Abstract
Environmental pollution is one of the most serious challenges to health in the modern world. Pollutants alter immune responses and can provoke immunotoxicity. In this Review, we summarize the major environmental pollutants that are attracting wide-ranging concern and the molecular basis underlying their effects on the immune system. Xenobiotic receptors, including the aryl hydrocarbon receptor (AHR), sense and respond to a subset of environmental pollutants by activating the expression of detoxification enzymes to protect the body. However, chronic activation of the AHR leads to immunotoxicity. KEAP1–NRF2 is another important system that protects the body against environmental pollutants. KEAP1 is a sensor protein that detects environmental pollutants, leading to activation of the transcription factor NRF2. NRF2 protects the body from immunotoxicity by inducing the expression of genes involved in detoxification, antioxidant and anti-inflammatory activities. Intervening in these sensor–response systems could protect the body from the devastating immunotoxicity that can be induced by environmental pollutants.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
A pilot metabolomic study of drug interaction with the immune response to seasonal influenza vaccination
npj Vaccines Open Access 12 June 2023
-
Lifestyle and environmental factors may induce airway and systemic inflammation in firefighters
Environmental Science and Pollution Research Open Access 12 September 2022
-
Assessing temporal correlation in environmental risk factors to design efficient area-specific COVID-19 regulations: Delhi based case study
Scientific Reports Open Access 28 July 2022
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout



References
Landrigan, P. J. et al. The Lancet Commission on pollution and health. Lancet 391, 462–512 (2018).
Smith, K. R. & Ezzati, M. How environmental health risks change with development: the epidemiologic and environmental risk transitions revisited. Annu. Rev. Environ. Resour. 30, 291–333 (2005).
GBD 2015 Risk Factors Collaborators. Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet 388, 1659–1724 (2016).
Luster, M. I. A historical perspective of immunotoxicology. J. Immunotoxicol. 11, 197–202 (2014).
Luster, M. I., Portier, C., Pait, D. G. & Germolec, D. R. Use of animal studies in risk assessment for immunotoxicology. Toxicology 92, 229–243 (1994).
Gleichmann, E., Kimber, I. & Purchase, I. F. H. Immunotoxicology: suppressive and stimulatory effects of drugs and environmental chemicals on the immune system. Arch. Toxicol. 63, 257–273 (1989).
Bennett, P. M. et al. Exposure to heavy metals and infectious disease mortality in harbour porpoises from England and Wales. Environ. Pollut. 112, 33–40 (2001).
Germolec, D. et al. Immunotoxicology: a brief history, current status and strategies for future immunotoxicity assessment. Curr. Opin. Toxicol. 5, 55–59 (2017).
Inadera, H. The immune system as a target for environmental chemicals: xenoestrogens and other compounds. Toxicol. Lett. 164, 191–206 (2006).
Fries, G. F. in Reviews of Environmental Contamination and Toxicology Vol. 141 (eds. Ware, G. W. & Gunther, F. A.) 71–109 (Springer, 1995).
Cambra-López, M., Aarnink, A. J. A., Zhao, Y., Calvet, S. & Torres, A. G. Airborne particulate matter from livestock production systems: a review of an air pollution problem. Environ. Pollut. 158, 1–17 (2010).
Derraik, J. G. B. The pollution of the marine environment by plastic debris: a review. Mar. Pollut. Bull. 44, 842–852 (2002).
Totlandsdal, A. I. et al. Differential effects of the particle core and organic extract of diesel exhaust particles. Toxicol. Lett. 208, 262–268 (2012).
Foth, H., Kahl, R. & Kahl, G. F. Pharmacokinetics of low doses of benzo[a]pyrene in the rat. Food Chem. Toxicol. 26, 45–51 (1988).
Kao, J., Patterson, F. K. & Hall, J. Skin penetration and metabolism of topically applied chemicals in six mammalian species, including man: an in vitro study with benzo[a]pyrene and testosterone. Toxicol. Appl. Pharmacol. 81, 502–516 (1985).
Morgenstern, V. et al. Atopic diseases, allergic sensitization, and exposure to traffic-related air pollution in children. Am. J. Respir. Crit. Care Med. 177, 1331–1337 (2008).
Horne, B. D. et al. Short-term elevation of fine particulate matter air pollution and acute lower respiratory infection. Am. J. Respir. Crit. Care Med. 198, 759–766 (2018).
McCreanor, J. et al. Respiratory effects of exposure to diesel traffic in persons with asthma. N. Engl. J. Med. 357, 2348–2358 (2007).
Jedrychowski, W. A. et al. Intrauterine exposure to polycyclic aromatic hydrocarbons, fine particulate matter and early wheeze. Prospective birth cohort study in 4‐year olds. Pediatr. Allergy Immunol. 21, e723–e732 (2010).
Perzanowski, M. S. et al. Early-life cockroach allergen and polycyclic aromatic hydrocarbon exposures predict cockroach sensitization among inner-city children. J. Allergy Clin. Immunol. 131, 886–893 (2013).
Weisglas-Kuperus, N., Vreugdenhil, H. J. I. & Mulder, P. G. H. Immunological effects of environmental exposure to polychlorinated biphenyls and dioxins in Dutch school children. Toxicol. Lett. 149, 281–285 (2004).
Türk Börü, Ü., Bölük, C., Taşdemir, M., Gezer, T. & Serim, V. A. Air pollution, a possible risk factor for multiple sclerosis. Acta Neurol. Scand. 141, 431–437 (2020).
Hidaka, T. et al. The aryl hydrocarbon receptor AhR links atopic dermatitis and air pollution via induction of the neurotrophic factor artemin. Nat. Immunol. 18, 64–73 (2017).
Fiorito, F., Santamaria, R., Irace, C., De Martino, L. & Iovane, G. 2,3,7,8-tetrachlorodibenzo-p-dioxin and the viral infection. Environ. Res. 153, 27–34 (2017).
Brennecke, D., Duarte, B., Paiva, F., Caçador, I. & Canning-Clode, J. Microplastics as vector for heavy metal contamination from the marine environment. Estuar. Coast. Shelf Sci. 178, 189–195 (2016).
Gulland, F. M. D. & Hall, A. J. Is marine mammal health deteriorating? Trends in the global reporting of marine mammal disease. Ecohealth 4, 135–150 (2007).
Bakir, A., Rowland, S. J. & Thompson, R. C. Competitive sorption of persistent organic pollutants onto microplastics in the marine environment. Mar. Pollut. Bull. 64, 2782–2789 (2012).
Fent, K. Ecotoxicology of organotin compounds. Crit. Rev. Toxicology 26, 3–117 (1996).
Snoeij, N. J., Penninks, A. H. & Seinen, W. Dibutyltin and tributyltin compounds induce thymus atrophy in rats due to a selective action on thymic lymphoblasts. Int. J. Immunopharmacol. 10, 891–899 (1988).
Kato, T., Tada-Oikawa, S., Wang, L., Murata, M. & Kuribayashi, K. Endocrine disruptors found in food contaminants enhance allergic sensitization through an oxidative stress that promotes the development of allergic airway inflammation. Toxicol. Appl. Pharmacol. 273, 10–18 (2013).
Lee, M. H. et al. Enhanced interleukin‐4 production in CD4+ T cells and elevated immunoglobulin E levels in antigen‐primed mice by bisphenol A and nonylphenol, endocrine disruptors: involvement of nuclear factor‐AT and Ca2+. Immunology 109, 76–86 (2003).
Bauer, S. M. et al. The effects of maternal exposure to bisphenol A on allergic lung inflammation into adulthood. Toxicol. Sci. 130, 82–93 (2012).
Nakajima, Y., Goldblum, R. M. & Midoro-Horiuti, T. Fetal exposure to bisphenol A as a risk factor for the development of childhood asthma: an animal model study. Environ. Health 11, 8 (2012).
Jakober, C. A. et al. Quinone emissions from gasoline and diesel motor vehicles. Environ. Sci. Technol. 41, 4548–4554 (2007).
Spengler, J. D. & Sexton, K. Indoor air pollution: a public health perspective. Science 221, 9–17 (1983).
Hecht, S. S. Tobacco smoke carcinogens and lung cancer. J. Natl Cancer Inst. 91, 1194–1210 (1999).
Kumagai, Y. & Abiko, Y. Environmental electrophiles: protein adducts, modulation of redox signaling, and interaction with persulfides/polysulfides. Chem. Res. Toxicol. 30, 203–219 (2017).
Pearson, R. G. Hard and soft acids and bases. J. Am. Chem. Soc. 85, 3533–3539 (1963).
Kumagai, Y. & Sumi, D. Arsenic: signal transduction, transcription factor, and biotransformation involved in cellular response and toxicity. Annu. Rev. Pharmacol. Toxicol. 47, 243–262 (2007).
Saito, M. et al. Molecular mechanisms of nickel allergy. Int. J. Mol. Sci. 17, 202 (2016).
Sharma, R. K. & Agrawal, M. Biological effects of heavy metals: an overview. J. Environ. Biol. 26, 301–313 (2005).
Carter, J. D., Ghio, A. J., Samet, J. M. & Devlin, R. B. Cytokine production by human airway epithelial cells after exposure to an air pollution particle is metal-dependent. Toxicol. Appl. Pharmacol. 146, 180–188 (1997).
Lehmann, I., Sack, U. & Lehmann, J. Metal ions affecting the immune system. Met. Ions Life Sci. 8, 157–185 (2011).
Gauthier, P. T., Norwood, W. P., Prepas, E. E. & Pyle, G. G. Metal–PAH mixtures in the aquatic environment: a review of co-toxic mechanisms leading to more-than-additive outcomes. Aquat. Toxicol. 154, 253–269 (2014).
Lawrence, D. A. & McCabe, M. J. Jr. Immunomodulation by metals. Int. Immunopharmacol. 2, 293–302 (2002).
Ewers, U., Stiller-Winkler, R. & Idel, H. Serum immunoglobulin, complement C3, and salivary IgA levels in lead workers. Environ. Res. 29, 351–357 (1982).
Hughes, M. F., Beck, B. D., Chen, Y., Lewis, A. S. & Thomas, D. J. Arsenic exposure and toxicology: a historical perspective. Toxicol. Sci. 123, 305–332 (2011).
Rahman, A. et al. Association of arsenic exposure during pregnancy with fetal loss and infant death: a cohort study in Bangladesh. Am. J. Epidemiol. 165, 1389–1396 (2007).
Moore, S. E. et al. Early‐life nutritional and environmental determinants of thymic size in infants born in rural Bangladesh. Acta Paediatr. 98, 1168–1175 (2009).
Kirschvink, N. et al. Airway inflammation in cadmium-exposed rats is associated with pulmonary oxidative stress and emphysema. Free Radic. Res. 40, 241–250 (2006).
Ganguly, K., Levänen, B., Palmberg, L., Åkesson, A. & Lindén, A. Cadmium in tobacco smokers: a neglected link to lung disease? Eur. Respir. Rev. 27, 170122 (2018).
Leffel, E. K., Wolf, C., Poklis, A. & White, K. L. Jr. Drinking water exposure to cadmium, an environmental contaminant, results in the exacerbation of autoimmune disease in the murine model. Toxicology 188, 233–250 (2003).
Sapin, C., Druet, E. & Druet, P. Induction of anti-glomerular basement membrane antibodies in the Brown–Norway rat by mercuric chloride. Clin. Exp. Immunol. 28, 173–179 (1977).
Hudson, C. A., Cao, L., Kasten-Jolly, J., Kirkwood, J. N. & Lawrence, D. A. Susceptibility of lupus-prone NZM mouse strains to lead exacerbation of systemic lupus erythematosus symptoms. J. Toxicol. Environ. Health A 66, 895–918 (2003).
Liska, D. J. The detoxification enzyme systems. Altern. Med. Rev. 3, 187–198 (1998).
Talalay, P. Chemoprotection against cancer by induction of phase 2 enzymes. Biofactors 12, 5–11 (2000).
Vašák, M. Advances in metallothionein structure and functions. J. Trace Elem. Med. Biol. 19, 13–17 (2005).
Flora, S. J. S. Metal poisoning: threat and management. Al Ameen J. Med. Sci. 2, 4–26 (2009).
Waxman, D. J. P450 gene induction by structurally diverse xenochemicals: central role of nuclear receptors CAR, PXR, and PPAR. Arch. Biochem. Biophys. 369, 11–23 (1999).
Yamamoto, M., Kensler, T. W. & Motohashi, H. The KEAP1–NRF2 system: a thiol-based sensor-effector apparatus for maintaining redox homeostasis. Physiol. Rev. 98, 1169–1203 (2018).
Gutiérrez-Vázquez, C. & Quintana, F. J. Regulation of the immune response by the aryl hydrocarbon receptor. Immunity 48, 19–33 (2018).
Miao, W., Hu, L., Scrivens, P. J. & Batist, G. Transcriptional regulation of NF-E2 p45-related factor (NRF2) expression by the aryl hydrocarbon receptor-xenobiotic response element signaling pathway: direct cross-talk between phase I and II drug-metabolizing enzymes. J. Biol. Chem. 280, 20340–20348 (2005).
Shin, S. et al. NRF2 modulates aryl hydrocarbon receptor signaling: influence on adipogenesis. Mol. Cell. Biol. 27, 7188–7197 (2007).
Denis, M., Cuthill, S., Wikström, A.-C., Poellinger, L. & Gustafsson, J.-Å. Association of the dioxin receptor with the Mr 90,000 heat shock protein: a structural kinship with the glucocorticoid receptor. Biochem. Biophys. Res. Commun. 155, 801–807 (1988).
Ikuta, T., Eguchi, H., Tachibana, T., Yoneda, Y. & Kawajiri, K. Nuclear localization and export signals of the human aryl hydrocarbon receptor. J. Biol. Chem. 273, 2895–2904 (1998).
Furman, D. P., Oshchepkova, E. A., Oshchepkov, D. Y., Shamanina, M. Y. & Mordvinov, V. A. Promoters of the genes encoding the transcription factors regulating the cytokine gene expression in macrophages contain putative binding sites for aryl hydrocarbon receptor. Comput. Biol. Chem. 33, 465–468 (2009).
Durrin, L. K. & Whitlock, J. P. Jr. In situ protein-DNA interactions at a dioxin-responsive enhancer associated with the cytochrome P1-450 gene. Mol. Cell. Biol. 7, 3008–3011 (1987).
Kerkvliet, N. I. & Brauner, J. A. Flow cytometric analysis of lymphocyte subpopulations in the spleen and thymus of mice exposed to an acute immunosuppressive dose of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Environ. Res. 52, 146–154 (1990).
De Heer, C. et al. Time course of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-induced thymic atrophy in the Wistar rat. Toxicol. Appl. Pharmacol. 128, 97–104 (1994).
McMillan, B. J., McMillan, S. N., Glover, E. & Bradfield, C. A. 2,3,7,8-Tetrachlorodibenzo-p-dioxin induces premature activation of the KLF2 regulon during thymocyte development. J. Biol. Chem. 282, 12590–12597 (2007).
Temchura, V. V., Frericks, M., Nacken, W. & Esser, C. Role of the aryl hydrocarbon receptor in thymocyte emigration in vivo. Eur. J. Immunol. 35, 2738–2747 (2005).
Feingold, B. J. et al. A niche for infectious disease in environmental health: rethinking the toxicological paradigm. Environ. Health Perspect. 118, 1165–1172 (2010).
Fontenot, J. D., Gavin, M. A. & Rudensky, A. Y. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat. Immunol. 4, 330–336 (2003).
Hori, S., Takahashi, T. & Sakaguchi, S. Control of autoimmunity by naturally arising regulatory CD4+ T cells. Adv. Immunol. 81, 331–371 (2003).
Groux, H. et al. A CD4+ T-cell subset inhibits antigen-specific T-cell responses and prevents colitis. Nature 389, 737–742 (1997).
Quintana, F. J. et al. Control of Treg and TH17 cell differentiation by the aryl hydrocarbon receptor. Nature 453, 65–71 (2008).
Kerkvliet, N. I. et al. Activation of aryl hydrocarbon receptor by TCDD prevents diabetes in NOD mice and increases Foxp3+ T cells in pancreatic lymph nodes. Immunotherapy 1, 539–547 (2009).
Mezrich, J. D. et al. An interaction between kynurenine and the aryl hydrocarbon receptor can generate regulatory T cells. J. Immunol. 185, 3190–3198 (2010).
Goettel, J. A. et al. AHR activation is protective against colitis driven by T cells in humanized mice. Cell Rep. 17, 1318–1329 (2016).
Kaye, J. et al. Laquinimod arrests experimental autoimmune encephalomyelitis by activating the aryl hydrocarbon receptor. Proc. Natl Acad. Sci. USA 113, E6145–E6152 (2016).
Singh, N. P. et al. Activation of aryl hydrocarbon receptor (AhR) leads to reciprocal epigenetic regulation of FoxP3 and IL-17 expression and amelioration of experimental colitis. PLoS ONE 6, e23522 (2011).
Apetoh, L. et al. The aryl hydrocarbon receptor interacts with c-Maf to promote the differentiation of type 1 regulatory T cells induced by IL-27. Nat. Immunol. 11, 854–861 (2010).
Gandhi, R. et al. Activation of the aryl hydrocarbon receptor induces human type 1 regulatory T cell–like and Foxp3+ regulatory T cells. Nat. Immunol. 11, 846–853 (2010).
Wu, H. Y. et al. In vivo induction of Tr1 cells via mucosal dendritic cells and AHR signaling. PLoS ONE 6, e23618 (2011).
Quintana, F. J. et al. An endogenous aryl hydrocarbon receptor ligand acts on dendritic cells and T cells to suppress experimental autoimmune encephalomyelitis. Proc. Natl Acad. Sci. USA 107, 20768–20773 (2010).
Ivanov, I. I. et al. The orphan nuclear receptor RORγt directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell 126, 1121–1133 (2006).
Korn, T., Bettelli, E., Oukka, M. & Kuchroo, V. K. IL-17 and Th17 cells. Ann. Rev. Immunol. 27, 485–517 (2009).
Talbot, J. et al. Smoking-induced aggravation of experimental arthritis is dependent of aryl hydrocarbon receptor activation in Th17 cells. Arthritis Res. Ther. 20, 119 (2018).
Quintana, F. J. et al. Aiolos promotes TH17 differentiation by directly silencing Il2 expression. Nat. Immunol. 13, 770–777 (2012).
Kimura, A., Naka, T., Nohara, K., Fujii-Kuriyama, Y. & Kishimoto, T. Aryl hydrocarbon receptor regulates Stat1 activation and participates in the development of Th17 cells. Proc. Natl Acad. Sci. USA 105, 9721–9726 (2008).
Veldhoen, M., Hirota, K., Christensen, J., O’Garra, A. & Stockinger, B. Natural agonists for aryl hydrocarbon receptor in culture medium are essential for optimal differentiation of Th17 T cells. J. Exp. Med. 206, 43–49 (2009).
Qiu, J. et al. The aryl hydrocarbon receptor regulates gut immunity through modulation of innate lymphoid cells. Immunity 36, 92–104 (2012).
Veldhoen, M. et al. The aryl hydrocarbon receptor links TH17-cell-mediated autoimmunity to environmental toxins. Nature 453, 106–109 (2008).
Yeste, A. et al. IL-21 induces IL-22 production in CD4+ T cells. Nat. Comm. 5, 3753 (2014).
Chu, I., Dick, D., Bronaugh, R. & Tryphonas, L. Skin reservoir formation and bioavailability of dermally administered chemicals in hairless guinea pigs. Food Chem. Toxicology 34, 267–276 (1996).
Alexandrov, K., Rojas, M. & Satarug, S. The critical DNA damage by benzo(a)pyrene in lung tissues of smokers and approaches to preventing its formation. Toxicol. Lett. 198, 63–68 (2010).
Kuratsune, M., Yoshimura, T., Matsuzaka, J. & Yamaguchi, A. Yusho, a poisoning caused by rice oil contaminated with polychlorinated biphenyls. HSMHA Health Rep. 86, 1083–1091 (1971).
Horne, B. D. et al. Short-term elevation of fine particulate matter air pollution and acute lower respiratory infection. Am. J. Respir. Crit. Care Med. 198, 759–766 (2018).
Morgenstern, V. et al. Atopic diseases, allergic sensitization, and exposure to traffic-related air pollution in children. Am. J. Respir. Crit. Care Med. 177, 1331–1337 (2008).
Tauchi, M. et al. Constitutive expression of aryl hydrocarbon receptor in keratinocytes causes inflammatory skin lesions. Mol. Cell. Biol. 25, 9360–9368 (2005).
Edamitsu, T., Taguchi, K., Kobayashi, E. H., Okuyama, R. & Yamamoto, M. Aryl hydrocarbon receptor directly regulates artemin gene expression. Mol. Cell. Biol. 39, e00190-19 (2019).
Li, M. et al. Retinoid X receptor ablation in adult mouse keratinocytes generates an atopic dermatitis triggered by thymic stromal lymphopoietin. Proc. Natl Acad. Sci. USA 102, 14795–14800 (2005).
Yoo, J. et al. Spontaneous atopic dermatitis in mice expressing an inducible thymic stromal lymphopoietin transgene specifically in the skin. J. Exp. Med. 202, 541–549 (2005).
Imai, Y. et al. Skin-specific expression of IL-33 activates group 2 innate lymphoid cells and elicits atopic dermatitis-like inflammation in mice. Proc. Natl Acad. Sci. USA 110, 13921–13926 (2013).
Itoh, K. et al. An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements. Biochem. Biophys. Res. Commun. 236, 313–322 (1997).
Itoh, K. et al. Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain. Genes Dev. 13, 76–86 (1999).
Kobayashi, A. et al. Oxidative stress sensor Keap1 functions as an adaptor for Cul3-based E3 ligase to regulate proteasomal degradation of Nrf2. Mol. Cell. Biol. 24, 7130–7139 (2004).
Kobayashi, A. et al. Oxidative and electrophilic stresses activate Nrf2 through inhibition of ubiquitination activity of Keap1. Mol. Cell. Biol. 26, 221–229 (2006).
Iso, T., Suzuki, T., Baird, L. & Yamamoto, M. Absolute amounts and status of the Nrf2-Keap1-Cul3 complex within cells. Mol. Cell. Biol. 36, 3100–3112 (2016).
McMahon, M., Lamont, D. J., Beattie, K. A. & Hayes, J. D. Keap1 perceives stress via three sensors for the endogenous signaling molecules nitric oxide, zinc, and alkenals. Proc. Natl Acad. Sci. USA 107, 18838–18843 (2010).
Suzuki, T. et al. Molecular mechanism of cellular oxidative stress sensing by Keap1. Cell Rep. 28, 746–758.e4 (2019).
Suzuki, T., Motohashi, H. & Yamamoto, M. Toward clinical application of the Keap1–Nrf2 pathway. Trends Pharmacol. Sci. 34, 340–346 (2013).
Mitsuishi, Y. et al. Nrf2 redirects glucose and glutamine into anabolic pathways in metabolic reprogramming. Cancer Cell 22, 66–79 (2012).
Uruno, A. et al. Nrf2-mediated regulation of skeletal muscle glycogen metabolism. Mol. Cell. Biol. 36, 1655–1672 (2016).
Hirotsu, Y. et al. Nrf2–MafG heterodimers contribute globally to antioxidant and metabolic networks. Nucleic Acids Res. 40, 10228–10239 (2012).
Itoh, K. et al. Transcription factor Nrf2 regulates inflammation by mediating the effect of 15-deoxy-Δ12,14-prostaglandin J2. Mol. Cell. Biol. 24, 36–45 (2004).
Ishii, Y. et al. Transcription factor Nrf2 plays a pivotal role in protection against elastase-induced pulmonary inflammation and emphysema. J. Immunol. 175, 6968–6975 (2005).
Iizuka, T. et al. Nrf2-deficient mice are highly susceptible to cigarette smoke-induced emphysema. Genes Cells 10, 1113–1125 (2005).
Cho, H.-Y., Reddy, S. P. M., Yamamoto, M. & Kleeberger, S. R. The transcription factor NRF2 protects against pulmonary fibrosis. FASEB J. 18, 1258–1260 (2004).
Thimmulappa, R. K. et al. Nrf2 is a critical regulator of the innate immune response and survival during experimental sepsis. J. Clin. Invest. 116, 984–995 (2006).
Yoh, K. et al. Nrf2-deficient female mice develop lupus-like autoimmune nephritis. Kidney Int. 60, 1343–1353 (2001).
Okada, K. et al. Nrf2 inhibits hepatic iron accumulation and counteracts oxidative stress-induced liver injury in nutritional steatohepatitis. J. Gastroenterol. 47, 924–935 (2012).
Sharma, R. S. et al. Experimental nonalcoholic steatohepatitis and liver fibrosis are ameliorated by pharmacologic activation of Nrf2 (NF-E2 p45-related factor 2). Cell. Mol. Gastroenterol. Hepatol. 5, 367–398 (2018).
Hayashi, M. et al. Whole-body in vivo monitoring of inflammatory diseases exploiting human interleukin 6-luciferase transgenic mice. Mol. Cell. Biol. 35, 3590–3601 (2015).
Suzuki, T. et al. Systemic activation of NRF2 alleviates lethal autoimmune inflammation in scurfy mice. Mol. Cell. Biol. 37, e00063–17 (2017).
Nagashima, R. et al. Nrf2 suppresses allergic lung inflammation by attenuating the type 2 innate lymphoid cell response. J. Immunol. 202, 1331–1339 (2019).
Yagishita, Y., Uruno, A., Chartoumpekis, D. V., Kensler, T. W. & Yamamoto, M. Nrf2 represses the onset of type 1 diabetes in non-obese diabetic mice. J. Endocrinol. https://doi.org/10.1530/JOE-18-0355 (2019).
Cuadrado, A. et al. Therapeutic targeting of the NRF2 and KEAP1 partnership in chronic diseases. Nat. Rev. Drug Discov. 18, 295–317 (2019).
Goven, D. et al. Altered Nrf2/Keap1-Bach1 equilibrium in pulmonary emphysema. Thorax 63, 916–924 (2008).
Suzuki, M. et al. Down-regulated NF-E2–related factor 2 in pulmonary macrophages of aged smokers and patients with chronic obstructive pulmonary disease. Am. J. Respir. Cell Mol. Biol. 39, 673–682 (2008).
Kong, X. et al. Enhancing Nrf2 pathway by disruption of Keap1 in myeloid leukocytes protects against sepsis. Am. J. Respir. Crit. Care Med. 184, 928–938 (2011).
Keleku-Lukwete, N. et al. Nrf2 activation in myeloid cells and endothelial cells differentially mitigates sickle cell disease pathology in mice. Blood Adv. 3, 1285–1297 (2019).
Kobayashi, E. H. et al. Nrf2 suppresses macrophage inflammatory response by blocking proinflammatory cytokine transcription. Nat. Commun. 7, 11624 (2016).
Mittal, M., Siddiqui, M. R., Tran, K., Reddy, S. P. & Malik, A. B. Reactive oxygen species in inflammation and tissue injury. Antioxid. Redox Signal. 20, 1126–1167 (2014).
Keleku-Lukwete, N. et al. Amelioration of inflammation and tissue damage in sickle cell model mice by Nrf2 activation. Proc. Natl Acad. Sci. USA 112, 12169–12174 (2015).
Nagai, N. et al. Nrf2 is a critical modulator of the innate immune response in a model of uveitis. Free Radic. Biol. Med. 47, 300–306 (2009).
Mills, E. L. et al. Itaconate is an anti-inflammatory metabolite that activates Nrf2 via alkylation of KEAP1. Nature 556, 113–117 (2018).
Higashi, C. et al. The novel Nrf2 inducer TFM-735 ameliorates experimental autoimmune encephalomyelitis in mice. Eur. J. Pharmacol. 802, 76–84 (2017).
Dayalan Naidu, S. et al. C151 in KEAP1 is the main cysteine sensor for the cyanoenone class of NRF2 activators, irrespective of molecular size or shape. Sci. Rep. 8, 8037 (2018).
Uruno, A. et al. Nrf2 suppresses oxidative stress and inflammation in App knock-in Alzheimer’s disease model mice. Mol. Cell. Biol. 40, e00467-19 (2020).
Wheeler, M. A. et al. MAFG-driven astrocytes promote CNS inflammation. Nature 578, 593–599 (2020).
Turley, A. E., Zagorski, J. W. & Rockwell, C. E. The Nrf2 activator tBHQ inhibits T cell activation of primary human CD4 T cells. Cytokine 71, 289–295 (2015).
Rockwell, C. E., Zhang, M., Fields, P. E. & Klaassen, C. D. Th2 skewing by activation of Nrf2 in CD4+ T cells. J. Immunol. 188, 1630–1637 (2012).
Noel, S. et al. T lymphocyte–specific activation of Nrf2 protects from AKI. J. Am. Soc. Nephrol. 26, 2989–3000 (2015).
Sireesh, D., Dhamodharan, U., Ezhilarasi, K., Vijay, V. & Ramkumar, K. M. Association of NF-E2 related factor 2 (Nrf2) and inflammatory cytokines in recent onset type 2 diabetes mellitus. Sci. Rep. 8, 5126 (2018).
Zhao, M. et al. Nuclear factor erythroid 2-related factor 2 deficiency exacerbates lupus nephritis in B6/lpr mice by regulating Th17 cell function. Sci. Rep. 6, 38619 (2016).
Nadeem, A. et al. Nrf2 activator, sulforaphane ameliorates autism-like symptoms through suppression of Th17 related signaling and rectification of oxidant-antioxidant imbalance in periphery and brain of BTBR T+tf/J mice. Behav. Brain Res. 364, 213–224 (2019).
Pareek, T. K. et al. Triterpenoid modulation of IL-17 and Nrf-2 expression ameliorates neuroinflammation and promotes remyelination in autoimmune encephalomyelitis. Sci. Rep. 1, 201 (2011).
Li, B. et al. Sulforaphane ameliorates the development of experimental autoimmune encephalomyelitis by antagonizing oxidative stress and Th17-related inflammation in mice. Exp. Neurol. 250, 239–249 (2013).
Wu, Q. et al. Dimethyl fumarate selectively reduces memory T cells and shifts the balance between Th1/Th17 and Th2 in multiple sclerosis patients. J. Immunol. 198, 3069–3080 (2017).
Dinkova-Kostova, A. T. et al. Extremely potent triterpenoid inducers of the phase 2 response: correlations of protection against oxidant and inflammatory stress. Proc. Natl Acad. Sci. USA 102, 4584–4589 (2005).
Honda, T. et al. Synthetic oleanane and ursane triterpenoids with modified rings A and C: a series of highly active inhibitors of nitric oxide production in mouse macrophages. J. Med. Chem. 43, 4233–4246 (2000).
Sporn, M. B. et al. New synthetic triterpenoids: potent agents for prevention and treatment of tissue injury caused by inflammatory and oxidative stress. J. Nat. Prod. 74, 537–545 (2011).
de Zeeuw, D. et al. Bardoxolone methyl in type 2 diabetes and stage 4 chronic kidney disease. N. Engl. J. Med. 369, 2492–2503 (2013).
Zhang, Y., Talalay, P., Cho, C. G. & Posner, G. H. A major inducer of anticarcinogenic protective enzymes from broccoli: isolation and elucidation of structure. Proc. Natl Acad. Sci. USA 89, 2399–2403 (1992).
Fahey, J. W., Zhang, Y. & Talalay, P. Broccoli sprouts: an exceptionally rich source of inducers of enzymes that protect against chemical carcinogens. Proc. Natl Acad. Sci. USA 94, 10367–10372 (1997).
Bent, S. et al. Identification of urinary metabolites that correlate with clinical improvements in children with autism treated with sulforaphane from broccoli. Mol. Autism 9, 35 (2018).
Kensler, T. W. et al. Modulation of the metabolism of airborne pollutants by glucoraphanin-rich and sulforaphane-rich broccoli sprout beverages in Qidong, China. Carcinogenesis 33, 101–107 (2012).
Chen, J.-G. et al. Dose-dependent detoxication of the airborne pollutant benzene in a randomized trial of broccoli sprout beverage in Qidong, China. Am. J. Clin. Nutr. 110, 675–684 (2019).
Yagishita, Y., Fahey, J. W., Dinkova-Kostova, A. T. & Kensler, T. W. Broccoli or sulforaphane: is it the source or dose that matters? Molecules 24, 3595 (2019).
Takaya, K. et al. Validation of the multiple sensor mechanism of the KEAP1–NRF2 system. Free Radic. Biol. Med. 53, 817–827 (2012).
Cleasby, A. et al. Structure of the BTB domain of Keap1 and its interaction with the triterpenoid antagonist CDDO. PLoS ONE 9, e98896 (2014).
Saito, R. et al. Characterizations of three major cysteine sensors of Keap1 in stress response. Mol. Cell. Biol. 36, 271–284 (2016).
Jiang, Z.-Y. et al. Discovery of potent Keap1–Nrf2 protein–protein interaction inhibitor based on molecular binding determinants analysis. J. Med. Chem. 57, 2736–2745 (2014).
Lazzara, P. R. et al. Isoquinoline Kelch-like ECH-associated protein 1-nuclear factor (erythroid-derived 2)-like 2 (KEAP1–NRF2) inhibitors with high metabolic stability. J. Med. Chem. 63, 6547–6560 (2020).
Yamamoto, T. et al. Identification of polymorphisms in the promoter region of the human NRF2 gene. Biochem. Biophys. Res. Commun. 321, 72–79 (2004).
Marzec, J. M. et al. Functional polymorphisms in the transcription factor NRF2 in humans increase the risk of acute lung injury. FASEB J. 21, 2237–2246 (2007).
Cho, H.-Y. et al. Linkage analysis of susceptibility to hyperoxia. Nrf2 is a candidate gene. Am. J. Respir. Cell Mol. Biol. 26, 42–51 (2002).
Arisawa, T. et al. Nrf2 gene promoter polymorphism is associated with ulcerative colitis in a Japanese population. Hepatogastroenterology 55, 394–397 (2008).
Arisawa, T. et al. The relationship between Helicobacter pylori infection and promoter polymorphism of the Nrf2 gene in chronic gastritis. Int. J. Mol. Med. 19, 143–148 (2007).
Hua, C.-C. et al. Functional haplotypes in the promoter region of transcription factor Nrf2 in chronic obstructive pulmonary disease. Dis. Markers 28, 185–193 (2010).
Suzuki, T. et al. Regulatory nexus of synthesis and degradation deciphers cellular Nrf2 expression levels. Mol. Cell. Biol. 33, 2402–2412 (2013).
Pavlova, S. I. & Tao, L. Induction of vaginal Lactobacillus phages by the cigarette smoke chemical benzo[a]pyrene diol epoxide. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 466, 57–62 (2000).
Dean, J. H. et al. Selective immunosuppression resulting from exposure to the carcinogenic congener of benzopyrene in B6C3F1 mice. Clin. Exp. Immunol. 52, 199–206 (1983).
Ritz, B., Heinrich, J., Wjst, M., Wichmann, E. & Krause, C. Effect of cadmium body burden on immune response of school children. Arch. Environ. Health 53, 272–280 (1998).
Kozul, C. D., Ely, K. H., Enelow, R. I. & Hamilton, J. W. Low-dose arsenic compromises the immune response to influenza A infection in vivo. Environ. Health Perspect. 117, 1441–1447 (2009).
Queiroz, M. L. S. & Dantas, D. C. M. T lymphocytes in mercury-exposed workers. Immunopharmacol. Immunotoxicol. 19, 499–510 (1997).
Cook, J. A., Hoffmann, E. O. & Di Luzio, N. R. Influence of lead and cadmium on the susceptibility of rats to bacterial challenge. Proc. Soc. Exp. Biol. Med. 150, 741–747 (1975).
Acknowledgements
We thank T. O’Connor at Trinity College Dublin for critical reading and professional editing of the manuscript. This work was supported in part by MEXT/JSPS KAKENHI (19H05649 to M. Y. and 17KK0183 and 19K07340 to T. S.), the Platform Project for Supporting Drug Discovery and Life Science Research (Basis for Supporting Innovative Drug Discovery and Life Science Research (BINDS)) from AMED under grant no. JP20am0101095, the Project for Development of Innovative Research on Cancer Therapeutics (P-DIRECT) from AMED under grant no. JP20cm0106101, the Core Research for Evolutional Science and Technology (CREST) (chronic inflammation) from AMED, and the Takeda Science Foundation (T.S.).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Peer review information Zoltan Fehervari was the primary editor on this article and managed its editorial process and peer review in collaboration with the rest of the editorial team.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Suzuki, T., Hidaka, T., Kumagai, Y. et al. Environmental pollutants and the immune response. Nat Immunol 21, 1486–1495 (2020). https://doi.org/10.1038/s41590-020-0802-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41590-020-0802-6
This article is cited by
-
Occupational differences in personal care product use and urinary concentration of endocrine disrupting chemicals by gender
Journal of Exposure Science & Environmental Epidemiology (2023)
-
A pilot metabolomic study of drug interaction with the immune response to seasonal influenza vaccination
npj Vaccines (2023)
-
Environmental toxicant-mediated cardiovascular diseases: an insight into the mechanism and possible preventive strategy
Toxicology and Environmental Health Sciences (2023)
-
Chlorpyrifos induces apoptosis and necroptosis via the activation of CYP450s pathway mediated by nuclear receptors in LMH cells
Environmental Science and Pollution Research (2023)
-
One Pot Hydrothermal Synthesis and Application of Bright-yellow-emissive Carbon Quantum Dots in Hg2+ Detection
Journal of Fluorescence (2023)