Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Targeting TFH cells in human diseases and vaccination: rationale and practice

Abstract

The identification of CD4+ T cells localizing to B cell follicles has revolutionized the knowledge of how humoral immunity is generated. Follicular helper T (TFH) cells support germinal center (GC) formation and regulate clonal selection and differentiation of memory and antibody-secreting B cells, thus controlling antibody affinity maturation and memory. TFH cells are essential in sustaining protective antibody responses necessary for pathogen clearance in infection and vaccine-mediated protection. Conversely, aberrant and excessive TFH cell responses mediate and sustain pathogenic antibodies to autoantigens, alloantigens, and allergens, facilitate lymphomagenesis, and even harbor viral reservoirs. TFH cell generation and function are determined by T cell antigen receptor (TCR), costimulation, and cytokine signals, together with specific metabolic and survival mechanisms. Such regulation is crucial to understanding disease pathogenesis and informing the development of emerging therapies for disease or novel approaches to boost vaccine efficacy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Elements of TFH function.
Fig. 2: Protective functions of TFH cells in infection, vaccination, and cancer.
Fig. 3: Pathogenic roles of TFH cells in human diseases.
Fig. 4: Targeting TFH cells’ critical regulatory pathways in disease therapy and vaccination.

Similar content being viewed by others

References

  1. Miller, J. F. & Mitchell, G. F. Cell to cell interaction in the immune response. I. Hemolysin-forming cells in neonatally thymectomized mice reconstituted with thymus or thoracic duct lymphocytes. J. Exp. Med. 128, 801–820 (1968).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ansel, K. M., McHeyzer-Williams, L. J., Ngo, V. N., McHeyzer-Williams, M. G. & Cyster, J. G. In vivo-activated CD4 T cells upregulate CXC chemokine receptor 5 and reprogram their response to lymphoid chemokines. J. Exp. Med. 190, 1123–1134 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Breitfeld, D. et al. Follicular B helper T cells express CXC chemokine receptor 5, localize to B cell follicles, and support immunoglobulin production. J. Exp. Med. 192, 1545–1552 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Schaerli, P. et al. CXC chemokine receptor 5 expression defines follicular homing T cells with B cell helper function. J. Exp. Med. 192, 1553–1562 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kim, C. H. et al. Subspecialization of CXCR5+ T cells: B helper activity is focused in a germinal center-localized subset of CXCR5+ T cells. J. Exp. Med. 193, 1373–1381 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Johnston, R. J. et al. Bcl6 and Blimp-1 are reciprocal and antagonistic regulators of T follicular helper cell differentiation. Science 325, 1006–1010 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Nurieva, R. I. et al. Bcl6 mediates the development of T follicular helper cells. Science 325, 1001–1005 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Yu, D. et al. The transcriptional repressor Bcl-6 directs T follicular helper cell lineage commitment. Immunity 31, 457–468 (2009).

    Article  CAS  PubMed  Google Scholar 

  9. Ueno, H., Banchereau, J. & Vinuesa, C. G. Pathophysiology of T follicular helper cells in humans and mice. Nat. Immunol. 16, 142–152 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Vinuesa, C. G., Linterman, M. A., Yu, D. & MacLennan, I. C. Follicular helper T cells. Annu. Rev. Immunol. 34, 335–368 (2016).

    Article  CAS  PubMed  Google Scholar 

  11. Crotty, S. T follicular helper cell biology: a decade of discovery and diseases. Immunity 50, 1132–1148 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lau, A. W. & Brink, R. Selection in the germinal center. Curr. Opin. Immunol. 63, 29–34 (2020).

    Article  CAS  PubMed  Google Scholar 

  13. Mintz, M. A. & Cyster, J. G. T follicular helper cells in germinal center B cell selection and lymphomagenesis. Immunol. Rev. 296, 48–61 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lee, S. K. et al. B cell priming for extrafollicular antibody responses requires Bcl-6 expression by T cells. J. Exp. Med. 208, 1377–1388 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wang, C., Hillsamer, P. & Kim, C. H. Phenotype, effector function, and tissue localization of PD-1-expressing human follicular helper T cell subsets. BMC Immunol. 12, 53 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Haynes, N. M. et al. Role of CXCR5 and CCR7 in follicular TH cell positioning and appearance of a programmed cell death gene-1high germinal center-associated subpopulation. J. Immunol. 179, 5099–5108 (2007).

    Article  CAS  PubMed  Google Scholar 

  17. Baumjohann, D. et al. Persistent antigen and germinal center B cells sustain T follicular helper cell responses and phenotype. Immunity 38, 596–605 (2013).

    Article  CAS  PubMed  Google Scholar 

  18. Tubo, N. J. et al. Single naive CD4+ T cells from a diverse repertoire produce different effector cell types during infection. Cell 153, 785–796 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Choi, Y. S. et al. ICOS receptor instructs T follicular helper cell versus effector cell differentiation via induction of the transcriptional repressor Bcl6. Immunity 34, 932–946 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Morita, R. et al. Human blood CXCR5+CD4+ T cells are counterparts of T follicular cells and contain specific subsets that differentially support antibody secretion. Immunity 34, 108–121 (2011). This study demonstrates that circulating TFH cells are very heterogeneous and comprise TFH1, TFH2, and TFH17 subsets, which show the features of TH1, TH2, and TH17, respectively.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. He, J. et al. Circulating precursor CCR7loPD-1hi CXCR5+ CD4+ T cells indicate TFH cell activity and promote antibody responses upon antigen reexposure. Immunity 39, 770–781 (2013).

    Article  CAS  PubMed  Google Scholar 

  22. Herati, R. S. et al. Successive annual influenza vaccination induces a recurrent oligoclonotypic memory response in circulating T follicular helper cells. Sci. Immunol. 2, eaag2152 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Ma, C. S. Human T follicular helper cells in primary immunodeficiency: quality just as important as quantity. J. Clin. Immunol. 36, 40–47 (2016).

    Article  CAS  PubMed  Google Scholar 

  24. Yao, Y. et al. Selenium–GPX4 axis protects follicular helper T cells from ferroptosis. Nat. Immunol. 22, 1127–1139 (2021). This study demonstrates that TFH cells are susceptible to ferroptosis and the mitigation of ferroptosis in TFH cells can enhance antibody responses in immunized mice and vaccinated humans.

    Article  CAS  PubMed  Google Scholar 

  25. Proietti, M. et al. ATP-gated ionotropic P2X7 receptor controls follicular T helper cell numbers in Peyer’s patches to promote host-microbiota mutualism. Immunity 41, 789–801 (2014).

    Article  CAS  PubMed  Google Scholar 

  26. Faliti, C. E. et al. P2X7 receptor restrains pathogenic TFH cell generation in systemic lupus erythematosus. J. Exp. Med. 216, 317–336 (2019).

  27. Chen, Z., Wang, N., Yao, Y. & Yu, D. Context-dependent regulation of follicular helper T cell survival. Trends Immunol. 43, 309–321 (2022).

    Article  CAS  PubMed  Google Scholar 

  28. Crotty, S. T follicular helper cell differentiation, function, and roles in disease. Immunity 41, 529–542 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Qi, H. T follicular helper cells in space-time. Nat. Rev. Immunol. 16, 612–625 (2016).

    Article  CAS  PubMed  Google Scholar 

  30. Kerfoot, S. M. et al. Germinal center B cell and T follicular helper cell development initiates in the interfollicular zone. Immunity 34, 947–960 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bentebibel, S. E., Schmitt, N., Banchereau, J. & Ueno, H. Human tonsil B-cell lymphoma 6 (BCL6)-expressing CD4+ T-cell subset specialized for B-cell help outside germinal centers. Proc. Natl Acad. Sci. USA 108, E488–E497 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ise, W. et al. Memory B cells contribute to rapid Bcl6 expression by memory follicular helper T cells. Proc. Natl Acad. Sci. USA 111, 11792–11797 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Asrir, A., Aloulou, M., Gador, M., Perals, C. & Fazilleau, N. Interconnected subsets of memory follicular helper T cells have different effector functions. Nat. Commun. 8, 847 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Ma, C. S. et al. Early commitment of naive human CD4+ T cells to the T follicular helper (TFH) cell lineage is induced by IL-12. Immunol. Cell Biol. 87, 590–600 (2009).

    Article  CAS  PubMed  Google Scholar 

  35. Luthje, K. et al. The development and fate of follicular helper T cells defined by an IL-21 reporter mouse. Nat. Immunol. 13, 491–498 (2012).

    Article  PubMed  CAS  Google Scholar 

  36. Weinstein, J. S. et al. TFH cells progressively differentiate to regulate the germinal center response. Nat. Immunol. 17, 1197–1205 (2016). This study demonstrates that, in a mouse model of infection, TFH cells progressively change cytokine production, suggesting a heterogenous pool of TFH cells with diverse functions in an immune response.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Xin, G. et al. Single-cell RNA sequencing unveils an IL-10-producing helper subset that sustains humoral immunity during persistent infection. Nat. Commun. 9, 5037 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Reinhardt, R. L., Liang, H. E. & Locksley, R. M. Cytokine-secreting follicular T cells shape the antibody repertoire. Nat. Immunol. 10, 385–393 (2009). This study demonstrates that TFH cells with different cytokines induce distinct types of antibody isotype class switching.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Gowthaman, U. et al. Identification of a T follicular helper cell subset that drives anaphylactic IgE. Science 365, eaaw6433 (2019). This study revealed a small population of TFH cells in both mice and humans that express IL-4 and IL-13. Such a TFH subset is required to produce high-affinity IgE and subsequent allergen-induced anaphylaxis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Canete, P. F. et al. Regulatory roles of IL-10-producing human follicular T cells. J. Exp. Med. 216, 1843–1856 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Yang, Z., Wu, C. M., Targ, S. & Allen, C. D. C. IL-21 is a broad negative regulator of IgE class switch recombination in mouse and human B cells. J. Exp. Med. 217, e20190472 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Tangye, S. G. & Ma, C. S. Regulation of the germinal center and humoral immunity by interleukin-21. J. Exp. Med. 217, e20191638 (2020).

    Article  PubMed  CAS  Google Scholar 

  43. Wang, Y. et al. Germinal-center development of memory B cells driven by IL-9 from follicular helper T cells. Nat. Immunol. 18, 921–930 (2017).

    Article  CAS  PubMed  Google Scholar 

  44. Takatsuka, S. et al. IL-9 receptor signaling in memory B cells regulates humoral recall responses. Nat. Immunol. 19, 1025–1034 (2018).

    Article  CAS  PubMed  Google Scholar 

  45. Duan, L. et al. Follicular dendritic cells restrict interleukin-4 availability in germinal centers and foster memory B cell generation. Immunity 54, 2256–2272 e2256 (2021).

    Article  CAS  PubMed  Google Scholar 

  46. Papa, I. et al. TFH-derived dopamine accelerates productive synapses in germinal centres. Nature 547, 318–323 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Dan, J. M. et al. Recurrent group A Streptococcus tonsillitis is an immunosusceptibility disease involving antibody deficiency and aberrant TFH cells. Sci. Transl. Med. 11, eaau3776 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Lu, K. T. et al. Functional and epigenetic studies reveal multistep differentiation and plasticity of in vitro-generated and in vivo-derived follicular T helper cells. Immunity 35, 622–632 (2011). This study demonstrates that TFH cells show a high degree of plasticity with positive epigenetic markers of key genes for non-TFH effector cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Choi, J. & Crotty, S. Bcl6-mediated transcriptional regulation of follicular helper T cells (TFH). Trends Immunol. 42, 336–349 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Jacobsen, J. T. et al. Expression of Foxp3 by T follicular helper cells in end-stage germinal centers. Science 373, eabe5146 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Tsuji, M. et al. Preferential generation of follicular B helper T cells from Foxp3+ T cells in gut Peyer’s patches. Science 323, 1488–1492 (2009).

    Article  CAS  PubMed  Google Scholar 

  52. Hirota, K. et al. Plasticity of TH17 cells in Peyer’s patches is responsible for the induction of T cell-dependent IgA responses. Nat. Immunol. 14, 372–379 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Fahey, L. M. et al. Viral persistence redirects CD4 T cell differentiation toward T follicular helper cells. J. Exp. Med. 208, 987–999 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Fazilleau, N., McHeyzer-Williams, L. J., Rosen, H. & McHeyzer-Williams, M. G. The function of follicular helper T cells is regulated by the strength of T cell antigen receptor binding. Nat. Immunol. 10, 375–384 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. DiToro, D. et al. Differential IL-2 expression defines developmental fates of follicular versus nonfollicular helper T cells. Science 361, eaao2933 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Krishnamoorthy, V. et al. The IRF4 gene regulatory module functions as a read-write integrator to dynamically coordinate T helper cell fate. Immunity 47, 481–497(2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Snook, J. P., Kim, C. & Williams, M. A. TCR signal strength controls the differentiation of CD4+ effector and memory T cells. Sci. Immunol. 3, eaas9103 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Harker, J. A., Lewis, G. M., Mack, L. & Zuniga, E. I. Late interleukin-6 escalates T follicular helper cell responses and controls a chronic viral infection. Science 334, 825–829 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Greczmiel, U. et al. Sustained T follicular helper cell response is essential for control of chronic viral infection. Sci. Immunol. 2, eaam8686 (2017).

    Article  PubMed  Google Scholar 

  60. Bai, X. et al. T follicular helper cells regulate humoral response for host protection against intestinal Citrobacter rodentium infection. J. Immunol. 204, 2754–2761 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Gong, F. et al. Peripheral CD4+ T cell subsets and antibody response in COVID-19 convalescent individuals. J. Clin. Invest. 130, 6588–6599 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Juno, J. A. et al. Humoral and circulating follicular helper T cell responses in recovered patients with COVID-19. Nat. Med. 26, 1428–1434 (2020).

    Article  CAS  PubMed  Google Scholar 

  63. Boppana, S. et al. SARS-CoV-2-specific circulating T follicular helper cells correlate with neutralizing antibodies and increase during early convalescence. PLoS Pathog. 17, e1009761 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Zhang, J. et al. Spike-specific circulating T follicular helper cell and cross-neutralizing antibody responses in COVID-19-convalescent individuals. Nat. Microbiol. 6, 51–58 (2021).

    Article  CAS  PubMed  Google Scholar 

  65. Kaneko, N. et al. Loss of Bcl-6-expressing T follicular helper cells and germinal centers in COVID-19. Cell 183, 143–157(2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Locci, M. et al. Human circulating PD-1+CXCR3CXCR5+ memory TFH cells are highly functional and correlate with broadly neutralizing HIV antibody responses. Immunity 39, 758–769 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Akkaya, M., Kwak, K. & Pierce, S. K. B cell memory: building two walls of protection against pathogens. Nat. Rev. Immunol. 20, 229–238 (2020).

    Article  CAS  PubMed  Google Scholar 

  68. McLane, L. M., Abdel-Hakeem, M. S. & Wherry, E. J. CD8 T cell exhaustion during chronic viral infection and cancer. Annu. Rev. Immunol. 37, 457–495 (2019).

    Article  CAS  PubMed  Google Scholar 

  69. Snell, L. M. et al. CD8+ T cell priming in established chronic viral infection preferentially directs differentiation of memory-like cells for sustained immunity. Immunity 49, 678–694 e675 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Yu, D. & Ye, L. A portrait of CXCR5+ follicular cytotoxic CD8+ T cells. Trends Immunol. 39, 965–979 (2018).

    Article  CAS  PubMed  Google Scholar 

  71. Utzschneider, D. T. et al. Early precursor T cells establish and propagate T cell exhaustion in chronic infection. Nat. Immunol. 21, 1256–1266 (2020).

    Article  CAS  PubMed  Google Scholar 

  72. Kato, L. M., Kawamoto, S., Maruya, M. & Fagarasan, S. Gut TFH and IgA: key players for regulation of bacterial communities and immune homeostasis. Immunol. Cell Biol. 92, 49–56 (2014).

    Article  CAS  PubMed  Google Scholar 

  73. Kawamoto, S. et al. The inhibitory receptor PD-1 regulates IgA selection and bacterial composition in the gut. Science 336, 485–489 (2012).

    Article  CAS  PubMed  Google Scholar 

  74. Proietti, M. et al. ATP released by intestinal bacteria limits the generation of protective IgA against enteropathogens. Nat. Commun. 10, 250 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Bentebibel, S. E. et al. Induction of ICOS+CXCR3+CXCR5+ TH cells correlates with antibody responses to influenza vaccination. Sci. Transl. Med. 5, 176ra132 (2013). This study demonstrates that influenza vaccination predominantly induces the activation of TFH 1 cell immunity in healthy individuals. TFH 1 cells preferentially help memory B cells and their activity correlates with vaccine-induced humoral immunity.

    Article  CAS  Google Scholar 

  76. Koutsakos, M. et al. Circulating TFH cells, serological memory, and tissue compartmentalization shape human influenza-specific B cell immunity. Sci. Transl. Med. 10, eaan8405 (2018).

    Article  PubMed  CAS  Google Scholar 

  77. Lederer, K. et al. SARS-CoV-2 mRNA vaccines foster potent antigen-specific germinal center responses associated with neutralizing antibody generation. Immunity 53, 1281–1295 e1285 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Mudd, P. A. SARS-CoV-2 mRNA vaccination elicits a robust and persistent T follicular helper cell response in humans. Cell 185, 603–613 (2022). This study demonstrates that SARS-CoV-2 vaccines in healthy individuals induce robust and persistent activation of TFH cells in secondary lymphoid organs. Furthermore, the activity of TFH cells correlates with vaccine-specific GC response.

    Article  CAS  PubMed  Google Scholar 

  79. Kim, S. T. et al. Human extrafollicular CD4+ TH cells help memory B cells produce Igs. J. Immunol. 201, 1359–1372 (2018).

    Article  CAS  PubMed  Google Scholar 

  80. Ueno, H. TFH cell response in influenza vaccines in humans: what is visible and what is invisible. Curr. Opin. Immunol. 59, 9–14 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Turner, J. S. et al. SARS-CoV-2 mRNA vaccines induce persistent human germinal centre responses. Nature 596, 109–113 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Kim, W. et al. Germinal centre-driven maturation of B cell response to mRNA vaccination. Nature 604, 141–145 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Goodwin, K., Viboud, C. & Simonsen, L. Antibody response to influenza vaccination in the elderly: a quantitative review. Vaccine 24, 1159–1169 (2006).

    Article  CAS  PubMed  Google Scholar 

  84. Herati, R. S. et al. Vaccine-induced ICOS+CD38+ circulating TFH are sensitive biosensors of age-related changes in inflammatory pathways. Cell Rep. Med. 2, 100262 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Hill, D. L. et al. Impaired HA-specific T follicular helper cell and antibody responses to influenza vaccination are linked to inflammation in humans. eLife 10, e70554 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Deng, J. et al. The metabolic hormone leptin promotes the function of TFH cells and supports vaccine responses. Nat. Commun. 12, 3073 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Bindea, G. et al. Spatiotemporal dynamics of intratumoral immune cells reveal the immune landscape in human cancer. Immunity 39, 782–795 (2013). This study demonstrates that the infiltration of TFH cells in tumor microenvironments and their expression of CXCL13 and IL-21 are associated with better survival in multiple human cancers.

    Article  CAS  PubMed  Google Scholar 

  88. Noel, G. et al. Functional TH1-oriented T follicular helper cells that infiltrate human breast cancer promote effective adaptive immunity. J. Clin. Invest. 131, e139905 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Fridman, W. H. et al. B cells and tertiary lymphoid structures as determinants of tumour immune contexture and clinical outcome. Nat. Rev. Clin. Oncol. https://doi.org/10.1038/s41571-022-00619-z (2022).

    Article  PubMed  Google Scholar 

  90. Overacre-Delgoffe, A. E. et al. Microbiota-specific T follicular helper cells drive tertiary lymphoid structures and anti-tumor immunity against colorectal cancer. Immunity 54, 2812–2824(2021).

    Article  CAS  PubMed  Google Scholar 

  91. Cui, C. et al. Neoantigen-driven B cell and CD4 T follicular helper cell collaboration promotes anti-tumor CD8 T cell responses. Cell 184, 6101–6118 (2021). This study utilizes a mouse model to demonstrate that tumor-associated antigen-specific TFH cells produce IL-21 and support the function of effector CD8+ T cells to control tumor growth.

    Article  CAS  PubMed  Google Scholar 

  92. Ludwig, R. J. et al. Mechanisms of autoantibody-induced pathology. Front. Immunol. 8, 603 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Vinuesa, C. G., Sanz, I. & Cook, M. C. Dysregulation of germinal centres in autoimmune disease. Nat. Rev. Immunol. 9, 845–857 (2009).

    Article  CAS  PubMed  Google Scholar 

  94. Deng, J., Wei, Y., Fonseca, V. R., Graca, L. & Yu, D. T follicular helper cells and T follicular regulatory cells in rheumatic diseases. Nat. Rev. Rheumatol. 15, 475–490 (2019).

    Article  CAS  PubMed  Google Scholar 

  95. Odegard, J. M. et al. ICOS-dependent extrafollicular helper T cells elicit IgG production via IL-21 in systemic autoimmunity. J. Exp. Med. 205, 2873–2886 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Ols, M. L., Cullen, J. L., Turqueti-Neves, A., Giles, J. & Shlomchik, M. J. Dendritic cells regulate extrafollicular autoreactive B cells via T cells expressing Fas and Fas ligand. Immunity 45, 1052–1065 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Soni, C. et al. Plasmacytoid dendritic cells and type I interferon promote extrafollicular B cell responses to extracellular self-DNA. Immunity 52, 1022–1038 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Yu, D. et al. Roquin represses autoimmunity by limiting inducible T-cell co-stimulator messenger RNA. Nature 450, 299–303 (2007).

    Article  CAS  PubMed  Google Scholar 

  99. Linterman, M. A. et al. Roquin differentiates the specialized functions of duplicated T cell costimulatory receptor genes CD28 and ICOS. Immunity 30, 228–241 (2009).

    Article  CAS  PubMed  Google Scholar 

  100. Teng, F. et al. Gut microbiota drive autoimmune arthritis by promoting differentiation and migration of Peyer’s patch T follicular helper cells. Immunity 44, 875–888 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Forcade, E. et al. Circulating T follicular helper cells with increased function during chronic graft-versus-host disease. Blood 127, 2489–2497 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Deng, R. et al. Extrafollicular CD4+ T–B interactions are sufficient for inducing autoimmune-like chronic graft-versus-host disease. Nat. Commun. 8, 978 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Cano-Romero, F. L. et al. Longitudinal profile of circulating T follicular helper lymphocytes parallels anti-HLA sensitization in renal transplant recipients. Am. J. Transplant. 19, 89–97 (2019).

    Article  CAS  PubMed  Google Scholar 

  104. Mohammed, M. T. et al. Follicular T cells mediate donor-specific antibody and rejection after solid organ transplantation. Am. J. Transplant. 21, 1893–1901 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Agache, I. & Akdis, C. A. Precision medicine and phenotypes, endotypes, genotypes, regiotypes, and theratypes of allergic diseases. J. Clin. Invest. 129, 1493–1503 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Yao, Y., Chen, C. L., Yu, D. & Liu, Z. Roles of follicular helper and regulatory T cells in allergic diseases and allergen immunotherapy. Allergy 76, 456–470 (2021).

    Article  CAS  PubMed  Google Scholar 

  107. Kobayashi, T., Iijima, K., Dent, A. L. & Kita, H. Follicular helper T cells mediate IgE antibody response to airborne allergens. J. Allergy Clin. Immunol. 139, 300–313 e307 (2017).

    Article  CAS  PubMed  Google Scholar 

  108. Kamekura, R. et al. Alteration of circulating type 2 follicular helper T cells and regulatory B cells underlies the comorbid association of allergic rhinitis with bronchial asthma. Clin. Immunol. 158, 204–211 (2015).

    Article  CAS  PubMed  Google Scholar 

  109. Yao, Y. et al. Correlation of allergen-specific T follicular helper cell counts with specific IgE levels and efficacy of allergen immunotherapy. J. Allergy Clin. Immunol. 142, 321–324 e310 (2018).

    Article  CAS  PubMed  Google Scholar 

  110. Basso, K. & Dalla-Favera, R. Germinal centres and B cell lymphomagenesis. Nat. Rev. Immunol. 15, 172–184 (2015).

    Article  CAS  PubMed  Google Scholar 

  111. Ochando, J. & Braza, M. S. T follicular helper cells: a potential therapeutic target in follicular lymphoma. Oncotarget 8, 112116–112131 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Ellyard, J. I. et al. Heterozygosity for Roquinsan leads to angioimmunoblastic T-cell lymphoma-like tumors in mice. Blood 120, 812–821 (2012).

    Article  PubMed  Google Scholar 

  113. Witalis, M. et al. Progression of AITL-like tumors in mice is driven by TFH signature proteins and T–B cross talk. Blood Adv. 4, 868–879 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Vallois, D. et al. Activating mutations in genes related to TCR signaling in angioimmunoblastic and other follicular helper T-cell-derived lymphomas. Blood 128, 1490–1502 (2016).

    Article  CAS  PubMed  Google Scholar 

  115. Perreau, M. et al. Follicular helper T cells serve as the major CD4 T cell compartment for HIV-1 infection, replication, and production. J. Exp. Med. 210, 143–156 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Leong, Y. A., Atnerkar, A. & Yu, D. Human immunodeficiency virus playing hide-and-seek: understanding the TFH cell reservoir and proposing strategies to overcome the follicle sanctuary. Front. Immunol. 8, 622 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Deng, J. et al. Signal transducer and activator of transcription 3 hyperactivation associates with follicular helper T cell differentiation and disease activity in rheumatoid arthritis. Front. Immunol. 9, 1226 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Chavele, K. M., Merry, E. & Ehrenstein, M. R. Cutting edge: circulating plasmablasts induce the differentiation of human T follicular helper cells via IL-6 production. J. Immunol. 194, 2482–2485 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Globig, A. M. et al. Ustekinumab inhibits T follicular helper cell differentiation in patients with Crohn’s disease. Cell Mol. Gastroenterol. Hepatol. 11, 1–12 (2021).

    Article  CAS  PubMed  Google Scholar 

  120. Ballesteros-Tato, A. et al. Interleukin-2 inhibits germinal center formation by limiting T follicular helper cell differentiation. Immunity 36, 847–856 (2012). By investigating mouse models, this study demonstrates that IL-2 potently inhibits TFH cell differentiation in vivo, thus suggesting IL-2 as a therapeutic target for regulating TFH cell differentiation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Johnston, R. J., Choi, Y. S., Diamond, J. A., Yang, J. A. & Crotty, S. STAT5 is a potent negative regulator of TFH cell differentiation. J. Exp. Med. 209, 243–250 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Nurieva, R. I. et al. STAT5 protein negatively regulates T follicular helper (TFH) cell generation and function. J. Biol. Chem. 287, 11234–11239 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. He, J. et al. Low-dose interleukin-2 treatment selectively modulates CD4+ T cell subsets in patients with systemic lupus erythematosus. Nat. Med. 22, 991–993 (2016). By analyzing human samples from a clinical study, this research demonstrates that low-dose IL-2 therapy inhibits TFH and TH17 cells but expands TREG cells in patients with systemic lupus erythematosus.

    Article  CAS  PubMed  Google Scholar 

  124. Liang, K. et al. Sustained low-dose interleukin-2 therapy alleviates pathogenic humoral immunity via elevating the TFR/TFH ratio in lupus. Clin. Transl. Immunol. 10, e1293 (2021).

    Article  CAS  Google Scholar 

  125. Hao, H. et al. Conversion of T follicular helper cells to T follicular regulatory cells by interleukin-2 through transcriptional regulation in systemic lupus erythematosus. Arthritis Rheumatol. 73, 132–142 (2021).

    Article  CAS  PubMed  Google Scholar 

  126. Harb, H. & Chatila, T. A. Mechanisms of dupilumab. Clin. Exp. Allergy 50, 5–14 (2020).

    Article  CAS  PubMed  Google Scholar 

  127. Ebbo, M. et al. Comment on article: ‘Dupilumab as a novel steroid-sparing treatment for IgG4-related disease’ by Simpson et al. Ann. Rheum. Dis. 81, e26 (2022).

    Article  PubMed  Google Scholar 

  128. Spolski, R. & Leonard, W. J. Interleukin-21: a double-edged sword with therapeutic potential. Nat. Rev. Drug Discov. 13, 379–395 (2014).

    Article  CAS  PubMed  Google Scholar 

  129. von Herrath, M. et al. Anti-interleukin-21 antibody and liraglutide for the preservation of beta-cell function in adults with recent-onset type 1 diabetes: a randomised, double-blind, placebo-controlled, phase 2 trial. Lancet Diabetes Endocrinol. 9, 212–224 (2021).

    Article  Google Scholar 

  130. Denton, A. E. et al. Type I interferon induces CXCL13 to support ectopic germinal center formation. J. Exp. Med. 216, 621–637 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Klimatcheva, E. et al. CXCL13 antibody for the treatment of autoimmune disorders. BMC Immunol. 16, 6 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  132. Alameh, M. G. et al. Lipid nanoparticles enhance the efficacy of mRNA and protein subunit vaccines by inducing robust T follicular helper cell and humoral responses. Immunity 54, 2877–2892 e2877 (2021). This study utilizes mouse models to reveal that lipid nanoparticle formulation in SARS-CoV-2 vaccines has an intrinsic adjuvant activity to induce IL-6 and promote TFH cell differentiation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Cubas, R. A. et al. Inadequate T follicular cell help impairs B cell immunity during HIV infection. Nat. Med. 19, 494–499 (2013).

    Article  CAS  PubMed  Google Scholar 

  134. Obeng-Adjei, N. et al. Circulating TH1-cell-type TFH cells that exhibit impaired B cell help are preferentially activated during acute malaria in children. Cell Rep. 13, 425–439 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Ryg-Cornejo, V. et al. Severe malaria infections impair germinal center responses by inhibiting T follicular helper cell differentiation. Cell Rep. 14, 68–81 (2016).

    Article  CAS  PubMed  Google Scholar 

  136. Popescu, M., Cabrera-Martinez, B. & Winslow, G. M. TNF-alpha contributes to lymphoid tissue disorganization and germinal center B cell suppression during intracellular bacterial infection. J. Immunol. 203, 2415–2424 (2019).

    Article  CAS  PubMed  Google Scholar 

  137. Qureshi, O. S. et al. Trans-endocytosis of CD80 and CD86: a molecular basis for the cell-extrinsic function of CTLA-4. Science 332, 600–603 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Ovcinnikovs, V. et al. CTLA-4-mediated transendocytosis of costimulatory molecules primarily targets migratory dendritic cells. Sci. Immunol. 4, eaaw0902 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Wang, C. J. et al. CTLA-4 controls follicular helper T-cell differentiation by regulating the strength of CD28 engagement. Proc. Natl Acad. Sci. USA 112, 524–529 (2015). By investigating mouse models, this study demonstrates that TFH cell differentiation is regulated by CD28 signal strength and critically controlled by CTLA-4, thus suggesting CTLA-4 as a therapeutic target for regulating TFH cell differentiation.

    Article  CAS  PubMed  Google Scholar 

  140. Qi, H., Cannons, J. L., Klauschen, F., Schwartzberg, P. L. & Germain, R. N. SAP-controlled T–B cell interactions underlie germinal centre formation. Nature 455, 764–769 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Edner, N. M., Carlesso, G., Rush, J. S. & Walker, L. S. K. Targeting co-stimulatory molecules in autoimmune disease. Nat. Rev. Drug Discov. 19, 860–883 (2020).

    Article  CAS  PubMed  Google Scholar 

  142. Nicholson, S. M. et al. Effects of ICOS+ T cell depletion via afucosylated monoclonal antibody MEDI-570 on pregnant cynomolgus monkeys and the developing offspring. Reprod. Toxicol. 74, 116–133 (2017).

    Article  CAS  PubMed  Google Scholar 

  143. Chavez, J. C. A phase I study of anti-ICOS antibody MEDI-570 for relapsed/refractory (R/R) peripheral T-cell lymphoma (PTCL) and angioimmunoblastic T-cell lymphoma (AITL) (NCI-9930). Blood 136, 5–6 (2020).

    Article  Google Scholar 

  144. Vogel, K. U. et al. Roquin paralogs 1 and 2 redundantly repress the Icos and Ox40 costimulator mRNAs and control follicular helper T cell differentiation. Immunity 38, 655–668 (2013).

    Article  CAS  PubMed  Google Scholar 

  145. Tahiliani, V., Hutchinson, T. E., Abboud, G., Croft, M. & Salek-Ardakani, S. OX40 cooperates with ICOS to amplify follicular TH cell development and germinal center reactions during infection. J. Immunol. 198, 218–228 (2017).

    Article  CAS  PubMed  Google Scholar 

  146. Jacquemin, C. et al. OX40 ligand contributes to human lupus pathogenesis by promoting T follicular helper response. Immunity 42, 1159–1170 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Karnell, J. L. et al. A CD40L-targeting protein reduces autoantibodies and improves disease activity in patients with autoimmunity. Sci. Transl. Med. 11, eaar6584 (2019). Two early-phase clinical trials for CD40L antagonists (refs. 171,172) demonstrate that blocking CD40–CD40L interactions can suppress TFH cell help, reduce autoantibody production, and ameliorate inflammation in autoimmune diseases.

    Article  PubMed  CAS  Google Scholar 

  148. Visvanathan, S. et al. Effects of BI 655064, an antagonistic anti-CD40 antibody, on clinical and biomarker variables in patients with active rheumatoid arthritis: a randomised, double-blind, placebo-controlled, phase IIa study. Ann. Rheum. Dis. 78, 754–760 (2019).

    Article  CAS  PubMed  Google Scholar 

  149. Jardine, J. G. et al. HIV-1 broadly neutralizing antibody precursor B cells revealed by germline-targeting immunogen. Science 351, 1458–1463 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Lee, J. H. et al. Modulating the quantity of HIV Env-specific CD4 T cell help promotes rare B cell responses in germinal centers. J. Exp. Med. 218, e20201254 (2021). By investigating animal models, this study demonstrates that an increase in TFH cells can promote early recruitment of broadly neutralizing antibody precursor B cells to GCs, which would otherwise be limited by a low physiological frequency of such precursor B cells.

    Article  CAS  PubMed  Google Scholar 

  151. Tam, H. H. et al. Sustained antigen availability during germinal center initiation enhances antibody responses to vaccination. Proc. Natl Acad. Sci. USA 113, E6639–E6648 (2016). This study demonstrates that an exponentially increasing dosing of antigen is superior to bolus dosing in mounting TFH and GC responses by investigating animal models.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Lee, J. H. Long-lasting germinal center responses to a priming immunization with continuous proliferation and somatic mutation. Preprint at bioRxiv https://doi.org/10.1101/2021.12.20.473537 (2021).

  153. Pardi, N., Hogan, M. J., Porter, F. W. & Weissman, D. mRNA vaccines — a new era in vaccinology. Nat. Rev. Drug Discov. 17, 261–279 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Chi, H. Regulation and function of mTOR signalling in T cell fate decisions. Nat. Rev. Immunol. 12, 325–338 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Yang, J. et al. Critical roles of mTOR complex 1 and 2 for T follicular helper cell differentiation and germinal center responses. eLife 5, e17936 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  156. Zeng, H. et al. mTORC1 and mTORC2 kinase signaling and glucose metabolism drive follicular helper T cell differentiation. Immunity 45, 540–554 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Pilkinton, M. A. et al. Greater activation of peripheral T follicular helper cells following high dose influenza vaccine in older adults forecasts seroconversion. Vaccine 35, 329–336 (2017).

    Article  CAS  PubMed  Google Scholar 

  158. Li, Y. M. et al. Impact of immunosuppressive drugs on circulating TFH cells in kidney transplant recipients: a pilot study. Transpl. Immunol. 46, 1–7 (2018).

    Article  PubMed  CAS  Google Scholar 

  159. Fu, G. et al. Metabolic control of TFH cells and humoral immunity by phosphatidylethanolamine. Nature 595, 724–729 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Yin, X., Chen, S. & Eisenbarth, S. C. Dendritic cell regulation of T helper cells. Annu. Rev. Immunol. 39, 759–790 (2021).

    Article  CAS  PubMed  Google Scholar 

  161. Stebegg, M. et al. Rejuvenating conventional dendritic cells and T follicular helper cell formation after vaccination. eLife 9, e52473 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Hung, I. F. et al. Topical imiquimod before intradermal trivalent influenza vaccine for protection against heterologous non-vaccine and antigenically drifted viruses: a single-centre, double-blind, randomised, controlled phase 2b/3 trial. Lancet Infect. Dis. 16, 209–218 (2016).

    Article  CAS  PubMed  Google Scholar 

  163. Audia, S. et al. B cell depleting therapy regulates splenic and circulating T follicular helper cells in immune thrombocytopenia. J. Autoimmun. 77, 89–95 (2017).

    Article  CAS  PubMed  Google Scholar 

  164. Sage, P. T. & Sharpe, A. H. The multifaceted functions of follicular regulatory T cells. Curr. Opin. Immunol. 67, 68–74 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Fu, W. et al. Deficiency in T follicular regulatory cells promotes autoimmunity. J. Exp. Med. 215, 815–825 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Clement, R. L. et al. Follicular regulatory T cells control humoral and allergic immunity by restraining early B cell responses. Nat. Immunol. 20, 1360–1371 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Gonzalez-Figueroa, P. et al. Follicular regulatory T cells produce neuritin to regulate B cells. Cell 184, 1775–1789 (2021).

    Article  CAS  PubMed  Google Scholar 

  168. Maceiras, A. R. et al. T follicular helper and T follicular regulatory cells have different TCR specificity. Nat. Commun. 8, 15067 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  169. Ritvo, P. G. et al. High-resolution repertoire analysis reveals a major bystander activation of TFH and TFR cells. Proc. Natl Acad. Sci. USA 115, 9604–9609 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Botta, D. et al. Dynamic regulation of T follicular regulatory cell responses by interleukin 2 during influenza infection. Nat. Immunol. 18, 1249–1260 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Yao, Y. et al. Allergen immunotherapy improves defective follicular regulatory T cells in patients with allergic rhinitis. J. Allergy Clin. Immunol. 144, 118–128 (2019).

    Article  CAS  PubMed  Google Scholar 

  172. Leong, Y. A. et al. CXCR5+ follicular cytotoxic T cells control viral infection in B cell follicles. Nat. Immunol. 17, 1187–1196 (2016). This study demonstrates that CXCR5+TCF1+CD8+ T cells localizing proximally to B cell follicles play an essential role in controlling the infection in TFH cells. However, they display a memory rather than effector phenotype, which may contribute to establishing viral reservoirs in TFH cells.

    Article  CAS  PubMed  Google Scholar 

  173. Pampusch, M. S. et al. CAR/CXCR5-T cell immunotherapy is safe and potentially efficacious in promoting sustained remission of SIV infection. PLoS Pathog. 18, e1009831 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Longo, S. K., Guo, M. G., Ji, A. L. & Khavari, P. A. Integrating single-cell and spatial transcriptomics to elucidate intercellular tissue dynamics. Nat. Rev. Genet. 22, 627–644 (2021).

    Article  CAS  PubMed  Google Scholar 

  175. Yang, Y. et al. Dimensionality reduction by UMAP reinforces sample heterogeneity analysis in bulk transcriptomic data. Cell Rep. 36, 109442 (2021).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank members of the Yu group for constructive discussion and P.F. Canete for editing. D.Y. is supported by the Bellberry-Viertel Senior Medical Research Fellowship and Australian National Health and Medical Research Council grants (GNT2009554, GNT1147709, GNT1147769). L.S.K.W. is supported by a Wellcome Investigator Award (220772/Z/20/Z), the Medical Research Council (MR/N001435/1) and Diabetes UK (15/0005253). M.A.L is supported by funding from the Biotechnology and Biological Sciences Research Council (BBS/E/B/000C0407, BBS/E/B/000C0427) and is an EMBO Young Investigator and Lister Prize Fellow. This research was carried out at the Translational Research Institute, Woolloongabba, QLD 4102, Australia. The Translational Research Institute is supported by a grant from the Australian Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Di Yu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Immunology thanks Sidonia Fagarasan and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, D., Walker, L.S.K., Liu, Z. et al. Targeting TFH cells in human diseases and vaccination: rationale and practice. Nat Immunol 23, 1157–1168 (2022). https://doi.org/10.1038/s41590-022-01253-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41590-022-01253-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing