Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Single-cell analysis of FOXP3 deficiencies in humans and mice unmasks intrinsic and extrinsic CD4+ T cell perturbations

Abstract

FOXP3 deficiency in mice and in patients with immune dysregulation polyendocrinopathy enteropathy X-linked (IPEX) syndrome results in fatal autoimmunity by altering regulatory T (Treg) cells. CD4+ T cells in patients with IPEX syndrome and Foxp3-deficient mice were analyzed by single-cell cytometry and RNA-sequencing, revealing heterogeneous Treg-like cells, some very similar to normal Treg cells, others more distant. Conventional T cells showed no widespread activation or helper T cell bias, but a monomorphic disease signature affected all CD4+ T cells. This signature proved to be cell extrinsic since it was extinguished in mixed bone marrow chimeric mice and heterozygous mothers of patients with IPEX syndrome. Normal Treg cells exerted dominant suppression, quenching the disease signature and revealing in mutant Treg-like cells a small cluster of genes regulated cell-intrinsically by FOXP3, including key homeostatic regulators. We propose a two-step pathogenesis model: cell-intrinsic downregulation of core FOXP3-dependent genes destabilizes Treg cells, de-repressing systemic mediators that imprint the disease signature on all T cells, furthering Treg cell dysfunction. Accordingly, interleukin-2 treatment improved the Treg-like compartment and survival.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Identification of Treg-like cells in IPEX syndrome by flow cytometry.
Fig. 2: Transcriptional changes in IPEX Treg and Tconv cells by population RNA-seq.
Fig. 3: scRNA-seq reveals the heterogeneous effect of FOXP3 deficiency in IPEX Treg cells.
Fig. 4: Normal Tconv phenotypes in patients with IPEX syndrome.
Fig. 5: scRNA-seq reveals heterogeneous effects of Foxp3 ablation in ∆Foxp3 mice.
Fig. 6: Cell-intrinsic and extrinsic effects of FOXP3 deficiency in Treg and Tconv cells of IPEX female carriers (mothers).
Fig. 7: Cell-intrinsic and extrinsic effects of Foxp3 deficiency in Treg and Tconv cells in mice.
Fig. 8: IL-2 therapy mitigates Foxp3-deficiency disease.

Similar content being viewed by others

Data availability

The data reported in this paper have been deposited in the Gene Expression Omnibus database under SuperSeries accession no. GSE168492: GSE166866 (human population RNA-seq), GSE166860 (mouse population RNA-seq), GSE167976 (human scRNA-seq) and GSE167575 (mouse scRNA-seq).

References

  1. Josefowicz, S. Z., Lu, L. F. & Rudensky, A. Y. Regulatory T cells: mechanisms of differentiation and function. Annu. Rev. Immunol. 30, 531–564 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Wing, J. B., Tanaka, A. & Sakaguchi, S. Human FOXP3+ regulatory T cell heterogeneity and function in autoimmunity and cancer. Immunity 50, 302–316 (2019).

    Article  CAS  PubMed  Google Scholar 

  3. Panduro, M., Benoist, C. & Mathis, D. Tissue Tregs. Annu. Rev. Immunol. 34, 609–633 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hill, J. A. et al. Foxp3 transcription-factor-dependent and -independent regulation of the regulatory T cell transcriptional signature. Immunity 27, 786–800 (2007).

    Article  CAS  PubMed  Google Scholar 

  5. Ferraro, A. et al. Interindividual variation in human T regulatory cells. Proc. Natl Acad. Sci. USA 111, E1111–E1120 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zemmour, D. et al. Single-cell gene expression reveals a landscape of regulatory T cell phenotypes shaped by the TCR. Nat. Immunol. 19, 291–301 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ono, M. Control of regulatory T-cell differentiation and function by T-cell receptor signalling and Foxp3 transcription factor complexes. Immunology 160, 24–37 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kwon, H. K., Chen, H. M., Mathis, D. & Benoist, C. Different molecular complexes that mediate transcriptional induction and repression by FoxP3. Nat. Immunol. 18, 1238–1248 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Campbell, D. J. & Koch, M. A. Phenotypical and functional specialization of FOXP3+ regulatory T cells. Nat. Rev. Immunol. 11, 119–130 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Li, C. et al. TCR transgenic mice reveal stepwise, multi-site acquisition of the distinctive fat-Treg phenotype. Cell 174, 285–299 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Dispirito, J. R. et al. Molecular diversification of regulatory T cells in nonlymphoid tissues. Sci. Immunol. 3, eaat5861 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Miragaia, R. J. et al. Single-cell transcriptomics of regulatory T cells reveals trajectories of tissue adaptation. Immunity 50, 493–504 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Powell, B. R., Buist, N. R. & Stenzel, P. An X-linked syndrome of diarrhea, polyendocrinopathy, and fatal infection in infancy. J. Pediatr. 100, 731–737 (1982).

    Article  CAS  PubMed  Google Scholar 

  14. Ramsdell, F. & Ziegler, S. F. FOXP3 and scurfy: how it all began. Nat. Rev. Immunol. 14, 343–349 (2014).

    Article  CAS  PubMed  Google Scholar 

  15. Barzaghi, F., Passerini, L. & Bacchetta, R. Immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome: a paradigm of immunodeficiency with autoimmunity. Front. Immunol. 3, 211 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  16. d’Hennezel, E., Bin, D. K., Torgerson, T. & Piccirillo, C. A. The immunogenetics of immune dysregulation, polyendocrinopathy, enteropathy, X-linked (IPEX) syndrome. J. Med. Genet. 49, 291–302 (2012).

    Article  PubMed  CAS  Google Scholar 

  17. Duclaux-Loras, R. et al. Clinical heterogeneity of immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome: a French multicenter retrospective study. Clin. Transl. Gastroenterol. 9, 201 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gambineri, E. et al. Clinical, immunological, and molecular heterogeneity of 173 patients with the phenotype of immune dysregulation, polyendocrinopathy, enteropathy, X-linked (IPEX) syndrome. Front. Immunol. 9, 2411 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Barzaghi, F. et al. Long-term follow-up of IPEX syndrome patients after different therapeutic strategies: an international multicenter retrospective study. J. Allergy Clin. Immunol. 141, 1036–1049 (2018).

    Article  PubMed  Google Scholar 

  20. Godfrey, V. L., Wilkinson, J. E. & Russell, L. B. X-linked lymphoreticular disease in the scurfy (sf) mutant mouse. Am. J. Pathol. 138, 1379–1387 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Wan, Y. Y. & Flavell, R. A. Regulatory T-cell functions are subverted and converted owing to attenuated Foxp3 expression. Nature 445, 766–770 (2007).

    Article  CAS  PubMed  Google Scholar 

  22. Van Gool, F. et al. A mutation in the transcription factor Foxp3 drives T helper 2 effector function in regulatory T cells. Immunity 50, 362–377 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lin, W. et al. Regulatory T cell development in the absence of functional Foxp3. Nat. Immunol. 8, 359–368 (2007).

    Article  CAS  PubMed  Google Scholar 

  24. Gavin, M. A. et al. Foxp3-dependent programme of regulatory T-cell differentiation. Nature 445, 771–775 (2007).

    Article  CAS  PubMed  Google Scholar 

  25. Charbonnier, L. M. et al. Functional reprogramming of regulatory T cells in the absence of Foxp3. Nat. Immunol. 20, 1208–1219 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bacchetta, R. et al. Defective regulatory and effector T cell functions in patients with FOXP3 mutations. J. Clin. Invest. 116, 1713–1722 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Otsubo, K. et al. Identification of FOXP3-negative regulatory T-like (CD4+CD25+CD127low) cells in patients with immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome. Clin. Immunol. 141, 111–120 (2011).

    Article  CAS  PubMed  Google Scholar 

  28. Boldt, A. et al. Differences in FOXP3 and CD127 expression in Treg-like cells in patients with IPEX syndrome. Clin. Immunol. 153, 109–111 (2014).

    Article  CAS  PubMed  Google Scholar 

  29. Walker, M. R. et al. Induction of FoxP3 and acquisition of T regulatory activity by stimulated human CD4+. J. Clin. Invest. 112, 1437–1443 (2003).

    Article  CAS  PubMed  Google Scholar 

  30. Gavin, M. A. et al. Single-cell analysis of normal and FOXP3-mutant human T cells: FOXP3 expression without regulatory T cell development. Proc. Natl Acad. Sci. USA 103, 6659–6664 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Allan, S. E. et al. Activation-induced FOXP3 in human T effector cells does not suppress proliferation or cytokine production. Int. Immunol. https://doi.org/10.1093/intimm/dxm014 (2007).

  32. McMurchy, A. N. et al. A novel function for FOXP3 in humans: intrinsic regulation of conventional T cells. Blood 121, 1265–1275 (2013).

    Article  CAS  PubMed  Google Scholar 

  33. Zemmour, D. et al. Flicr, a long noncoding RNA, modulates Foxp3 expression and autoimmunity. Proc. Natl Acad. Sci. USA 114, E3472–E3480 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Seddiki, N. et al. Expression of interleukin (IL)-2 and IL-7 receptors discriminates between human regulatory and activated T cells. J. Exp. Med. 203, 1693–1700 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Pesenacker, A. M. et al. A regulatory T-cell gene signature is a specific and sensitive biomarker to identify children with new-onset type 1 diabetes. Diabetes 65, 1031–1039 (2016).

    Article  CAS  PubMed  Google Scholar 

  36. Stoeckius, M. et al. Cell hashing with barcoded antibodies enables multiplexing and doublet detection for single cell genomics. Genome Biol. 19, 224 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Stuart, T. et al. Comprehensive integration of single-cell data. Cell 177, 1888–1902 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bakke, A. C., Purtzer, M. Z. & Wildin, R. S. Prospective immunological profiling in a case of immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX). Clin. Exp. Immunol. 137, 373–378 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ziegler, S. F. FOXP3: of mice and men. Annu. Rev. Immunol. 24, 209–226 (2006).

    Article  CAS  PubMed  Google Scholar 

  40. Fontenot, J. D., Gavin, M. A. & Rudensky, A. Y. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat. Immunol. 4, 330–336 (2003).

    Article  CAS  PubMed  Google Scholar 

  41. Hori, S., Nomura, T. & Sakaguchi, S. Control of regulatory T cell development by the transcription factor Foxp3. Science 299, 1057–1061 (2003).

    Article  CAS  PubMed  Google Scholar 

  42. Malek, T. R. & Ashwell, J. D. Interleukin 2 upregulates expression of its receptor on a T cell clone. J. Exp. Med. 161, 1575–1580 (1985).

    Article  CAS  PubMed  Google Scholar 

  43. Boyman, O. et al. Selective stimulation of T cell subsets with antibody-cytokine immune complexes. Science 311, 1924–1927 (2006).

    Article  CAS  PubMed  Google Scholar 

  44. Samstein, R. M. et al. Foxp3 exploits a pre-existent enhancer landscape for regulatory T cell lineage specification. Cell 151, 153–166 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Remedios, K. A. et al. The TNFRSF members CD27 and OX40 coordinately limit TH17 differentiation in regulatory T cells. Sci. Immunol. 3, eaau2042 (2018).

    Article  PubMed  Google Scholar 

  46. Kim, J. M., Rasmussen, J. P. & Rudensky, A. Y. Regulatory T cells prevent catastrophic autoimmunity throughout the lifespan of mice. Nat. Immunol. 8, 191–197 (2007).

    Article  CAS  PubMed  Google Scholar 

  47. Sitrin, J. et al. Regulatory T cells control NK cells in an insulitic lesion by depriving them of IL-2. J. Exp. Med. 210, 1153–1165 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Cobbold, S. & Waldmann, H. Infectious tolerance. Curr. Opin. Immunol. 10, 518–524 (1998).

    Article  CAS  PubMed  Google Scholar 

  49. Plitas, G. et al. Regulatory T cells exhibit distinct features in human breast cancer. Immunity 45, 1122–1134 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Gambineri, E. et al. Clinical and molecular profile of a new series of patients with immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome: inconsistent correlation between forkhead box protein 3 expression and disease severity. J. Allergy Clin. Immunol. 122, 1105–1112 (2008).

    Article  CAS  PubMed  Google Scholar 

  51. Bettelli, E. et al. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 441, 235–238 (2006).

    Article  CAS  PubMed  Google Scholar 

  52. Picelli, S. et al. Full-length RNA-seq from single cells using Smart-seq2. Nat. Protoc. 9, 171–181 (2014).

    Article  CAS  PubMed  Google Scholar 

  53. Godec, J. et al. Compendium of immune signatures identifies conserved and species-specific biology in response to inflammation. Immunity 44, 194–206 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Wolock, S. L., Lopez, R. & Klein, A. M. Scrublet: computational identification of cell doublets in single-cell transcriptomic data. Cell Syst. 8, 281–291 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Aran, D. et al. Reference-based analysis of lung single-cell sequencing reveals a transitional profibrotic macrophage. Nat. Immunol. 20, 163–172 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Becht, E. et al. Dimensionality reduction for visualizing single-cell data using UMAP. Nat. Biotechnol. https://doi.org/10.1038/nbt.4314 (2018).

  57. Klein, A. M. et al. Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. Cell 161, 1187–1201 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Johansen, N. & Quon, G. scAlign: a tool for alignment, integration, and rare cell identification from scRNA-seq data. Genome Biol. 20, 166 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Law, C. W., Chen, Y., Shi, W. & Smyth, G. K. Voom: precision weights unlock linear model analysis tools for RNA-seq read counts. Genome Biol. 15, R29 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Soneson, C. & Robinson, M. D. Bias, robustness and scalability in single-cell differential expression analysis. Nat. Methods 15, 255–261 (2018).

    Article  CAS  PubMed  Google Scholar 

  61. Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer-Verlag, 2009).

Download references

Acknowledgements

We thank M. Levings and A. Rudensky for insightful discussions and K. Hattori, C. Araneo, K. Seddu and the Klarman Cell Observatory team for help with mice, cell sorting and single-cell profiling. This work was funded by grants from the National Institutes of Health to C. Benoist and D.M. (AI116834 and AI150686), T.A.C. (AI085090) and L.M.C. (AI153174); the Institut National de la Santé et Recherche Médicale; the European Union Seventh Framework (269037 and 261387) and Horizon 2020 (693762); and the Agence Nationale pour la Recherche (Investissement d’Avenir ANR-10-IAHU-01) to I.A., E.S., M.D., J.L., M.C., B.N., F.R.L., F.R. and N.C.B. J.L. was supported by an INSERM Poste d’Accueil and an Arthur Sachs scholarship.

Author information

Authors and Affiliations

Authors

Contributions

D.Z., L.M.C., J.L. and M.B. performed the experiments; E.S., S.K., M.D., S.B., J.Z., K.C., B.N., M.I.G.L., F.R., N.C.B., F.R.L., M.C., I.A., T.A.C., L.M.C. and C. Bruganara provided samples and discussed interpretations; D.Z., L.M.C., J.L., T.A.C., I.A., C. Benoist and D.M. designed the study and analyzed and interpreted the data; D.Z., J.L., C. Benoist and D.M. wrote the manuscript.

Corresponding authors

Correspondence to Diane Mathis or Christophe Benoist.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Immunology thanks Fred Ramsdell and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Zoltan Fehervari was the primary editor on this article and managed its editorial process and peer review in collaboration with the rest of the editorial team.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–10.

Reporting Summary

Supplementary Table 1

Clinical characteristics of healthy donors and patients with IPEX syndrome by cohort (summary table and singular values).

Supplementary Table 2

IPEX signature genes with their average IPEX/HD fold change in Treg and Tconv cells.

Supplementary Table 3

CD4+ signatures significantly enriched in the IPEX signature.

Supplementary Table 4

List of human and mouse scRNA-seq datasets (human and mice) with quality control metrics.

Supplementary Table 5

Treg cell signature genes with their average Treg/Tconv fold change in ΔFoxp3 mice, WT mice, BMC ΔFoxp3 cells in BMCs and WT cells in BMCs.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zemmour, D., Charbonnier, LM., Leon, J. et al. Single-cell analysis of FOXP3 deficiencies in humans and mice unmasks intrinsic and extrinsic CD4+ T cell perturbations. Nat Immunol 22, 607–619 (2021). https://doi.org/10.1038/s41590-021-00910-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41590-021-00910-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing