in the ‘Immune Signatures Data Resource’. LogFC of the SLEA z-score of 
the two genesets between high vaccine responders and low vaccine responders 
is shown. (b) Overlap between the genes differentially expressed between the 

inflam.hi and inflam.lo endotypes and inflammatory signatures described in 
the literature. The significance of the overlap between ranked lists of genes was 
assessed by permutation. * indicate statistically significant overlap (permutation 
test: p ≤ 0.05) between the differentially expressed genes between the inflam.
hi and inflam.lo endotypes and previously described inflammatory signatures 
extracted from the literature.

http://www.nature.com/natureimmunology





	Pan-vaccine analysis reveals innate immune endotypes predictive of antibody responses to vaccination
	Results
	Heterogeneity of transcriptional profiles before vaccination
	Pre-vaccination endotypes of the immune system
	Immune cell frequencies vary between the endotypes
	Endotypes modulate the transcriptional response to vaccines
	Universal signatures predict vaccine antibody responses
	Cellular sources of the pre-vaccination endotypes

	Discussion
	Online content
	Fig. 1 Creation of a combined dataset of transcriptional responses to vaccination across diverse vaccine platforms and target pathogens.
	Fig. 2 Participants have distinct pre-vaccination transcriptomic profiles.
	Fig. 3 Kinetics of the vaccine response are dictated by the pre-vaccination endotypes.
	Fig. 4 Prediction of the antibody response by the pre-vaccination endotypes.
	Fig. 5 a, Pre-vaccination endotypes in single-cell RNA-sequencing uniform manifold approximation and projection (UMAP) of PBMCs from 20 healthy participants profiled by CITE-seq10 subsets were identified based on surface protein expression (average dsb no
	Fig. 6 Etiology of the pre-vaccination endotypes.
	Extended Data Fig. 1 Principal variance component analysis using pre-vaccination transcriptomic expression.
	Extended Data Fig. 2 Identification of the pre-vaccination endotypes.
	Extended Data Fig. 3 Pre-vaccination endotypes affect post-vaccination transcriptomic response.
	Extended Data Fig. 4 Pre-vaccination endotypes predict antibody response to vaccines.
	Extended Data Fig. 5 PBMCs from 20 healthy participants profiled by CITE-seq.
	Extended Data Fig. 6 Upstream signaling molecules and transcription factors demarcate the pre-vaccination endotypes.




