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Transcriptional atlas of the human immune 
response to 13 vaccines reveals a common 
predictor of vaccine-induced antibody 
responses

Thomas Hagan    1,2, Bram Gerritsen    3, Lewis E. Tomalin    4, Slim Fourati    5, 
Matthew P. Mulè6,7, Daniel G. Chawla    3, Dmitri Rychkov8, Evan Henrich9, 
Helen E. R. Miller9, Joann Diray-Arce10,11, Patrick Dunn    12, Audrey Lee13, The 
Human Immunology Project Consortium (HIPC)*, Ofer Levy    10,11,14, 
Raphael Gottardo    9,15,16, Minne M. Sarwal8, John S. Tsang6, 
Mayte Suárez-Fariñas4, Rafick-Pierre Sékaly5, Steven H. Kleinstein    3,25  and 
Bali Pulendran    13,25 

Systems vaccinology has defined molecular signatures and mechanisms 
of immunity to vaccination. However, comparative analysis of immunity 
to different vaccines is lacking. We integrated transcriptional data of 
over 3,000 samples, from 820 adults across 28 studies of 13 vaccines and 
analyzed vaccination-induced signatures of antibody responses. Most 
vaccines induced signatures of innate immunity and plasmablasts at days 
1 and 7, respectively, after vaccination. However, the yellow fever vaccine 
induced an early transient signature of T and B cell activation at day 1, 
followed by delayed antiviral/interferon and plasmablast signatures that 
peaked at days 7 and 14–21, respectively. Thus, there was no evidence for 
a ‘universal signature’ that predicted antibody response to all vaccines. 
However, accounting for the asynchronous nature of responses, we defined a 
time-adjusted signature that predicted antibody responses across vaccines. 
These results provide a transcriptional atlas of immunity to vaccination and 
define a common, time-adjusted signature of antibody responses.

Systems vaccinology uses high-throughput omics measurements 
together with systems-based analysis approaches to better under-
stand immune responses to vaccination1,2. The recent growth of this 
field, which began with initial studies of yellow fever3,4 and seasonal 
influenza5,6 vaccines, has rapidly expanded to include studies profiling 
responses to a range of vaccines and vaccine platforms, including those 
targeting diverse pathogens and age groups7–20. These studies have led 
to important discoveries such as the role for the nutrient sensor general 
control nonderepressible 2 (GCN2) in enhancing antigen presentation 

during responses to yellow fever vaccination21, as well as the impact of 
the gut microbiota in promoting antibody responses to inactivated 
influenza vaccination22,23. However, apart from a few studies8–10, thus 
far the vast majority have examined immune responses to a single vac-
cine, hindering the ability to contextualize the findings and understand 
how differences in vaccine formulations can impact immunogenicity.

Another important outcome of such studies has been the iden-
tification of early transcriptional signatures predictive of immune 
response quality such as subsequent antibody3,5,18 or antigen-specific 
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in the kinetics of immune responses. In particular, the live-attenuated 
yellow fever vaccine induces a unique transcriptional response, with 
a surprisingly early upregulation of B and T cell modules within a day 
of vaccination, and a delayed induction of innate responses, includ-
ing antiviral and interferon signaling, peaking at 10–14 d following 
vaccination. Furthermore, in an analysis of predictive signatures of 
antibody responses across vaccines, adjusting for time of peak expres-
sion enabled a gene module associated with plasma cells and immuno-
globulins to consistently predict antibody responses across vaccines, 
demonstrating the importance of accounting for immune response 
kinetics in the development of universal predictors of response quality. 
Together, these findings highlight the spectrum of immune responses 
across vaccines and serve as a basis for future studies to understand 
the mechanisms underlying variation in immune responses across 
vaccines and inform future vaccine development.

Results
An integrated database of transcriptional responses to 
vaccination
As part of an effort to enable comparative studies and benchmarking 
of human vaccine responses, we curated a database of transcriptomic 

T cell3,7,14 responses. These findings may enable more rapid and per-
sonalized evaluation of vaccine efficacy and development of improved 
next-generation vaccines. Yet again, a current limitation is that the 
identified predictive signatures thus far have been described in the 
context of responses to a single vaccine, and the extent to which pre-
dictors of immune response quality are conserved across vaccines is 
unclear24,25. We previously sought to address the question of whether 
there was a ‘universal signature’ that could be used to predict antibody 
responses to any vaccine by analyzing the transcriptional response 
to five different human vaccines. Our analysis revealed distinct tran-
scriptional signatures of antibody responses to different classes of 
vaccines, and provided key insights into primary viral, protein recall 
and anti-polysaccharide responses8, yet failed to identify a universal 
signature of vaccination.

Here we leverage the Immune Signatures Data Resource26, a 
curated database of publicly available datasets containing transcrip-
tional and immune response profiling of peripheral blood following 
vaccination in humans, to perform a comparative analysis of transcrip-
tional responses from 820 healthy young adults across 13 different vac-
cines. We find that while a common transcriptional program is shared 
across many vaccines, there is considerable heterogeneity especially 

H
IP

C
 c

en
te

rs
 &

si
gn

at
ur

es
 p

ro
je

ct

Immune Signatures
Data Resource 

Immune space

HIPC data standards
Analysis

a b

c

Pr
op

or
tio

n 
va

ria
nc

e 
ex

pl
ai

ne
d

0

0.2

0.4

0.6

0.8

1.0

Age

Tim
ep

oin
t

Vac
cin

e

Ethn
icit

y
Sex

Res
idu

al

d

0

200

400

600

800

–7 0 0.17 0.25 0.5 1 2 3 4 5 6 7 8 9 10 13 14 21 >21
Day after vaccination

N
o.

 o
f s

am
pl

es

Vaccine
Ebola (RVV)
Hepatitis A/B (IN/RP)
HIV (RVV)

Influenza (IN)
Influenza (LV)
Malaria (RP)

Meningococcus (CJ)
Meningococcus (PS)
Pneumococcus (PS)

Smallpox (LV)
Tuberculosis (RVV)
Varicella zoster (LV)

Yellow fever (LV)

20

30

40

50

Ebo
la 

(R
VV)

Hep
ati

tis 
A/B (IN

/RP)

HIV (R
VV)

Inf
lue

nz
a (

IN)

Inf
lue

nz
a (

LV
)

Mala
ria

 (R
P)

Men
ing

oc
oc

cu
s (

CJ)

Men
ing

oc
oc

cu
s (

PS)

Pne
um

oc
oc

cu
s (

PS)

Smallp
ox

 (L
V)

Tub
erc

ulo
sis

 (R
VV)

Vari
ce

lla 
zo

ste
r (L

V)

Yello
w fe

ve
r (L

V)

Ag
e 

(y
ea

rs
)

Vaccine
Ebola (RVV)
Hepatitis A/B (IN/RP)
HIV (RVV)

Influenza (IN)
Influenza (LV)
Malaria (RP)

Meningococcus (CJ)
Meningococcus (PS)
Pneumococcus (PS)

Smallpox (LV)
Tuberculosis (RVV)
Varicella zoster (LV)

Sex Female
Male

Yellow fever (LV)

Fig. 1 | An integrated database of transcriptional responses to vaccination.  
a, Workflow for collection, curation and standardization of datasets in the 
Immune Signatures Data Resource. b, Histogram of the number of samples 
included per vaccine at each time point. Day 0 represents day of vaccination. 
c, Age distribution of participants in the Immune Signatures Data Resource by 
vaccine. The shape of points denotes the participant’s inferred sex based on 
Y-chromosome-specific gene expression. For participants with missing age data, 
ages were estimated using RAPToR43. For the boxplot, the center line represents 
the median, box limits represent upper and lower quartiles, and whiskers indicate 

1.5 times the interquartile range. Ebola (RVV), n = 13; hepatitis A/B (IN/RP), n = 26; 
HIV (RVV), n = 10; influenza (IN), n = 496; influenza (LA), n = 28; malaria (RP), n = 44; 
meningococcus (CJ), n = 19; meningococcus (PS), n = 14; pneumococcus (PS), 
n = 12; smallpox (LA), n = 8; tuberculosis (RVV), n = 12; varicella zoster (LA), n = 31; 
yellow fever (LA), n = 107. d, Bar plot representing the proportion of variance in 
post-vaccination transcriptional responses that can be attributed to clinical (age, 
sex, ethnicity) and experimental (time after vaccination, vaccine) variables via 
principal variance component analysis. The residual represents the proportion of 
the variance that could not be explained by any of the included variables.
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responses of 820 healthy adults (18–50 years old) across 13 different 
vaccines from previously published datasets. These datasets were 
compiled into ImmPort, a National Institutes of Health (NIH)-funded 
repository for immunological data27, and uploaded to ImmuneSpace 
(https://www.immunespace.org/) for centralized quality control (QC) 
and processing (Fig. 1a). This combined database, named the Immune 
Signatures Data Resource26, includes responses to a broad range of 
vaccines, including live viruses (for example, yellow fever, smallpox 
and influenza vaccines), recombinant viral vectors (for example, Ebola 
and HIV vaccines), inactivated viruses (for example, seasonal influenza 
vaccine), glycoconjugate vaccines (for example, pneumococcal and 
meningococcal vaccines; Table 1 and Supplementary Table 1). It also 
contains samples spanning multiple response time points, ranging 
from a few hours to more than 3 weeks after vaccination (Fig. 1b). 
Included participants in our initial analysis were restricted to 18–50 
years old, and there were similar age and sex distributions across 
vaccines (Fig. 1c). For analysis, all post-vaccination samples were 
normalized by pairwise fold-change calculation with their matched 
pre-vaccination samples. Principal variance component analysis28 
revealed that demographic features such as age and sex had rela-
tively small contributions to variation in responses. In contrast, the 
post-vaccination time point of the sample explained 15% of the vari-
ance in the data, suggesting that there are shared kinetics of immune 
responses across vaccines (Fig. 1d).

Common and unique transcriptional responses across 
vaccines
To examine the overlap in responses across vaccines, we identi-
fied differentially expressed genes after vaccination relative to the 
pre-vaccination baseline as well as differential expression of blood 
transcriptional modules (BTMs), a set of gene modules developed 
through large-scale network integration of publicly available human 
blood transcriptomes10. There was much less overlap at a gene level 
(Extended Data Fig. 1a) than at a module level (Extended Data Fig. 1b), 
where a majority of differentially expressed modules were shared across 
four or more vaccines. Based on temporal expression patterns, the 
most commonly induced modules clustered into four groups (Fig. 2a). 
Cluster 1, upregulated at days 1 and 3 after vaccination, represented 
BTMs related to innate responses and included modules associated 

with Toll-like receptor (TLR) and inflammatory signaling, antigen 
presentation and monocyte signatures. Cluster 2 contained multiple 
natural killer cell modules and was significantly downregulated on day 
1 (Extended Data Fig. 1c). Finally, clusters 3 and 4 generally peaked in 
activity on day 7 and reflected plasma cell and cell cycle signatures, 
respectively, corresponding with expansion of antibody-producing 
plasmablasts. The ‘innate’ cluster 1 was most prominently induced 
in vaccines containing a live viral vector (Ebola, HIV), or an adjuvant 
(malaria; Fig. 2b). Meanwhile, the plasma cell signature in cluster 3 was 
strongly increased in the polysaccharide pneumococcal vaccine and 
the conjugate meningococcal vaccine (Fig. 2c).

We next analyzed how differentially expressed modules were 
shared across vaccine responses (Fig. 3). In agreement with the previ-
ous analysis of common responses (Fig. 2), the response to most vac-
cines on days 1 (Fig. 3a) and 7 (Fig. 3c) reflected innate and plasma cell/
cell cycle responses, respectively, while the day 3 response (Fig. 3b) 
appeared as an intermediate between these states, with both innate 
and cell cycle signatures present. However, such responses were not 
universally shared across all of the vaccines. In particular, the early 
innate and antiviral responses common to most vaccines on day 1 were 
not observed in the varicella zoster and yellow fever vaccine responses. 
While these signatures appeared at later time points (days 3 and 7) in 
yellow fever vaccine responses, they were not observed at all following 
varicella zoster viral vaccine. Additionally, the day 7 cell cycle signature 
was not observed following smallpox, varicella zoster and polysaccha-
ride meningococcal vaccines. Notably, this signature was observed in 
the case of the meningococcal conjugate vaccine, where the bacterial 
polysaccharides have been conjugated to a diphtheria toxoid protein to 
induce memory and helper T cell responses29. Since diphtheria toxoid 
protein is used in other vaccines such as the Haemophilus influenzae 
type B vaccine30, the cell cycle signature observed at day 7 likely reflects 
the plasmablast response of the recall response to diphtheria toxoid, 
consistent with our previous study10.

Early adaptive and delayed innate signatures of yellow fever 
vaccine
At the gene level, responses were highly correlated across most vac-
cines on day 1 after vaccination (Fig. 4a) but became more divergent at 
later time points (Extended Data Fig. 2a,b). On day 1, Ebola, inactivated 
influenza, HIV and malaria vaccines exhibited the strongest similarity 
(Fig. 4a and Extended Data Fig. 2c). However, the yellow fever vac-
cine YF-17D induced a very distinct response that had little or even 
negative correlation with responses to all other vaccines, including 
other live viral vaccines such as varicella zoster virus, HIV and Ebola 
(Fig. 4a and Extended Data Fig. 2d). The innate pathways that were 
upregulated in other vaccine responses were, in fact, downregulated 
in response to yellow fever vaccine on day 1 (Fig. 4b). Instead, YF-17D 
induced early expression of multiple B and T cell modules. Analysis 
using the xCell deconvolution algorithm31 detected an increase in 
estimated frequencies of total B cells (Extended Data Fig. 2e,f), sug-
gesting that this signature may reflect an induction of adaptive cells 
into the periphery.

Another surprising feature of the yellow fever vaccine response 
was the relatively late expression of antiviral and interferon pathways, 
whose expression started to be observed on day 3 and peaks on day 7 
(Fig. 4c,d). While these modules were also upregulated at this time 
point in Ebola vaccine responses, their expression waned rapidly fol-
lowing a robust early induction at day 1. Some of the genes in these 
pathways that were strongly upregulated on day 1 in response to most 
vaccines, such as CXCL10 and OAS1, were upregulated as late as 21 d 
after vaccination with YF-17D (Fig. 4e). Importantly, both the early 
adaptive and delayed innate responses were consistent across multiple 
studies from diverse geographical locations (Extended Data Fig. 2g,h). 
Together, these results highlight the unique kinetics of transcriptional 
responses to yellow fever vaccine relative to other vaccines.

Table 1 | Table of included vaccines

Vaccine Pathogen Vaccine type Adjuvant/vector

rVSV-ZEBOV Ebola RVV VSV

Hepatitis A/B 
vaccinea

Hepatitis A/B IN/RP None

MRKAd5/HIV HIV RVV Adenovirus

Influenza vaccine Influenza IN None

Influenza vaccine live Influenza LV Live-attenuated 
influenza virus

RTS,S Malaria RP AS01/AS02

MCV4 Meningococcus CJ None

MPSV4 Meningococcus PS None

PPSV-23 Pneumococcus PS None

Smallpox vaccine Smallpox LV Vaccinia virus

MVA85A Tuberculosis RVV Vaccinia virus

Zoster vaccine live Varicella zoster LV Varicella zoster 
virus

Yellow fever vaccine Yellow fever LV Yellow fever 17D

CJ, conjugate; IN, inactivated; LV, live virus; PS, polysaccharide; RP, recombinant protein; RVV, 
recombinant viral vector; VSV, vesicular stomatitis virus. aParticipants receiving hepatitis A/B 
vaccine also received tetanus/diphtheria and cholera vaccines at the same time.
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Impact of preexisting immunity on transcriptional responses 
to vaccination
One possible contributor to the unique kinetics of responses to the yel-
low fever vaccine is that of the studies included in the data resource; all 
participants were naïve to yellow fever and the vaccine was inducing a 

primary response. This is in contrast to other vaccines such as influenza 
and varicella zoster that elicit a recall response in the adult populations 
studied. However, it is difficult to evaluate the impact of preexisting 
immunity and compare primary and recall responses across vaccines 
because of intrinsic differences in the nature of these vaccines as well 
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Fig. 2 | Common and unique transcriptional responses across different 
vaccines. a, Heat map of common differentially expressed modules (regulated in 
7 or more vaccines) over time (asterisks denote false discovery rate (FDR) < 0.05). 
Color represents the QuSAGE activity score. Clustering on columns was 
performed separately for days 1, 3, 7, 14 and 21 after vaccination. Clusters 1, 2, 3 

and 4 are indicated by the blue, yellow, pink and green vertical bars to the left 
of the heat map. TBA, to be annotated. b, Kinetics of the mean FC of cluster 1 
modules across vaccines. c, Kinetics of the mean FC of cluster 3 modules across 
vaccines. DCs, dendritic cells; FC, fold change; MHC, major histocompatibility 
complex; NK, natural killer.
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as other factors such as the vaccine platform and type of pathogen that 
also affect the nature and kinetics of immune response and confound 
such an analysis.

To address this, we therefore performed a vaccine-specific analysis 
using all inactivated influenza studies. The inactivated influenza vac-
cine was ideal for this analysis as there are a large number of such stud-
ies in the data resource, and there is substantial heterogeneity in the 
amount of preexisting immunity and previous exposure to influenza 
across the population. We used pre-vaccination antibody levels as a 
marker of preexisting immunity and defined ‘high’ and ‘low’ baseline 
antibody participants as the top and bottom 30% of participants in 
each study based on baseline geometric mean antibody titer. Increased 
levels of preexisting antibodies resulted in diminished induction of 
interferon (Extended Data Fig. 3a,c) and plasma cell (Extended Data 
Fig. 3b,d) signatures on days 1 and 7, respectively, but did not appear 
to impact the kinetics of these responses (Extended Data Fig. 3e,f). 
One possible explanation for this effect is that increased amounts of 
preexisting antibodies may bind antigen from the vaccine, thereby 
reducing the amount available to be processed and presented by innate 
cells and lowering the vaccine ‘take’.

Time-adjusted transcriptional predictors of antibody 
responses
A key goal of systems vaccinology is to identify early signatures pre-
dictive of subsequent protection from infection. Antibody titers have 
been established as a reliable correlate of protection against many 
pathogens32 and previous studies have identified transcriptional sig-
natures predictive of antibody responses to several vaccines, including 
inactivated influenza6,11,18,33,34, yellow fever3 and hepatitis B12. However, 
these signatures have thus far been developed for single vaccines, and 
it remains to be seen whether a ‘universal signature’ exists that can 
predict antibody responses across vaccines. Our curated data resource 
is uniquely suited to address this question, as ten of the encompassed 
vaccines had at least one dataset with antibody titer measurements 
before and ~1 month after vaccination (Extended Data Fig. 4a). As there 
was substantial variability in antibody responses across vaccines, we 
defined ‘high’ and ‘low’ responders on a per dataset basis as the top and 
bottom 30% of participants according to antibody titer fold changes. 
We then used an elastic-net machine learning algorithm to develop 
classifiers capable of distinguishing between high and low responders 
based on early transcriptional signatures (Methods).

As an initial approach, we wanted to examine whether a model 
trained using responses to a single vaccine could reliably predict 
responses to other vaccines. We therefore first built models using all 
15 inactivated influenza vaccine datasets (the vaccine for which there 
was the largest number of samples) in a leave-one-study-out training/
testing configuration. As validation that our model could predict 
responses within the same vaccine, classifiers trained using fold-change 
expression data at day 7 were able to predict high-versus-low antibody 
response in the left-out influenza dataset, with areas under the receiver 
operating characteristic (ROC) curve (AUCs), a measure of classifica-
tion performance taking into account both true positive and false 
positive rates, ranging between 0.55 and 0.9 (Fig. 5a). The modules in 
these classifiers were primarily associated with cell cycle and plasma 
cell modules (Extended Data Fig. 4b). These results are consistent with 

previous work showing that classifiers built using similar pathways 
are predictive of antibody responses to influenza vaccination across 
multiple seasons18. However, when we examined their performance 
in other vaccines, they were not reliably predictive (Extended Data  
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Fig. 4c). Moreover, the expression of modules associated with antibody 
response to inactivated influenza vaccination at day 7 was not generally 
correlated with antibody responses across vaccines (Fig. 5b).

We then asked whether training across multiple vaccines would 
improve the universality of the identified signatures. Neither a 
leave-one-vaccine-out approach, nor a tenfold cross-validation 
approach combining all datasets, was able to identify signatures on 
day 3 or day 7 after vaccination that could accurately discriminate high 
versus low responders across all vaccines (Extended Data Fig. 4d,e). 
However, analysis of the predictive power of specific modules over 
time, such as M156.1, one of the plasma cell modules associated with 
response in influenza vaccination on day 7, revealed that this module 
was predictive of response across many vaccines but at different time 
points (Fig. 5c). While many vaccines saw a strong association between 
M156.1 on day 7 and subsequent antibody response, in certain vac-
cines such as yellow fever and smallpox, expression of the module 
was not associated with response until much later, at days 10–14 and 
21, respectively, consistent with the delayed kinetics of this BTM with 
these vaccines (Fig. 2).

These results suggest that differential kinetics of immune 
responses across vaccines pose a confounding variable in the iden-
tification of universal predictive signatures of response at a single 
time point, but that using vaccine-specific time points dictated by the 
particular kinetics of immune responses for identification of predic-
tive biomarkers of vaccine responses may improve the universality of 
such signatures. To test this hypothesis in the context of the plasma 
cell signature, we identified the time point at which expression of the 
plasma cell module M156.1 peaked in response to each vaccine (Fig. 2c). 
We then trained a logistic regression classifier with M156.1 expression as 
an input in a tenfold cross-validation approach using fold-change data 
at the peak M156.1 expression time point for each vaccine. Indeed, using 
M156.1 peak expression time points improved the overall performance 
of the classifier compared with using a single time point (day 7) for all 
of the vaccines (Fig. 5d). This improvement was driven by increases in 
response prediction among vaccines in which the plasma cell signa-
ture peaked at time points other than day 7, such as the yellow fever 
and smallpox vaccines (Fig. 5e). Thus, expression of the plasma cell 
module M156.1 acts as a time-variable universal signature of antibody 
responses to vaccination.

Impact of aging on transcriptional responses to vaccination
The impairment of vaccine efficacy with age is a major challenge for 
vaccine development and public health. Although declining vaccine 
efficacy can broadly be attributed to effects of immunosenescence 
such as loss and dysfunction of naïve T cells35, diminished class-switch 
capability of B cells36 and decreased TLR function among innate cells37,38, 
the molecular mechanisms responsible for impaired vaccine responses 
among older adults are not yet fully understood. While most of the 
curated datasets in the Human Immunology Project Consortium (HIPC) 
resource contained only young adult participants, some studies, includ-
ing those of inactivated influenza18, varicella zoster13 and hepatitis B12 
vaccines, profiled responses of both young (≤50 years) and older (≥60 
years) vaccinees. As expected, post-vaccination antibody responses 
were diminished in older compared to younger participants across 
all three vaccines (Fig. 6a).

We sought to examine for the effect of aging on immune responses 
across vaccines by comparing BTM activity scores of the most com-
monly induced BTMs (Fig. 2a) between young and older participants 
across all three vaccines at each time point. Broadly, transcriptional 
responses to the three vaccines were similar between the two age 
groups (Extended Data Fig. 5a). However, there were significant 
age-associated differences in several pathways in response to inacti-
vated influenza vaccination, including decreased expression of inter-
feron and other innate immune modules in older compared to young 
participants early after vaccination (Fig. 6b,c), consistent with previ-
ous findings18. Despite these differences, the power of the plasma cell 
signature to predict the antibody response was similar in both young 
and older individuals (Fig. 6d). These results suggest conservation in 
the pathways responsible for successful antibody production after 
vaccination, consistent with earlier findings for influenza vaccination20.

Discussion
The high degree of homology in the vaccine-induced signatures demon-
strates that diverse vaccines that differ widely in target pathogens and 
composition stimulate conserved immunological networks. Despite 
this homology, there was still substantial heterogeneity in both the mag-
nitude and kinetics of the induced responses across vaccines. The most 
distinct in this regard were responses to the yellow fever vaccine YF-17D, 
which displayed several unique features: (1) a delayed innate and antivi-
ral response that did not peak until days 3–7 after vaccination (Fig. 4d),  
(2) an early upregulation of B and T cell signatures at day 1 (Fig. 4b 
and Extended Data Fig. 2e) not observed in other vaccines until much 
later, and (3) a delay in cell cycle and plasma cell signatures typically 
associated with the expansion of antigen-specific antibody-secreting 
cells (Fig. 2a,b).

The observed temporal differences in the plasmablast signature 
likely reflects differences in the kinetics of the plasmablast response. 
This in turn will depend on a number of factors, such as immune 
memory caused by previous exposure to the vaccine or pathogen, 
the persistence and distribution of the vaccine in the body, as well as 
the nature of the innate signals triggered by the vaccine. Vaccines such 
as YF-17D that induce a primary immune response in individuals who 
have not previously been exposed to the vaccine or virus, will mount a 
delayed plasmablast response. Furthermore, because YF-17D consists 
of a live virus that causes an acute viral infection during which viral 
loads in the serum can be detected for a week or longer, the systemic 
and sustained presence of the virus may result in a more prolonged 
and robust plasmablast response. Finally, the triggering of multiple 
TLRs and innate receptors by YF-17D3,39 may result in potent activa-
tion of the innate immune system that results in a prolonged antibody 
response. Indeed, consistent with this notion, our previous work has 
shown that synthetic nanoparticles containing antigens plus ligands 
that signal through TLR4 and TLR7 induces synergistic increases in 
antigen-specific, neutralizing antibodies compared to immunization 
with nanoparticles containing antigens plus a single TLR ligand40.

Of note, yellow fever and other flaviviruses have a specific capabil-
ity to inhibit interferon signaling via multiple mechanisms, including 
suppression of JAK–STAT signaling41, which could potentially cause 
the observed delay in interferon responses following YF-17D vaccina-
tion. Interestingly, the vaccinia virus also has several mechanisms for 

Fig. 5 | Time-adjusted transcriptional predictors of antibody responses. a, 
AUC bar plot of antibody response prediction performance per dataset for the 
elastic-net classifier trained on inactivated influenza datasets only. Data are 
presented as mean values ± 95% confidence intervals (CIs). n = 2000 bootstrap 
replicates. b, Heat map of high-versus-low antibody responder difference 
across vaccines of modules differentially expressed (FDR < 0.05) between high 
and low antibody responders to inactivated influenza vaccination. c, Kinetics 
of the predictive power of M156.1 across vaccines. For each vaccine/time point 
combination, the AUC was computed based on difference in the geometric mean 

of the fold changes of the genes in the M156.1 between high and low responders 
(Methods). d, Weighted ROC curves for a logistic regression classifier using 
M156.1 expression either at day 7 in all vaccines (day 7) or at the vaccine-specific 
peak expression time point. FPR, false positive rate; TPR, true positive rate. e, Per-
vaccine AUC bar plot for a logistic regression classifier using M156.1 expression 
either at day 7 in all vaccines (yellow) or at the vaccine-specific peak expression 
time point (green indicates peak at day 7, and pink indicates peak at other time 
points). Data are presented as mean values ± 95% CIs. n = 2,000 bootstrap 
replicates.
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inhibition of interferon responses, including preventing activation of 
IRF-3 and NF-κB and dephosphorylation of STAT1/2 transcription fac-
tors42. Although early response data was not available, the smallpox 
vaccine containing vaccinia also induced some degree of delayed 
interferon response following vaccination (Fig. 4d).

While YF-17D demonstrated delayed induction of interferon sig-
natures, induction of B and T cell signatures at day 1 was much earlier 
than typically observed with other vaccines. This timing is most likely 
too early to represent an antigen-specific response but could reflect 
nonspecific activation or recruitment of naïve cells into the circulation. 
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Alternatively, these signatures could be a result of increased relative 
proportions of adaptive cells in the blood due to extravasation of 
innate cells into tissues at the site of injection. Further investigation at 
a cellular level is required to address these hypotheses and elucidate 

the mechanisms by which YF-17D exerts such unique early effects on 
the adaptive immune system.

Finally, our analysis of predictive signatures of antibody 
responses (Fig. 5) indicates that vaccine response kinetics play an 
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Fig. 6 | Impact of aging on transcriptional responses to vaccination. a, Box 
plots of day 30 antibody responses to vaccination in young (≤50 years) and 
older (≥60 years) participants across vaccines. The center line represents the 
median, box limits represent upper and lower quartiles, and whiskers indicate 
1.5 times the interquartile range. Hepatitis A/B (IN/RP)—young, n = 25; hepatitis 
A/B (IN/RP)—older, n = 135; influenza (IN)—young, n = 123; influenza (IN)—older, 
n = 175; varicella zoster (LA)—young, n = 16; varicella zoster (LA)—older, n = 19. 

b, Modules differentially expressed between young and older participants in 
response to inactivated influenza vaccination (QuSAGE FDR < 0.05). c, Network 
plot of module M75 on day 1 following inactivated influenza vaccination in young 
and older participants. Each edge represents a coexpression relationship, as 
described in Li et al.10; colors represent the day 1 log2 FC. d, Bar plot of the day 7 
AUC of module M156.1 across vaccines in young and older participants. Data are 
mean values ± 95% CIs. n = 2,000 bootstrap replicates.

http://www.nature.com/natureimmunology


Nature Immunology | Volume 23 | December 2022 | 1788–1798 1797

Resource https://doi.org/10.1038/s41590-022-01328-6

important role in determining such signatures. Here we have illus-
trated this principle for a single plasma cell transcriptional module; 
however, future analyses may enable detection of additional and more 
accurate signatures. We have previously proposed the concept of a 
‘vaccine chip’ that could measure defined biomarkers and be used to 
predict protective immune responses across vaccines25. We proposed 
that this chip would be designed to measure expression of a select 
set of genes or modules, subsets of which would predict a particular 
type of functional or protective immune response (for example, neu-
tralizing antibody titers, effector CD8+ T cell responses, frequency 
of polyfunctional T cells, response bias in TH1 versus TH2 subsets of 
helper T cells, and so on)25. The results of the present study pave the 
way for the development of a simple PCR assay (a ‘vaccine chip’) that 
can be used to monitor plasmablast signatures in vaccinees. Indeed, 
PCR-based assays are practical and widely deployable globally, as 
witnessed during the coronavirus disease 2019 pandemic. Thus, they 
are likely to be of greater practical value than a fluorescence-activated 
cell sorting-based assay, involving multicolor fluorescence-activated 
cell sorting analysis to define plasmablast signatures, as such an assay 
may be too complex to set up in the field. The concept of time-adjusted 
signatures based on vaccine-specific response kinetics will be useful 
in the development of future signatures. In practice, small phase I/II 
trials could be used to define response kinetics and enable the suc-
cessful application of a ‘vaccine chip’ to predict immune responses 
in subsequent trials.

Due to the considerable costs needed to perform a clinical trial of 
sufficient size, such vaccine studies are rarely performed with more 
than one vaccine. Here, we have demonstrated that meta-analysis 
of vaccine trials can provide valuable insights into the common and 
unique aspects of immune responses across vaccines. These findings 
complement those of a companion manuscript by S.F., L.T., M.M., D.C., 
B.G., et al. describing a set of pre-vaccination transcriptional immune 
states within the same set of participants that influence responsiveness 
to vaccination. Combined with the Immune Signatures Data Resource26, 
these computational approaches and repositories will enable future 
research into the mechanisms of vaccine-induced immunity to inform 
development of improved adjuvants and vaccines.

Online content
Any methods, additional references, Nature Research reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author contri-
butions and competing interests; and statements of data and code avail-
ability are available at https://doi.org/10.1038/s41590-022-01328-6.
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Methods
Gene expression preprocessing
An extensive description of the preprocessing of microarray and 
RNA-sequencing (RNA-seq) datasets included in the Immune Signa-
tures Data Resource can be found in the associated paper26. The data-
set includes 2,949 samples from published studies and 228 samples 
not included in previously published studies. All these samples were 
assembled into a single resource. Briefly, raw probe intensity data for 
Affymetrix studies were background corrected and summarized using 
the RMA algorithm44. For studies using the Illumina array platform, 
background-corrected raw probe intensities were used. For RNA-seq 
studies, count data were transformed using voom45 to mimic the dis-
tribution of microarray expression intensities. Expression data within 
each study were quantile normalized and log transformed separately 
for each study.

Batch correction
An extensive description of the across-studies normalization used 
to correct for batch effects can be found in the Immune Signatures 
Data Resource paper26. Briefly, a linear model was fit using the 
pre-vaccination normalized gene expression as a dependent variable 
and platform, study and blood sample type (that is, whole blood or 
peripheral blood mononuclear cell) as independent variables. The 
estimated effect of the platform, study and sample type was then sub-
tracted from the entire gene expression (before and after vaccination) 
to obtain batch-corrected gene expression.

Identification of differentially expressed genes
To determine differentially expressed genes, P values were first com-
puted within each study using two-sided paired student’s t-tests. Next, 
Stouffer’s method was used to combine P values across studies via the 
sumz function in the metap R package46, with weighting according to 
the square root of the study sample size. Finally, combined P values 
were then adjusted for multiple testing using the Benjamini–Hochberg 
procedure. Similarly, average gene fold changes for each vaccine at 
each time point were computed by averaging across studies while using 
weighting equal to the study sample size.

Gene-set enrichment analysis
The enrichment analysis of BTMs was performed in two steps. First, for 
every study and time point, enrichment was calculated using QuSAGE47, 
providing as contrast ‘day X–day 0’, where X is the current time point, 
and also a ‘pairVector’ containing the subject identifiers so that a paired 
analysis would be performed. Second, to integrate the results from 
multiple studies of the same vaccine, we performed a meta-analysis for 
every vaccine plus time point combination, using the ‘combinePDFs’ 
function of QuSAGE.

Gene and module sharing analysis
The sharing number of a gene/module is computed as the maxi-
mum number of vaccines it is significantly differentially expressed 
(FDR < 0.05) in, irrespective of time point. For modules, the P values 
were calculated using QuSAGE47 (‘Gene-set enrichment analysis’). A null 
distribution for sharing was generated by performing 10,000 permuta-
tions of gene/module labels within each vaccine plus time point group.

Antibody titer measurements and identification of high and 
low responders
Depending on the study, antibody titers were measured by neutraliza-
tion assays, hemagglutination inhibition assay or IgG levels measured 
by ELISA26. Because some vaccines include multiple strains of viral 
antigens, the fold change in the antibody response metric was defined 
as the maximum fold change (MFC) of any strain in the vaccine at day 
28 (±7 d) compared to before vaccination. To minimize the difference 
in antibody response between studies (for example, due to different 

vaccines or different techniques used for antibody concentration 
assessment), the high and low responders were identified for each 
study separately by selecting the participants with an MFC equal or 
above the 70th percentile as high responders and participants with an 
MFC equal or below the 30th percentile as low responders.

Identification of predictive signatures of antibody responses
Four training/testing setups were used for identification of predictive 
signatures of antibody responses: (1) inactivated influenza datasets 
only, leave-one-study-out; (2) training on all inactivated influenza data-
sets, testing on other vaccines; (3) leave-one-vaccine-out (all datasets 
combined); and (4) tenfold cross-validation (all datasets combined). 
All models were trained using elastic-net logistic regression using the 
‘caret’ and ‘glmnet’ R packages. BTM enrichment scores were calculated 
for each sample using the single-sample gene-set enrichment analysis 
(ssGSEA) function and used as input features to the models, filtering 
for modules with a standard deviation > 75% quantile of the standard 
deviation. Models were fit using either the day 3 fold-change value or 
the day 7 fold-change value of the ssGSEA score separately. Tuning 
parameters and performance metrics were estimated using tenfold 
cross-validation. CIs were estimated using the ‘ci.auc’ function from 
the pROC R package.

When developing predictive models for the time point adjustment 
approach, logistic regression models were trained using ssGSEA score 
fold change for module M156.1, either at day 7 or at the time point 
of peak expression in a given vaccine. AUC CIs were estimated using 
linear mixed-effects models fitted with 100 Monte Carlo resamples. 
When computing AUCs across multiple vaccines, a weighted AUC was 
computed using sample size as the weights. For the analysis of temporal 
change in the predictive capability of M156.1 (Fig. 4c), a weighted mean 
AUC (based on number of samples in each study) was computed using 
the calculateROC function of MetaIntegrator R package based on the 
geometric mean of gene fold changes in the M156.1 module.

Statistics and reproducibility
ArrayQualityMetrics R package was used for QC of all microarray data. 
Outlier detection was based on the following statistics: (1) mean abso-
lute difference of M values (log-ratios) of each pair of arrays; (2) the 
Kolmogorov–Smirnov statistic Ka between each array’s signal intensity 
distribution and the distribution of the pooled data; and (3) the Hoef-
fding’s statistic Da on the joint distribution of A (average) and M values 
for each array. Samples that failed all three QC statistics were removed 
from further analysis. As this study only involved reanalysis of public 
datasets, no statistical method was used to predetermine sample size, 
experiments were not randomized and investigators were not blinded 
to allocation during experiments and outcome assessment.

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this article.

Data availability
All data used in this study are available from ImmuneSpace  
(https://www.immunespace.org/is2.url).

Code availability
R code used to generate the figures is available from ImmuneSpace.
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Extended Data Fig. 1 | Overlap in differentially expressed genes/modules 
and kinetics of common module clusters. a, b) Histograms of overlap in DEGs 
(A) or differentially expressed modules (B) between vaccines. A gene/module 
is shared with another vaccine if it is significantly (FDR < 0.05) regulated in the 
same direction, irrespective of timepoint. Blue bars, number of genesets shared 

(y-axis) between the same number of vaccines (x-axis). Grey bars represent the 
null distribution generated by n = 10,000 permutations of gene/module labels 
within vaccine + timepoint groups. Data are presented as mean values + /− 95% 
confidence interval. c) Kinetics of the mean FC of cluster 2 BTMs across vaccines. 
d) Kinetics of the mean FC of cluster 4 modules across vaccines.
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Extended Data Fig. 2 | See next page for caption.
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Extended Data Fig. 2 | Gene-level correlations between vaccines and 
estimated cell frequencies. a) Correlation matrix of pairwise Spearman 
correlations of Day 3 gene-level fold changes between vaccines. b) Correlation 
matrix of pairwise Spearman correlations of Day 7 gene-level fold changes 
between vaccines. c) Scatterplot of Day 1 gene FCs between HIV and Malaria 
vaccines. d) Scatterplot of Day 1 gene FCs between Yellow Fever and 
Pneumococcus vaccines. e) Boxplot of Day 1 FC in xCell31 estimated B cell 
frequencies across vaccines. Center line, median; box limits, upper and lower 
quartiles; whiskers, 1.5x interquartile range. Ebola (RVV): n = 11, HIV (RVV): 

n = 10, Influenza (IN): n = 298, Malaria (RP): n = 42, Pneumococcus (PS): n = 12, 
Varicella Zoster (LA): n = 31, Yellow Fever (LA): n = 11. f-g) Kinetics of the 
mean FC of modules (F) M47.0 and (G) M75 across YF vaccine studies. In C-D, 
correlation coefficient and p value determined via Pearson correlation. In E, 
statistical differences were determined via two-sided paired Student’s t-tests 
within each study and integrating p values across studies within each vaccine 
using Stouffer’s method (see Methods for further details). *p < 0.05, **p < 0.01, 
***p < 0.001, **** p < 0.0001.
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Extended Data Fig. 3 | Impact of pre-existing antibody levels on 
transcriptional responses to influenza vaccination. a) Differentially 
expressed modules at Day 1 (FDR < 0.05, t-test between mean fold changes) 
between participants with high and low baseline antibody titers (negative score 
indicates increased expression in the low baseline antibody group). Differentially 
expressed modules at Day 7 between high and low baseline antibody groups. c, 
d) Boxplots of (C) IFN signature module M75 expression at Day 1 and (D) plasma 
cell module M156.1 expression at Day 7 between high and low baseline antibody 
groups at Day 1. Center line, median; box limits, upper and lower quartiles; 
whiskers, 1.5x interquartile range. Day 1: SDY1276_D: High – n = 35, Low – n = 31; 
SDY1276_V: High – n = 31, Low – n = 31; SDY180: High – n = 4, Low – n = 4; SDY56: 

High – n = 4, Low – n = 7; SDY80: High – n = 14, Low – n = 14. Day 7: SDY1119: High 
– n = 6, Low – n = 6; SDY180: High – n = 4, Low – n = 4; SDY270: High – n = 10, Low 
– n = 9; SDY56: High – n = 4, Low – n = 7; SDY61: High – n = 3, Low – n = 3; SDY63: 
High – n = 3, Low – n = 4; SDY640: High – n = 6, Low – n = 4; SDY80: High – n = 13, 
Low – n = 13. e, f) Line graphs of (E) M75 and (F) M156.1 expression across time in 
high and low baseline antibody groups. Error bars represent standard error of 
the mean. Day 1: High – n = 88, Low – n = 87; Day 3: High – n = 83, Low – n = 88; Day 
7: High – n = 49, Low – n = 50; Day 14: High – n = 64, Low – n = 66; In C-F, statistical 
differences were determined via two-sided unpaired Student’s t-tests. *p < 0.05, 
**p < 0.01, ***p < 0.001.
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Extended Data Fig. 4 | Antibody response prediction across vaccines. a) 
Boxplots of Day 30 antibody responses to vaccination across vaccines. Center 
line, median; box limits, upper and lower quartiles; whiskers, 1.5x interquartile 
range. Hepatitis A/B (IN/RP): n = 25, Influenza (IN): n = 412, Influenza (LA): 
n = 28, Meningococcus (CJ): n = 17, Meningococcus (PS): n = 13, Pneumococcus 
(PS): n = 6, Smallpox (LA): n = 8, Tuberculosis (RVV): n = 12, Varicella Zoster 
(LA): n = 16, Yellow Fever (LA): n = 35. b) Barplot of feature importance for the 
GLM classifier trained on inactivated influenza datasets only. c) AUC barplot of 

antibody response prediction performance across vaccines for the GLM classifier 
trained on inactivated influenza datasets only. Data are presented as mean 
values + /- 95% confidence interval. n = 2000 bootstrap replicates. d) AUC barplot 
of antibody response prediction performance of the leave-one-vaccine-out 
GLM classifier. Data are presented as mean values + /- 95% confidence interval. 
n = 2000 bootstrap replicates. e) AUC barplot of antibody response prediction 
performance of the 10-fold cross-validation GLM classifier. Data are presented as 
mean values + /- 95% confidence interval. n = 2000 bootstrap replicates.
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Extended Data Fig. 5 | Comparison of common transcriptional responses between age groups. a) Scatterplots of module activity scores in each vaccine among 
young (x-axis) and older participants (y-axis) of the most commonly expressed modules (Fig. 2a) on days 1–7. Correlation coefficient and p value determined via 
Pearson correlation.
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