Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

pH sensing controls tissue inflammation by modulating cellular metabolism and endo-lysosomal function of immune cells

Abstract

Extracellular acidification occurs in inflamed tissue and the tumor microenvironment; however, a systematic study on how pH sensing contributes to tissue homeostasis is lacking. In the present study, we examine cell type-specific roles of the pH sensor G protein-coupled receptor 65 (GPR65) and its inflammatory disease-associated Ile231Leu-coding variant in inflammation control. GPR65 Ile231Leu knock-in mice are highly susceptible to both bacterial infection-induced and T cell-driven colitis. Mechanistically, GPR65 Ile231Leu elicits a cytokine imbalance through impaired helper type 17 T cell (TH17 cell) and TH22 cell differentiation and interleukin (IL)-22 production in association with altered cellular metabolism controlled through the cAMP–CREB–DGAT1 axis. In dendritic cells, GPR65 Ile231Leu elevates IL-12 and IL-23 release at acidic pH and alters endo-lysosomal fusion and degradation capacity, resulting in enhanced antigen presentation. The present study highlights GPR65 Ile231Leu as a multistep risk factor in intestinal inflammation and illuminates a mechanism by which pH sensing controls inflammatory circuits and tissue homeostasis.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: GPR65 Ile231Leu exacerbates bacterial infection-induced colitis.
Fig. 2: GPR65 Ile231Leu affects TH17 and TH22 cell polarization and pH-dependent release of IL-22.
Fig. 3: ScRNA-seq reveals cellular metabolism changes in Gpr65-null TH17 and TH22 cells.
Fig. 4: Fatty acid composition and TAG storage changes in Gpr65-null TH17 and TH22 cells.
Fig. 5: GPR65 Ile231Leu modulates TH17 cell differentiation through the cAMP–CREB–DGAT1 axis.
Fig. 6: GPR65 Ile231Leu promotes T cell-driven colitis with elevated inflammatory cytokine release.
Fig. 7: GPR65 Ile231Leu enhances antigen presentation in dendritic cells by influencing endo-lysosomal fusion and degradation capacity.

Data availability

The scRNA-seq data generated during the present study are available under Gene Expression Omnibus accession no. GSE182767. The reference mm10 mouse transcriptome was obtained from GENCODE: GCF_000001635.26. Source data are provided with this paper.

Code availability

Code used for the present study is available at https://gitlab.com/xavier-lab-computation/public/gpr65-scrnaseq.

References

  1. Wu, H. et al. T-cells produce acidic niches in lymph nodes to suppress their own effector functions. Nat. Commun. 11, 4113 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ihara, Y. et al. The G protein-coupled receptor T-cell death-associated gene 8 (TDAG8) facilitates tumor development by serving as an extracellular pH sensor. Proc. Natl Acad. Sci. USA 107, 17309–17314 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Levin, L. R. & Buck, J. Physiological roles of acid-base sensors. Annu. Rev. Physiol. 77, 347–362 (2015).

    Article  CAS  PubMed  Google Scholar 

  4. Ananthakrishnan, A. N. et al. Environmental triggers in IBD: a review of progress and evidence. Nat. Rev. Gastroenterol. Hepatol. 15, 39–49 (2018).

    Article  PubMed  Google Scholar 

  5. de Souza, H. S. & Fiocchi, C. Immunopathogenesis of IBD: current state of the art. Nat. Rev. Gastroenterol. Hepatol. 13, 13–27 (2016).

    Article  PubMed  Google Scholar 

  6. Kamada, N., Seo, S. U., Chen, G. Y. & Nunez, G. Role of the gut microbiota in immunity and inflammatory disease. Nat. Rev. Immunol. 13, 321–335 (2013).

    Article  CAS  PubMed  Google Scholar 

  7. Hardin, M. et al. The clinical and genetic features of COPD-asthma overlap syndrome. Eur. Respir. J. 44, 341–350 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wirasinha, R. C. et al. GPR65 inhibits experimental autoimmune encephalomyelitis through CD4+ T cell independent mechanisms that include effects on iNKT cells. Immunol. Cell Biol. 96, 128–136 (2018).

    Article  CAS  PubMed  Google Scholar 

  9. International Multiple Sclerosis Genetics Consortium et al. Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis. Nature 476, 214–219 (2011).

    Article  Google Scholar 

  10. Lassen, K. G. et al. Genetic coding variant in GPR65 alters lysosomal pH and links lysosomal dysfunction with colitis risk. Immunity 44, 1392–1405 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Franke, A. et al. Genome-wide meta-analysis increases to 71 the number of confirmed Crohn’s disease susceptibility loci. Nat. Genet. 42, 1118–1125 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Tcymbarevich, I. et al. Lack of the pH-sensing receptor TDAG8 [GPR65] in macrophages plays a detrimental role in murine models of inflammatory bowel disease. J. Crohns Colitis 13, 245–258 (2019).

    Article  PubMed  Google Scholar 

  13. Xie, L. et al. pH and proton sensor GPR65 determine susceptibility to atopic dermatitis. J. Immunol. 207, 101–109 (2021).

    Article  CAS  PubMed  Google Scholar 

  14. Wang, Y. et al. The proton-activated receptor GPR4 modulates intestinal inflammation. J. Crohns Colitis 12, 355–368 (2018).

    Article  PubMed  Google Scholar 

  15. de Valliere, C. et al. G Protein-coupled pH-sensing receptor OGR1 Is a regulator of intestinal inflammation. Inflamm. Bowel Dis. 21, 1269–1281 (2015).

    PubMed  Google Scholar 

  16. Basu, R. et al. Th22 cells are an important source of IL-22 for host protection against enteropathogenic bacteria. Immunity 37, 1061–1075 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ishigame, H. et al. Differential roles of interleukin-17A and -17F in host defense against mucoepithelial bacterial infection and allergic responses. Immunity 30, 108–119 (2009).

    Article  CAS  PubMed  Google Scholar 

  18. Harbour, S. N., Maynard, C. L., Zindl, C. L., Schoeb, T. R. & Weaver, C. T. Th17 cells give rise to Th1 cells that are required for the pathogenesis of colitis. Proc. Natl Acad. Sci. USA 112, 7061–7066 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ivanov, I. I. et al. The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell 126, 1121–1133 (2006).

    Article  CAS  PubMed  Google Scholar 

  20. Plank, M. W. et al. Th22 cells form a distinct Th lineage from Th17 cells in vitro with unique transcriptional properties and Tbet-dependent Th1 plasticity. J. Immunol. 198, 2182–2190 (2017).

    Article  CAS  PubMed  Google Scholar 

  21. Wang, C. et al. CD5L/AIM regulates lipid biosynthesis and restrains Th17. Cell Pathogen. Cell 163, 1413–1427 (2015).

    CAS  Google Scholar 

  22. Santori, F. R. et al. Identification of natural RORgamma ligands that regulate the development of lymphoid cells. Cell Metab. 21, 286–298 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Orth, J. D., Thiele, I. & Palsson, B. O. What is flux balance analysis? Nat. Biotechnol. 28, 245–248 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Chitraju, C. et al. Triglyceride synthesis by DGAT1 protects adipocytes from lipid-induced ER stress during lipolysis. Cell Metab. 26, 407–418 e403 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Dozsa, A. et al. PPARgamma-mediated and arachidonic acid-dependent signaling is involved in differentiation and lipid production of human sebocytes. J. Invest. Dermatol. 134, 910–920 (2014).

    Article  CAS  PubMed  Google Scholar 

  26. Rudloff, I., Bachmann, M., Pfeilschifter, J. & Muhl, H. Mechanisms of rapid induction of interleukin-22 in activated T cells and its modulation by cyclosporin a. J. Biol. Chem. 287, 4531–4543 (2012).

    Article  CAS  PubMed  Google Scholar 

  27. Bruno, N. E. et al. Creb coactivators direct anabolic responses and enhance performance of skeletal muscle. EMBO J. 33, 1027–1043 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Riccio, A., Ahn, S., Davenport, C. M., Blendy, J. A. & Ginty, D. D. Mediation by a CREB family transcription factor of NGF-dependent survival of sympathetic neurons. Science 286, 2358–2361 (1999).

    Article  CAS  PubMed  Google Scholar 

  29. Berod, L. et al. De novo fatty acid synthesis controls the fate between regulatory T and T helper 17 cells. Nat. Med. 20, 1327–1333 (2014).

    Article  CAS  PubMed  Google Scholar 

  30. Chitraju, C., Walther, T. C. & Farese, R. V. Jr. The triglyceride synthesis enzymes DGAT1 and DGAT2 have distinct and overlapping functions in adipocytes. J. Lipid Res. 60, 1112–1120 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Nguyen, T. B. et al. DGAT1-dependent lipid droplet biogenesis protects mitochondrial function during starvation-induced autophagy. Dev. Cell 42, 9–21 e25 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. O’Connor, W. Jr. et al. A protective function for interleukin 17A in T cell-mediated intestinal inflammation. Nat. Immunol. 10, 603–609 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Mogi, C. et al. Involvement of proton-sensing TDAG8 in extracellular acidification-induced inhibition of proinflammatory cytokine production in peritoneal macrophages. J. Immunol. 182, 3243–3251 (2009).

    Article  CAS  PubMed  Google Scholar 

  34. Hipolito, V. E. B. et al. Enhanced translation expands the endo-lysosome size and promotes antigen presentation during phagocyte activation. PLoS Biol. 17, e3000535 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Mindell, J. A. Lysosomal acidification mechanisms. Annu. Rev. Physiol. 74, 69–86 (2012).

    Article  CAS  PubMed  Google Scholar 

  36. Yambire, K. F. et al. Impaired lysosomal acidification triggers iron deficiency and inflammation in vivo. eLife 8, e51031 (2019).

  37. Alloatti, A. et al. Toll-like receptor 4 engagement on dendritic cells restrains phago-lysosome fusion and promotes cross-presentation of antigens. Immunity 43, 1087–1100 (2015).

    Article  CAS  PubMed  Google Scholar 

  38. Xia, Y. et al. The mevalonate pathway is a druggable target for vaccine adjuvant discovery. Cell 175, 1059–1073.e1021 (2018).

    Article  CAS  PubMed  Google Scholar 

  39. Graham, D. B. et al. ITAM signaling in dendritic cells controls T helper cell priming by regulating MHC class II recycling. Blood 116, 3208–3218 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Buckley, C. D., Gilroy, D. W., Serhan, C. N., Stockinger, B. & Tak, P. P. The resolution of inflammation. Nat. Rev. Immunol. 13, 59–66 (2013).

    Article  CAS  PubMed  Google Scholar 

  41. Gagliani, N. et al. Th17 cells transdifferentiate into regulatory T cells during resolution of inflammation. Nature 523, 221–225 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Schett, G. & Neurath, M. F. Resolution of chronic inflammatory disease: universal and tissue-specific concepts. Nat. Commun. 9, 3261 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Cartwright, I. M. et al. Adaptation to inflammatory acidity through neutrophil-derived adenosine regulation of SLC26A3. Mucosal Immunol. 13, 230–244 (2020).

    Article  CAS  PubMed  Google Scholar 

  44. Hua, S. Advances in oral drug delivery for regional targeting in the gastrointestinal tract—influence of physiological, pathophysiological and pharmaceutical factors. Front. Pharm. 11, 524 (2020).

    Article  CAS  Google Scholar 

  45. Nugent, S. G., Kumar, D., Rampton, D. S. & Evans, D. F. Intestinal luminal pH in inflammatory bowel disease: possible determinants and implications for therapy with aminosalicylates and other drugs. Gut 48, 571–577 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Gaublomme, J. T. et al. Single-cell genomics unveils critical regulators of Th17 cell pathogenicity. Cell 163, 1400–1412 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Miyazaki, M., Dobrzyn, A., Elias, P. M. & Ntambi, J. M. Stearoyl-CoA desaturase-2 gene expression is required for lipid synthesis during early skin and liver development. Proc. Natl Acad. Sci. USA 102, 12501–12506 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. van Dierendonck, X. et al. HILPDA uncouples lipid droplet accumulation in adipose tissue macrophages from inflammation and metabolic dysregulation. Cell Rep. 30, 1811–1822.e1816 2020).

    Article  PubMed  Google Scholar 

  49. Geltink, R. I. K., Kyle, R. L. & Pearce, E. L. Unraveling the complex interplay between T cell metabolism and function. Annu. Rev. Immunol. 36, 461–488 (2018).

    Article  CAS  PubMed  Google Scholar 

  50. Suzuki, H., Kumagai, T., Goto, A. & Sugiura, T. Increase in intracellular hydrogen peroxide and upregulation of a nuclear respiratory gene evoked by impairment of mitochondrial electron transfer in human cells. Biochem. Biophys. Res. Commun. 249, 542–545 (1998).

    Article  CAS  PubMed  Google Scholar 

  51. Havlickova Karbanova, V. et al. Compensatory upregulation of respiratory chain complexes III and IV in isolated deficiency of ATP synthase due to TMEM70 mutation. Biochim. Biophys. Acta 1817, 1037–1043 (2012).

    Article  CAS  PubMed  Google Scholar 

  52. Howie, D. et al. A novel role for triglyceride metabolism in Foxp3 expression. Front. Immunol. 10, 1860 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Gutierrez-Vazquez, C. & Quintana, F. J. Regulation of the immune response by the aryl hydrocarbon receptor. Immunity 48, 19–33 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Delamarre, L., Pack, M., Chang, H., Mellman, I. & Trombetta, E. S. Differential lysosomal proteolysis in antigen-presenting cells determines antigen fate. Science 307, 1630–1634 (2005).

    Article  CAS  PubMed  Google Scholar 

  55. Trost, M. et al. The phagosomal proteome in interferon-gamma-activated macrophages. Immunity 30, 143–154 (2009).

    Article  CAS  PubMed  Google Scholar 

  56. Graham, D. B. et al. Antigen discovery and specification of immunodominance hierarchies for MHCII-restricted epitopes. Nat. Med. 24, 1762–1772 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Fleming, S. J., Marioni, J. C. & Babadi, M. CellBender remove-background: a deep generative model for unsupervised removal of background noise from scRNA-seq datasets. Preprint at bioRxiv 791699 (2019).

  58. Korsunsky, I. et al. Fast, sensitive and accurate integration of single-cell data with Harmony. Nat. Methods 16, 1289–1296 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Wagner, A. et al. Metabolic modeling of single Th17 cells reveals regulators of autoimmunity. Cell 184, 4168–4185.e4121 2021).

    Article  CAS  PubMed  Google Scholar 

  60. Seki, A. & Rutz, S. Optimized RNP transfection for highly efficient CRISPR/Cas9-mediated gene knockout in primary T cells. J. Exp. Med. 215, 985–997 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank T. Reimels for assistance with editing. This work was supported by funding from the National Institutes of Health (grant nos. R01 DK117263, RC2 DK114784, U19 AI109725 and U19 AI142784 to R.J.X.) and the Helmsley Charitable Trust (to R.J.X.).

Author information

Authors and Affiliations

Authors

Contributions

R.J.X. and X.C. conceived of the study. X.C. designed and conducted most of the experiments. A.J. analyzed the scRNA-seq data. Z.C. performed the lipidomic and metabolomic experiments. P.H. and E.A.C. helped with the mouse experiments. N.O.-R. helped with immunoblotting. M.J.D. helped with genetics. X.C. wrote the manuscript. A.J., M.J.D., K.L.C., D.B.G. and R.J.X. revised the manuscript. K.L.C., D.B.G. and R.J.X. supervised the research.

Corresponding author

Correspondence to Ramnik J. Xavier.

Ethics declarations

Competing interests

R.J.X. is co-founder of Jnana Therapeutics and Celsius Therapeutics and M.J.D. is a scientific founder of Maze Therapeutics. These organizations played no role in the present study. The remaining authors declare no competing interests.

Peer review

Peer review information

Nature Immunology thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 GPR65 I231L mice generated by CRISPR-Cas9 have no evident colitis-related phenotypes at steady state.

(a) Design of GPR65 I231L knock-in by the CRISPR-Cas9 system. Gpr65 gene sequence from NCBI database is shown with annotated sgRNA target sequences and protospacer adjacent motif (PAM) and mutation sites. Mutated alleles are highlighted. (b) Alignment of the sequencing data of WT and I231L mice. Mutated alleles are highlighted. (c) Gating strategy of immune populations in the small intestinal lamina propria. (d,e) Statistical analysis of immune populations in the small intestinal lamina propria (SI LP) and colonic lamina propria (Co LP) of WT (n = 3) and I231L (n = 3) mice. Data are mean values. P values determined by unpaired two-tailed t-test; ns, not significant.

Source data

Extended Data Fig. 2 GPR65 I231L mice are more susceptible to bacterial infection-induced colitis.

(a,b) Colony forming units (CFU) in the stool (a) and body weight changes (b) of mice during C. rodentium infection. nWT = 6; nI231L = 7; nKO = 6 mice. (c) H&E-stained sections of distal colon from mice on day 3 after Citrobacter infection. Representative images from one of two independent experiments. Scale bar, 0.5 mm. (d) Statistical analysis of myeloid and CD4+ T cells in the colonic LP on day 12 after C. rodentium infection. nWT = 6; nI231L = 7; nKO = 6 mice. (e) Cytokine-producing CD4+ T cells in the mLN from WT (n = 6), I231L (n = 6) and KO (n = 6) mice on day 12 after infection. (f,g) Cytokine profiles of colonic tissue from C. rodentium-infected mice detected by qPCR (f) and multiplex bead-based cytokine assay (g). n = 4 mice per genotype (f); nWT = 6; nI231L = 7; nKO = 6 mice (g). (h-j) CFU, body weight change and colonic H&E histology of WT (n = 7), I231L (n = 7) or KO (n = 7) CD4+ T cell-transferred mice after Citrobacter infection. CFUs in colonic tissue and H&E staining were performed on day 12. (k,l) Immunophenotyping of CD4+ T cells and inflammatory innate immune cells in the mLN or colonic LP on day 12 after infection. n = 7 mice per genotype. (m) Cytokine profiles of colonic tissue on day 12 were detected by qPCR. n = 4 mice per genotype. Scale bar, 0.5 mm (c,j). Data represent at least two independent experiments. Data are mean values (a,b,d-i,k-m) + SEM (a,b,h,i). P values determined by unpaired two-tailed t-test; ns, not significant.

Source data

Extended Data Fig. 3 GPR65 regulates Th17 differentiation.

(a) Flow profiles of cell viability of CD4+ T cells after 48 h and 72 h of ex vivo culturing without stimulation. (b) Flow profiles of divided CD4+ T cells after 48 h and 72 h of stimulation with anti-CD3/CD28 dynabeads. (c) In vitro polarization of different Th cells (Th1, Th2, non-pathogenic Th17, pathogenic Th17) and induced Tregs. (d) Cytokine responses to different pH stimulation in Th22 cells polarized in vitro. Intracellular cytokine staining and qPCR were performed after restimulation of resting day 3-polarized Th22 cells by anti-CD3ε and anti-CD28 antibodies for 24 h. (e) Il17a and Rorc expression in polarized Th17 cells and Il22 and Ahr expression in polarized Th22 cells detected by qPCR. Data are mean values (c-e). n = 4 biological replicates for each group (c-e). P values determined by unpaired two-tailed t-test; ns, not significant. Data represent at least two independent experiments.

Source data

Extended Data Fig. 4 Single-cell RNA-seq profiling in in vitro polarized Th17 and Th22 cells.

(a,b) UMAP embeddings of single-cell RNA-sequencing profiles from in vitro polarized Th17 and Th22 cells (a). Expression of differential genes across cells reveals the features of different clusters (b). (c) Enrichment of gene ontology metabolic signature scores in cluster 2 single-cell transcriptomes for Th17 and Th22 cells. (d) Flux balance analysis to predict activity of various metabolic processes. Dots denote single biochemical reactions in different metabolisms, and only core biochemical reactions are shown.

Extended Data Fig. 5 Differential expression of genes related to metabolic pathways.

(a) Volcano plots show differential expression of genes related to oxidative phosphorylation (HALLMARK_OXIDATIVE_PHOSPHORYLATION), glycolysis (HALLMARK_GLYCOLYSIS), ATP metabolic process (GO_ATP_METABOLIC_PROCESS) and cellular amide metabolic process (GO_CELLULAR_AMIDE_METABOLIC_PROCESS) in polarized Th17 and Th22 cells (KO versus WT). (b) Dot plot shows the differential expression of genes related to different metabolic processes in all single-cell transcriptomes. (c) qPCR validation of differential gene expression in I231L Th17 and Th22 cells. Data are mean values from two independent experiments. n = 4 biological replicates for each group. P values determined by unpaired two-tailed t-test; ns, not significant.

Source data

Extended Data Fig. 6 Metabolomics analysis in polarized Th17 and Th22 cells.

Heatmap shows all 160 lipid metabolites detected in lipidomics.

Source data

Extended Data Fig. 7 GPR65 I231L exacerbates T cell-driven colitis.

(a) Body weight changes of Rag1 KO mice after transfer of Gpr65 WT, I231L or KO (n = 6 per genotype) CD45RBhigh CD4+ T cells. (b) Colon length of mice (n = 6 per genotype) in (a) after colitis induction. (c) H&E-stained sections of distal colon from mice with T cell-driven colitis. Representative images from one of two independent experiments. Scale bar, 0.5 mm. (d) Proportion analysis of cytokine-producing CD4+ T cells in the mLN and colonic LP of mice (n = 6 per genotype) in (a) after colitis induction. (e) Cytokine profiles (IFNγ, IL-17A, IL-22) of colonic tissue from mice (n = 4 per genotype) with colitis detected by multiplex bead-based cytokine assay. (f) Cytokine profiles (IFNγ, IL-17A, IL-22) of colonic tissue from mice (n = 4 per genotype) with T cell-driven colitis detected by qPCR. One dot denotes one biological replicate (b,d-f). (g) Gating strategy of immune populations in the colonic LP. Data are mean values (a,b,d-f) + SEM (a). P values determined by unpaired two-tailed t-test; ns, not significant. Data represent at least two independent experiments.

Source data

Extended Data Fig. 8 GPR65 I231L enhances antigen presentation to CD4+ T cells by dendritic cells.

(a,b) BMDC:OT-II T cell co-culturing-based antigen presentation assay. Cell numbers of OT-II CD4+ T cells (a) and IL-2 cytokine in the culture supernatant (b) on day 3 after co-culturing are shown. n = 5 (WT), n = 3 (I231L) and n = 2 (KO) biological replicates (a); n = 4 for each group (b). (c,d) BMDCs incubated with both DQ-Red BSA and AF647-BSA with or without treatment. Cells were treated with LPS (20 ng/ml) for 2 h and then incubated with DQ-Red BSA (3 μg/ml) and AF647-BSA (3 μg/ml) for 1 h before imaging. Representative images from one of two independent experiments are shown (c). Scale bar, 10μm. Statistical analysis of the ratio of DQ-Red BSA and AF647 fluorescence intensity (d). nWT = 39, nI231L = 28, nKO = 24 (NT); nWT = 27, nI231L = 20, nKO = 20 (LPS); nWT = 26, nI231L = 19, nKO = 20 (LPS + pH6.8); nWT = 21, nI231L = 18, nKO = 14 (Baf A1) cells. Data are mean values (a,b,d) + SEM (a,b). P values determined by unpaired two-tailed t-test; ns, not significant. Data represent at least two independent experiments.

Source data

Supplementary information

Supplementary Information

Supplementary Fig. 1 and Tables 1 and 2.

Reporting Summary

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 5

Statistical source data.

Source Data Fig. 6

Statistical source data.

Source Data Fig. 7

Statistical source data.

Source Data Extended Data Fig. 1

Statistical source data.

Source Data Extended Data Fig. 2

Statistical source data.

Source Data Extended Data Fig. 3

Statistical source data.

Source Data Extended Data Fig. 5

Statistical source data.

Source Data Extended Data Fig. 6

Statistical source data.

Source Data Extended Data Fig. 7

Statistical source data.

Source Data Extended Data Fig. 8

Statistical source data.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Jaiswal, A., Costliow, Z. et al. pH sensing controls tissue inflammation by modulating cellular metabolism and endo-lysosomal function of immune cells. Nat Immunol 23, 1063–1075 (2022). https://doi.org/10.1038/s41590-022-01231-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41590-022-01231-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing