The NK cell–cancer cycle: advances and new challenges in NK cell–based immunotherapies

Subjects

Abstract

Natural killer (NK) cells belong to the innate immune system and contribute to protecting the host through killing of infected, foreign, stressed or transformed cells. Additionally, via cellular cross-talk, NK cells orchestrate antitumor immune responses. Hence, significant efforts have been undertaken to exploit the therapeutic properties of NK cells in cancer. Current strategies in preclinical and clinical development include adoptive transfer therapies, direct stimulation, recruitment of NK cells into the tumor microenvironment (TME), blockade of inhibitory receptors that limit NK cell functions, and therapeutic modulation of the TME to enhance antitumor NK cell function. In this Review, we introduce the NK cell–cancer cycle to highlight recent advances in NK cell biology and to discuss the progress and problems of NK cell–based cancer immunotherapies.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Human and mouse NK cells.
Fig. 2: The NK cell–cancer cycle.
Fig. 3: Molecules that positively and negatively regulate the NK cell–cancer cycle.
Fig. 4

References

  1. 1.

    Vivier, E. et al. Innate lymphoid cells: 10 years on. Cell 174, 1054–1066 (2018).

    PubMed  CAS  Google Scholar 

  2. 2.

    Colonna, M. Innate lymphoid cells: diversity, plasticity, and unique functions in immunity. Immunity 48, 1104–1117 (2018).

    PubMed  PubMed Central  CAS  Google Scholar 

  3. 3.

    Chiossone, L., Dumas, P.-Y., Vienne, M. & Vivier, E. Natural killer cells and other innate lymphoid cells in cancer. Nat. Rev. Immunol. 18, 671–688 (2018).

    PubMed  CAS  Google Scholar 

  4. 4.

    López-Soto, A., Gonzalez, S., Smyth, M. J. & Galluzzi, L. Control of metastasis by NK cells. Cancer Cell 32, 135–154 (2017).

    PubMed  Google Scholar 

  5. 5.

    Gasteiger, G. & Rudensky, A. Y. Interactions between innate and adaptive lymphocytes. Nat. Rev. Immunol. 14, 631–639 (2014).

    PubMed  PubMed Central  CAS  Google Scholar 

  6. 6.

    Crinier, A. et al. High-dimensional single-cell analysis identifies organ-specific signatures and conserved NK cell subsets in humans and mice. Immunity 49, 971–986.e5 (2018).

    PubMed  PubMed Central  CAS  Google Scholar 

  7. 7.

    Collins, P. L. et al. Gene regulatory programs conferring phenotypic identities to human NK cells. Cell 176, 348–360.e12 (2019).

    PubMed  CAS  Google Scholar 

  8. 8.

    Frey, M. et al. Differential expression and function of L-selectin on CD56bright and CD56dim natural killer cell subsets. J. Immunol. 161, 400–408 (1998).

    PubMed  CAS  Google Scholar 

  9. 9.

    Sedlmayr, P. et al. Differential phenotypic properties of human peripheral blood CD56dim+ and CD56bright+ natural killer cell subpopulations. Int. Arch. Allergy Immunol. 110, 308–313 (1996).

    PubMed  CAS  Google Scholar 

  10. 10.

    Hayakawa, Y., Huntington, N. D., Nutt, S. L. & Smyth, M. J. Functional subsets of mouse natural killer cells. Immunol. Rev. 214, 47–55 (2006).

    PubMed  CAS  Google Scholar 

  11. 11.

    Hayakawa, Y. & Smyth, M. J. CD27 dissects mature NK cells into two subsets with distinct responsiveness and migratory capacity. J. Immunol. 176, 1517–1524 (2006).

    PubMed  CAS  Google Scholar 

  12. 12.

    Peng, H. & Tian, Z. Diversity of tissue-resident NK cells. Semin. Immunol. 31, 3–10 (2017).

    PubMed  CAS  Google Scholar 

  13. 13.

    Chen, D. S. & Mellman, I. Oncology meets immunology: the cancer-immunity cycle. Immunity 39, 1–10 (2013).

    PubMed  Google Scholar 

  14. 14.

    Carrega, P. et al. CD56brightperforinlow noncytotoxic human NK cells are abundant in both healthy and neoplastic solid tissues and recirculate to secondary lymphoid organs via afferent lymph. J. Immunol. 192, 3805–3815 (2014).

    PubMed  CAS  Google Scholar 

  15. 15.

    Wu, M., Mei, F., Liu, W. & Jiang, J. Comprehensive characterization of tumor infiltrating natural killer cells and clinical significance in hepatocellular carcinoma based on gene expression profiles. Biomed. Pharmacother. 121, 109637 (2020).

    PubMed  CAS  Google Scholar 

  16. 16.

    Nath, P. R. et al. Natural killer cell recruitment and activation are regulated by CD47 expression in the tumor microenvironment. Cancer Immunol. Res. 7, 1547–1561 (2019).

    PubMed  PubMed Central  Google Scholar 

  17. 17.

    Cursons, J. et al. A gene signature predicting natural killer cell infiltration and improved survival in melanoma patients. Cancer Immunol. Res. 7, 1162–1174 (2019).

    Google Scholar 

  18. 18.

    Barry, K. C. et al. A natural killer–dendritic cell axis defines checkpoint therapy–responsive tumor microenvironments. Nat. Med. 24, 1178–1191 (2018).

    PubMed  PubMed Central  CAS  Google Scholar 

  19. 19.

    Böttcher, J. P. et al. NK cells stimulate recruitment of cDC1 into the tumor microenvironment promoting cancer immune control. Cell 172, 1022–1037.e14 (2018).

    PubMed  PubMed Central  Google Scholar 

  20. 20.

    Ali, T. H. et al. Enrichment of CD56dimKIR+CD57+ highly cytotoxic NK cells in tumour-infiltrated lymph nodes of melanoma patients. Nat. Commun. 5, 5639 (2014).

    PubMed  PubMed Central  CAS  Google Scholar 

  21. 21.

    Takanami, I., Takeuchi, K. & Giga, M. The prognostic value of natural killer cell infiltration in resected pulmonary adenocarcinoma. J. Thorac. Cardiovasc. Surg. 121, 1058–1063 (2001).

    PubMed  CAS  Google Scholar 

  22. 22.

    Ishigami, S. et al. Prognostic value of intratumoral natural killer cells in gastric carcinoma. Cancer 88, 577–583 (2000).

    PubMed  CAS  Google Scholar 

  23. 23.

    Villegas, F. R. et al. Prognostic significance of tumor infiltrating natural killer cells subset CD57 in patients with squamous cell lung cancer. Lung Cancer 35, 23–28 (2002).

    PubMed  Google Scholar 

  24. 24.

    Soo, R. A. et al. Prognostic significance of immune cells in non-small cell lung cancer: meta-analysis. Oncotarget 9, 24801–24820 (2018).

    PubMed  PubMed Central  Google Scholar 

  25. 25.

    Muntasell, A. et al. NK cell infiltrates and HLA class I expression in primary HER2+ breast cancer predict and uncouple pathological response and disease-free survival. Clin. Cancer Res. 25, 1535–1545 (2019).

    CAS  Google Scholar 

  26. 26.

    Remark, R. et al. Characteristics and clinical impacts of the immune environments in colorectal and renal cell carcinoma lung metastases: influence of tumor origin. Clin. Cancer Res. 19, 4079–4091 (2013).

    PubMed  CAS  Google Scholar 

  27. 27.

    Melsen, J. E., Lugthart, G., Lankester, A. C. & Schilham, M. W. Human circulating and tissue-resident CD56bright natural killer cell populations. Front. Immunol. 7, 262 (2016).

    PubMed  PubMed Central  Google Scholar 

  28. 28.

    Bernardini, G., Antonangeli, F., Bonanni, V. & Santoni, A. Dysregulation of chemokine/chemokine receptor axes and NK cell tissue localization during diseases. Front. Immunol. 7, 402 (2016).

    PubMed  PubMed Central  Google Scholar 

  29. 29.

    Lima, M. et al. Chemokine receptor expression on normal blood CD56+ NK-cells elucidates cell partners that comigrate during the innate and adaptive immune responses and identifies a transitional NK-cell population. J. Immunol. Res. 2015, 839684 (2015).

    PubMed  PubMed Central  Google Scholar 

  30. 30.

    Morandi, F. et al. Soluble HLA-G dampens CD94/NKG2A expression and function and differentially modulates chemotaxis and cytokine and chemokine secretion in CD56bright and CD56dim NK cells. Blood 118, 5840–5850 (2011).

    PubMed  CAS  Google Scholar 

  31. 31.

    Grégoire, C. et al. The trafficking of natural killer cells. Immunol. Rev. 220, 169–182 (2007).

    PubMed  PubMed Central  Google Scholar 

  32. 32.

    Parolini, S. et al. The role of chemerin in the colocalization of NK and dendritic cell subsets into inflamed tissues. Blood 109, 3625–3632 (2007).

    PubMed  CAS  Google Scholar 

  33. 33.

    Campbell, J. J. et al. Unique subpopulations of CD56+ NK and NK-T peripheral blood lymphocytes identified by chemokine receptor expression repertoire. J. Immunol. 166, 6477–6482 (2001).

    PubMed  CAS  Google Scholar 

  34. 34.

    Polentarutti, N. et al. IL-2-regulated expression of the monocyte chemotactic protein-1 receptor (CCR2) in human NK cells: characterization of a predominant 3.4-kilobase transcript containing CCR2B and CCR2A sequences. J. Immunol. 158, 2689–2694 (1997).

    PubMed  CAS  Google Scholar 

  35. 35.

    Allavena, P. et al. Induction of natural killer cell migration by monocyte chemotactic protein-1, -2 and -3. Eur. J. Immunol. 24, 3233–3236 (1994).

    PubMed  CAS  Google Scholar 

  36. 36.

    Ponzetta, A. et al. Multiple myeloma impairs bone marrow localization of effector natural killer cells by altering the chemokine microenvironment. Cancer Res. 75, 4766–4777 (2015).

    PubMed  CAS  Google Scholar 

  37. 37.

    Marquardt, N., Wilk, E., Pokoyski, C., Schmidt, R. E. & Jacobs, R. Murine CXCR3+CD27bright NK cells resemble the human CD56bright NK-cell population. Eur. J. Immunol. 40, 1428–1439 (2010).

    PubMed  CAS  Google Scholar 

  38. 38.

    de Andrade, L. F. et al. Discovery of specialized NK cell populations infiltrating human melanoma metastases. JCI Insight 4, e133103 (2019).

    PubMed Central  Google Scholar 

  39. 39.

    Carrega, P. et al. Natural killer cells infiltrating human nonsmall-cell lung cancer are enriched in CD56brightCD16 cells and display an impaired capability to kill tumor cells. Cancer 112, 863–875 (2008).

    PubMed  Google Scholar 

  40. 40.

    Przewoznik, M. et al. Recruitment of natural killer cells in advanced stages of endogenously arising B-cell lymphoma: implications for therapeutic cell transfer. J. Immunother. 35, 217–222 (2012).

    PubMed  CAS  Google Scholar 

  41. 41.

    Wendel, M., Galani, I. E., Suri-Payer, E. & Cerwenka, A. Natural killer cell accumulation in tumors is dependent on IFN-γ and CXCR3 ligands. Cancer Res. 68, 8437–8445 (2008).

    PubMed  CAS  Google Scholar 

  42. 42.

    Voshtani, R. et al. Progranulin promotes melanoma progression by inhibiting natural killer cell recruitment to the tumor microenvironment. Cancer Lett. 465, 24–35 (2019).

    PubMed  CAS  Google Scholar 

  43. 43.

    Qi, L. et al. Interleukin-33 activates and recruits natural killer cells to inhibit pulmonary metastatic cancer development. Int. J. Cancer 146, 1421–1434 (2020).

    PubMed  CAS  Google Scholar 

  44. 44.

    Gao, X. et al. Tumoral expression of IL-33 inhibits tumor growth and modifies the tumor microenvironment through CD8+ T and NK cells. J. Immunol. 194, 438–445 (2015).

    PubMed  CAS  Google Scholar 

  45. 45.

    O’Sullivan, T. et al. Interleukin-17D mediates tumor rejection through recruitment of natural killer cells. Cell Rep. 7, 989–998 (2014).

    PubMed  PubMed Central  Google Scholar 

  46. 46.

    Gao, J.-Q. et al. Antitumor effect by interleukin-11 receptor α-locus chemokine/CCL27, introduced into tumor cells through a recombinant adenovirus vector. Cancer Res. 63, 4420–4425 (2003).

    PubMed  CAS  Google Scholar 

  47. 47.

    Gao, J.-Q. et al. NK cells are migrated and indispensable in the antitumor activity induced by CCL27 gene therapy. Cancer Immunol. Immunother. 58, 291–299 (2009).

    PubMed  CAS  Google Scholar 

  48. 48.

    Degos, C. et al. Endometrial tumor microenvironment alters human NK cell recruitment, and resident NK cell phenotype and function. Front. Immunol. 10, 877 (2019).

    PubMed  PubMed Central  CAS  Google Scholar 

  49. 49.

    Lin, H.-Y. et al. CCR10 activation stimulates the invasion and migration of breast cancer cells through the ERK1/2/MMP-7 signaling pathway. Int. Immunopharmacol. 51, 124–130 (2017).

    PubMed  CAS  Google Scholar 

  50. 50.

    Simonetti, O. et al. Potential role of CCL27 and CCR10 expression in melanoma progression and immune escape. Eur. J. Cancer 42, 1181–1187 (2006).

    PubMed  CAS  Google Scholar 

  51. 51.

    Park, M. H., Lee, J. S. & Yoon, J. H. High expression of CX3CL1 by tumor cells correlates with a good prognosis and increased tumor-infiltrating CD8+ T cells, natural killer cells, and dendritic cells in breast carcinoma. J. Surg. Oncol. 106, 386–392 (2012).

    PubMed  CAS  Google Scholar 

  52. 52.

    Hyakudomi, M. et al. Increased expression of Fractalkine is correlated with a better prognosis and an increased number of both CD8+ T cells and natural killer cells in gastric adenocarcinoma. Ann. Surg. Oncol. 15, 1775–1782 (2008).

    PubMed  Google Scholar 

  53. 53.

    Ohta, M. et al. The high expression of Fractalkine results in a better prognosis for colorectal cancer patients. Int. J. Oncol. 26, 41–47 (2005).

    PubMed  CAS  Google Scholar 

  54. 54.

    Chen, E.-B. et al. The miR-561-5p/CX3CL1 signaling axis regulates pulmonary metastasis in hepatocellular carcinoma involving CX3CR1+ natural killer cells infiltration. Theranostics 9, 4779–4794 (2019).

    PubMed  PubMed Central  CAS  Google Scholar 

  55. 55.

    Liu, J. et al. Increased CX3CL1 mRNA expression level is a positive prognostic factor in patients with lung adenocarcinoma. Oncol. Lett. 17, 4877–4890 (2019).

    PubMed  PubMed Central  CAS  Google Scholar 

  56. 56.

    Castriconi, R. et al. Neuroblastoma-derived TGF-β1 modulates the chemokine receptor repertoire of human resting NK cells. J. Immunol. 190, 5321–5328 (2013).

    PubMed  CAS  Google Scholar 

  57. 57.

    Castriconi, R. et al. Molecular mechanisms directing migration and retention of natural killer cells in human tissues. Front. Immunol. 9, 2324 (2018).

    PubMed  PubMed Central  Google Scholar 

  58. 58.

    Regis, S. et al. TGF-β1 downregulates the expression of CX3CR1 by inducing miR-27a-5p in primary human NK cells. Front. Immunol. 8, 868 (2017).

    PubMed  PubMed Central  Google Scholar 

  59. 59.

    Carosella, E. D., Rouas-Freiss, N., Tronik-Le Roux, D., Moreau, P. & LeMaoult, J. In Adv. Immunol. Vol. 127 (ed. Alt, F. W.) 33–144 (Science Direct, 2015).

  60. 60.

    Lindaman, A., Dowden, A. & Zavazava, N. Soluble HLA-G molecules induce apoptosis in natural killer cells. Am. J. Reprod. Immunol. 56, 68–76 (2006).

    PubMed  CAS  Google Scholar 

  61. 61.

    Lesport, E. et al. Human melanoma cell secreting human leukocyte antigen-G5 inhibit natural killer cell cytotoxicity by impairing lytic granules polarization toward target cell. Hum. Immunol. 70, 1000–1005 (2009).

    PubMed  CAS  Google Scholar 

  62. 62.

    Feng, M. et al. Phagocytosis checkpoints as new targets for cancer immunotherapy. Nat. Rev. Cancer 19, 568–586 (2019).

    PubMed  PubMed Central  CAS  Google Scholar 

  63. 63.

    Hagenaars, M. et al. Characteristics of tumor infiltration by adoptively transferred and endogenous natural-killer cells in a syngeneic rat model: implications for the mechanism behind antitumor responses. Int. J. Cancer 78, 783–789 (1998).

    PubMed  CAS  Google Scholar 

  64. 64.

    Morvan, M. G. & Lanier, L. L. NK cells and cancer: you can teach innate cells new tricks. Nat. Rev. Cancer 16, 7–19 (2016).

    CAS  Google Scholar 

  65. 65.

    Shifrin, N., Raulet, D. H. & Ardolino, M. NK cell self tolerance, responsiveness and missing self recognition. Semin. Immunol. 26, 138–144 (2014).

    PubMed  PubMed Central  CAS  Google Scholar 

  66. 66.

    Raulet, D. H., Vance, R. E. & McMahon, C. W. Regulation of the natural killer cell receptor repertoire. Annu. Rev. Immunol. 19, 291–330 (2001).

    PubMed  CAS  Google Scholar 

  67. 67.

    Vivier, E., Nunès, J. A. & Vély, F. Natural killer cell signaling pathways. Science 306, 1517–1519 (2004).

    PubMed  CAS  Google Scholar 

  68. 68.

    Braud, V. M. et al. HLA-E binds to natural killer cell receptors CD94/NKG2A, B and C. Nature 391, 795–799 (1998).

    PubMed  CAS  Google Scholar 

  69. 69.

    Vance, R. E., Kraft, J. R., Altman, J. D., Jensen, P. E. & Raulet, D. H. Mouse CD94/NKG2A is a natural killer cell receptor for the nonclassical major histocompatibility complex (MHC) class I molecule Qa-1b. J. Exp. Med. 188, 1841–1848 (1998).

    PubMed  PubMed Central  CAS  Google Scholar 

  70. 70.

    Barrow, A. D., Martin, C. J. & Colonna, M. The natural cytotoxicity receptors in health and disease. Front. Immunol. 10, 909 (2019).

    PubMed  PubMed Central  CAS  Google Scholar 

  71. 71.

    Brandt, C. S. et al. The B7 family member B7-H6 is a tumor cell ligand for the activating natural killer cell receptor NKp30 in humans. J. Exp. Med. 206, 1495–1503 (2009).

    PubMed  PubMed Central  CAS  Google Scholar 

  72. 72.

    Pogge von Strandmann, E. et al. Human leukocyte antigen-B-associated transcript 3 is released from tumor cells and engages the NKp30 receptor on natural killer cells. Immunity 27, 965–974 (2007).

    PubMed  CAS  Google Scholar 

  73. 73.

    Welte, S., Kuttruff, S., Waldhauer, I. & Steinle, A. Mutual activation of natural killer cells and monocytes mediated by NKp80-AICL interaction. Nat. Immunol. 7, 1334–1342 (2006).

    PubMed  CAS  Google Scholar 

  74. 74.

    Barrow, A. D. et al. Natural killer cells control tumor growth by sensing a growth factor. Cell 172, 534–548.e19 (2018).

    CAS  Google Scholar 

  75. 75.

    Lee, S. C., Srivastava, R. M., López-Albaitero, A., Ferrone, S. & Ferris, R. L. Natural killer (NK): dendritic cell (DC) cross talk induced by therapeutic monoclonal antibody triggers tumor antigen-specific T cell immunity. Immunol. Res. 50, 248–254 (2011).

    PubMed  PubMed Central  CAS  Google Scholar 

  76. 76.

    Gaggero, S. et al. Nidogen-1 is a novel extracellular ligand for the NKp44 activating receptor. Oncoimmunology 7, e1470730 (2018).

    PubMed  PubMed Central  Google Scholar 

  77. 77.

    Diefenbach, A. et al. Selective associations with signaling proteins determine stimulatory versus costimulatory activity of NKG2D. Nat. Immunol. 3, 1142–1149 (2002).

    PubMed  CAS  Google Scholar 

  78. 78.

    Gilfillan, S., Ho, E. L., Cella, M., Yokoyama, W. M. & Colonna, M. NKG2D recruits two distinct adapters to trigger NK cell activation and costimulation. Nat. Immunol. 3, 1150–1155 (2002).

    PubMed  CAS  Google Scholar 

  79. 79.

    Cerwenka, A. et al. Retinoic acid early inducible genes define a ligand family for the activating NKG2D receptor in mice. Immunity 12, 721–727 (2000).

    CAS  Google Scholar 

  80. 80.

    Diefenbach, A., Jensen, E. R., Jamieson, A. M. & Raulet, D. H. Rae1 and H60 ligands of the NKG2D receptor stimulate tumour immunity. Nature 413, 165–171 (2001).

    PubMed  PubMed Central  CAS  Google Scholar 

  81. 81.

    Urlaub, D., Höfer, K., Müller, M.-L. & Watzl, C. LFA-1 activation in NK cells and their subsets: influence of receptors, maturation, and cytokine stimulation. J. Immunol. 198, 1944–1951 (2017).

    CAS  Google Scholar 

  82. 82.

    Martinet, L. et al. DNAM-1 expression marks an alternative program of NK cell maturation. Cell Rep. 11, 85–97 (2015).

    PubMed  CAS  Google Scholar 

  83. 83.

    Chan, C. J. et al. The receptors CD96 and CD226 oppose each other in the regulation of natural killer cell functions. Nat. Immunol. 15, 431–438 (2014).

    CAS  Google Scholar 

  84. 84.

    Baginska, J. et al. The critical role of the tumor microenvironment in shaping natural killer cell-mediated antitumor immunity. Front. Immunol. 4, 490 (2013).

    PubMed  PubMed Central  Google Scholar 

  85. 85.

    Stiff, A. et al. Nitric oxide production by myeloid-derived suppressor cells plays a role in impairing Fc receptor–mediated natural killer cell function. Clin. Cancer Res. 24, 1891–1904 (2018).

    PubMed  PubMed Central  CAS  Google Scholar 

  86. 86.

    Viel, S. et al. TGF-β inhibits the activation and functions of NK cells by repressing the mTOR pathway. Sci. Signal 9, ra19 (2016).

    PubMed  Google Scholar 

  87. 87.

    Gao, Y. et al. Tumor immunoevasion by the conversion of effector NK cells into type 1 innate lymphoid cells. Nat. Immunol. 18, 1004–1015 (2017).

    CAS  Google Scholar 

  88. 88.

    Krzywinska, E. et al. Loss of HIF-1α in natural killer cells inhibits tumour growth by stimulating non-productive angiogenesis. Nat. Commun. 8, 1597 (2017).

    PubMed  PubMed Central  Google Scholar 

  89. 89.

    Michelet, X. et al. Metabolic reprogramming of natural killer cells in obesity limits antitumor responses. Nat. Immunol. 19, 1330–1340 (2018).

    PubMed  CAS  Google Scholar 

  90. 90.

    O’Brien, K. L. & Finlay, D. K. Immunometabolism and natural killer cell responses. Nat. Rev. Immunol. 19, 282–290 (2019).

    PubMed  Google Scholar 

  91. 91.

    Skak, K., Frederiksen, K. S. & Lundsgaard, D. Interleukin-21 activates human natural killer cells and modulates their surface receptor expression. Immunology 123, 575–583 (2008).

    PubMed  PubMed Central  CAS  Google Scholar 

  92. 92.

    Swann, J. B. et al. Type I IFN contributes to NK cell homeostasis, activation, and antitumor function. J. Immunol. 178, 7540–7549 (2007).

    PubMed  CAS  Google Scholar 

  93. 93.

    Souza-Fonseca-Guimaraes, F. et al. NK cells require IL-28R for optimal in vivo activity. Proc. Natl Acad. Sci. USA 112, E2376–E2384 (2015).

    PubMed  CAS  Google Scholar 

  94. 94.

    Rajagopalan, S. HLA-G-mediated NK cell senescence promotes vascular remodeling: implications for reproduction. Cell Mol. Immunol. 11, 460–466 (2014).

    PubMed  PubMed Central  CAS  Google Scholar 

  95. 95.

    Molfetta, R. et al. c-Cbl regulates MICA- but not ULBP2-induced NKG2D down-modulation in human NK cells. Eur. J. Immunol. 44, 2761–2770 (2014).

    PubMed  CAS  Google Scholar 

  96. 96.

    Deng, W. et al. A shed NKG2D ligand that promotes natural killer cell activation and tumor rejection. Science 348, 136–139 (2015).

    PubMed  PubMed Central  CAS  Google Scholar 

  97. 97.

    Imai, K., Matsuyama, S., Miyake, S., Suga, K. & Nakachi, K. Natural cytotoxic activity of peripheral-blood lymphocytes and cancer incidence: an 11-year follow-up study of a general population. Lancet 356, 1795–1799 (2000).

    PubMed  CAS  Google Scholar 

  98. 98.

    Melaiu, O., Lucarini, V., Cifaldi, L. & Fruci, D. Influence of the tumor microenvironment on NK cell function in solid tumors. Front. Immunol. 10, 3038 (2019).

    PubMed  Google Scholar 

  99. 99.

    Peritt, D. et al. Differentiation of human NK cells into NK1 and NK2 subsets. J. Immunol. 161, 5821–5824 (1998).

    PubMed  CAS  Google Scholar 

  100. 100.

    Alspach, E., Lussier, D. M. & Schreiber, R. D. Interferon γ and its important roles in promoting and inhibiting spontaneous and therapeutic cancer immunity. Cold Spring Harb. Perspect. Biol. 11, a028480 (2019).

    PubMed  CAS  Google Scholar 

  101. 101.

    Burke, J. D. & Young, H. A. IFN-γ: a cytokine at the right time, is in the right place. Semin. Immunol. 43, 101280 (2019).

    PubMed  PubMed Central  Google Scholar 

  102. 102.

    Schreiber, R. D., Hicks, L. J., Celada, A., Buchmeier, N. A. & Gray, P. W. Monoclonal antibodies to murine gamma-interferon which differentially modulate macrophage activation and antiviral activity. J. Immunol. 134, 1609–1618 (1985).

    PubMed  CAS  Google Scholar 

  103. 103.

    Pan, J. et al. Interferon-γ is an autocrine mediator for dendritic cell maturation. Immunol. Lett. 94, 141–151 (2004).

    PubMed  CAS  Google Scholar 

  104. 104.

    Kelly, J. M. et al. Induction of tumor-specific T cell memory by NK cell-mediated tumor rejection. Nat. Immunol. 3, 83–90 (2002).

    PubMed  CAS  Google Scholar 

  105. 105.

    Cerwenka, A., Baron, J. L. & Lanier, L. L. Ectopic expression of retinoic acid early inducible-1 gene (RAE-1) permits natural killer cell-mediated rejection of a MHC class I-bearing tumor in vivo. Proc. Natl Acad. Sci. USA 98, 11521–11526 (2001).

    PubMed  CAS  Google Scholar 

  106. 106.

    Mocikat, R. et al. Natural killer cells activated by MHC class Ilow targets prime dendritic cells to induce protective CD8 T cell responses. Immunity 19, 561–569 (2003).

    PubMed  CAS  Google Scholar 

  107. 107.

    Morandi, B. et al. NK cells provide helper signal for CD8+ T cells by inducing the expression of membrane-bound IL-15 on DCs. Int. Immunol. 21, 599–606 (2009).

    PubMed  CAS  Google Scholar 

  108. 108.

    Walzer, T., Dalod, M., Robbins, S. H., Zitvogel, L. & Vivier, E. Natural-killer cells and dendritic cells: “l’union fait la force”. Blood 106, 2252–2258 (2005).

    PubMed  CAS  Google Scholar 

  109. 109.

    Shankaran, V. et al. IFNγ and lymphocytes prevent primary tumour development and shape tumour immunogenicity. Nature 410, 1107–1111 (2001).

    CAS  Google Scholar 

  110. 110.

    Kaplan, D. H. et al. Demonstration of an interferon γ-dependent tumor surveillance system in immunocompetent mice. Proc. Natl Acad. Sci. USA 95, 7556–7561 (1998).

    PubMed  CAS  Google Scholar 

  111. 111.

    Bander, N. H. et al. MHC class I and II expression in prostate carcinoma and modulation by interferon-alpha and -gamma. Prostate 33, 233–239 (1997).

    PubMed  CAS  Google Scholar 

  112. 112.

    Seliger, B. et al. IFN-γ-mediated coordinated transcriptional regulation of the human TAP-1 and LMP-2 genes in human renal cell carcinoma. Clin. Cancer Res. 3, 573–578 (1997).

    PubMed  CAS  Google Scholar 

  113. 113.

    Hisamatsu, H. et al. Newly identified pair of proteasomal subunits regulated reciprocally by interferon γ. J. Exp. Med. 183, 1807–1816 (1996).

    PubMed  CAS  Google Scholar 

  114. 114.

    Castro, F., Cardoso, A. P., Gonçalves, R. M., Serre, K. & Oliveira, M. J. Interferon-gamma at the crossroads of tumor immune surveillance or evasion. Front. Immunol. 9, 847 (2018).

    PubMed  PubMed Central  Google Scholar 

  115. 115.

    Reschner, A., Hubert, P., Delvenne, P., Boniver, J. & Jacobs, N. Innate lymphocyte and dendritic cell cross-talk: a key factor in the regulation of the immune response. Clin. Exp. Immunol. 152, 219–226 (2008).

    PubMed  PubMed Central  CAS  Google Scholar 

  116. 116.

    Wallace, M. E. & Smyth, M. J. The role of natural killer cells in tumor control—effectors and regulators of adaptive immunity. Springe. Semin. Immunopathol. 27, 49–64 (2005).

    Google Scholar 

  117. 117.

    Wculek, S. K. et al. Dendritic cells in cancer immunology and immunotherapy. Nat. Rev. Immunol. 20, 7–24 (2020).

    PubMed  CAS  Google Scholar 

  118. 118.

    Carbone, E. et al. Recognition of autologous dendritic cells by human NK cells. Eur. J. Immunol. 29, 4022–4029 (1999).

    PubMed  CAS  Google Scholar 

  119. 119.

    Wilson, J. L. et al. Targeting of human dendritic cells by autologous NK cells. J. Immunol. 163, 6365–6370 (1999).

    PubMed  CAS  Google Scholar 

  120. 120.

    Fernandez, N. C. et al. Dendritic cells directly trigger NK cell functions: cross-talk relevant in innate antitumor immune responses in vivo. Nat. Med. 5, 405–411 (1999).

    PubMed  CAS  Google Scholar 

  121. 121.

    Della Chiesa, M. et al. The natural killer cell-mediated killing of autologous dendritic cells is confined to a cell subset expressing CD94/NKG2A, but lacking inhibitory killer Ig-like receptors. Eur. J. Immunol. 33, 1657–1666 (2003).

    PubMed  Google Scholar 

  122. 122.

    Ferlazzo, G. et al. The interaction between NK cells and dendritic cells in bacterial infections results in rapid induction of NK cell activation and in the lysis of uninfected dendritic cells. Eur. J. Immunol. 33, 306–313 (2003).

    PubMed  CAS  Google Scholar 

  123. 123.

    Piccioli, D., Sbrana, S., Melandri, E. & Valiante, N. M. Contact-dependent stimulation and inhibition of dendritic cells by natural killer cells. J. Exp. Med. 195, 335–341 (2002).

    PubMed  PubMed Central  CAS  Google Scholar 

  124. 124.

    Adam, C. et al. DC-NK cell cross talk as a novel CD4+ T-cell-independent pathway for antitumor CTL induction. Blood 106, 338–344 (2005).

    PubMed  CAS  Google Scholar 

  125. 125.

    Broz, M. L. et al. Dissecting the tumor myeloid compartment reveals rare activating antigen-presenting cells critical for T cell immunity. Cancer Cell 26, 638–652 (2014).

    PubMed  PubMed Central  CAS  Google Scholar 

  126. 126.

    Liu, K. & Nussenzweig, M. C. Origin and development of dendritic cells. Immunol. Rev. 234, 45–54 (2010).

    PubMed  CAS  Google Scholar 

  127. 127.

    Pulendran, B. et al. Distinct dendritic cell subsets differentially regulate the class of immune response in vivo. Proc. Natl Acad. Sci. USA 96, 1036–1041 (1999).

    PubMed  CAS  Google Scholar 

  128. 128.

    Jahchan, N. S. et al. Tuning the tumor myeloid microenvironment to fight cancer. Front. Immunol. 10, 1611 (2019).

    PubMed  PubMed Central  CAS  Google Scholar 

  129. 129.

    Böttcher, J. P. & Reis e Sousa, C. The role of type 1 conventional dendritic cells in cancer immunity. Trends Cancer 4, 784–792 (2018).

    PubMed  PubMed Central  Google Scholar 

  130. 130.

    Broz, M. L. & Krummel, M. F. The emerging understanding of myeloid cells as partners and targets in tumor rejection. Cancer Immunol. Res. 3, 313–319 (2015).

    PubMed  PubMed Central  Google Scholar 

  131. 131.

    Shimasaki, N., Jain, A. & Campana, D. NK cells for cancer immunotherapy. Nat. Rev. Drug Discov. 19, 200–218 (2020).

    CAS  Google Scholar 

  132. 132.

    Bachanova, V. et al. Haploidentical natural killer cells induce remissions in non-Hodgkin lymphoma patients with low levels of immune-suppressor cells. Cancer Immunol. Immunother. 67, 483–494 (2018).

    PubMed  CAS  Google Scholar 

  133. 133.

    Björklund, A. T. et al. Complete remission with reduction of high-risk clones following haploidentical NK-cell therapy against MDS and AML. Clin. Cancer Res. 24, 1834–1844 (2018).

    Google Scholar 

  134. 134.

    Parihar, R. et al. NK cells expressing a chimeric activating receptor eliminate MDSCs and rescue impaired CAR-T cell activity against solid tumors. Cancer Immunol. Res. 7, 363–375 (2019).

    PubMed  PubMed Central  CAS  Google Scholar 

  135. 135.

    Chang, Y.-H. et al. A chimeric receptor with NKG2D specificity enhances natural killer cell activation and killing of tumor cells. Cancer Res. 73, 1777–1786 (2013).

    PubMed  CAS  Google Scholar 

  136. 136.

    Kremer, V. et al. Genetic engineering of human NK cells to express CXCR2 improves migration to renal cell carcinoma. J. Immunother. Cancer 5, 73 (2017).

    PubMed  PubMed Central  Google Scholar 

  137. 137.

    Imamura, M. et al. Autonomous growth and increased cytotoxicity of natural killer cells expressing membrane-bound interleukin-15. Blood 124, 1081–1088 (2014).

    PubMed  CAS  Google Scholar 

  138. 138.

    Kamiya, T., Seow, S. V., Wong, D., Robinson, M. & Campana, D. Blocking expression of inhibitory receptor NKG2A overcomes tumor resistance to NK cells. J. Clin. Invest. 129, 2094–2106 (2019).

    PubMed  PubMed Central  Google Scholar 

  139. 139.

    Afolabi, L. O., Adeshakin, A. O., Sani, M. M., Bi, J. & Wan, X. Genetic reprogramming for NK cell cancer immunotherapy with CRISPR/Cas9. Immunology 158, 63–69 (2019).

    PubMed  CAS  Google Scholar 

  140. 140.

    Imai, C., Iwamoto, S. & Campana, D. Genetic modification of primary natural killer cells overcomes inhibitory signals and induces specific killing of leukemic cells. Blood 106, 376–383 (2005).

    PubMed  PubMed Central  CAS  Google Scholar 

  141. 141.

    Margolin, K. et al. Phase I trial of ALT-803, a novel recombinant IL15 complex, in patients with advanced solid tumors. Clin. Cancer Res. 24, 5552–5561 (2018).

    PubMed  PubMed Central  CAS  Google Scholar 

  142. 142.

    Liu, E. et al. Use of CAR-transduced natural killer cells in CD19-positive lymphoid tumors. N. Engl. J. Med. 382, 545–553 (2020).

    CAS  Google Scholar 

  143. 143.

    O’Donnell, J. S., Teng, M. W. L. & Smyth, M. J. Cancer immunoediting and resistance to T cell-based immunotherapy. Nat. Rev. Clin. Oncol. 16, 151–167 (2019).

    PubMed  Google Scholar 

  144. 144.

    Bi, J. & Tian, Z. NK cell dysfunction and checkpoint immunotherapy. Front. Immunol. 10, 1999 (2019).

    PubMed  PubMed Central  CAS  Google Scholar 

  145. 145.

    Minetto, P. et al. Harnessing NK cells for cancer treatment. Front. Immunol. 10, 2836 (2019).

    PubMed  PubMed Central  Google Scholar 

  146. 146.

    Beldi-Ferchiou, A. & Caillat-Zucman, S. Control of NK cell activation by immune checkpoint molecules. Int. J. Mol. Sci. 18, 2129 (2017).

    Google Scholar 

  147. 147.

    Romagné, F. et al. Preclinical characterization of 1-7F9, a novel human anti-KIR receptor therapeutic antibody that augments natural killer–mediated killing of tumor cells. Blood 114, 2667–2677 (2009).

    PubMed  PubMed Central  Google Scholar 

  148. 148.

    Benson, D. M. Jr. et al. A phase I trial of the anti-KIR antibody IPH2101 and lenalidomide in patients with relapsed/refractory multiple myeloma. Clin. Cancer Res. 21, 4055–4061 (2015).

    PubMed  PubMed Central  CAS  Google Scholar 

  149. 149.

    Benson, D. M. Jr. et al. A phase 1 trial of the anti-KIR antibody IPH2101 in patients with relapsed/refractory multiple myeloma. Blood 120, 4324–4333 (2012).

    PubMed  PubMed Central  CAS  Google Scholar 

  150. 150.

    Guillerey, C., Huntington, N. D. & Smyth, M. J. Targeting natural killer cells in cancer immunotherapy. Nat. Immunol. 17, 1025–1036 (2016).

    CAS  Google Scholar 

  151. 151.

    Korde, N. et al. A phase II trial of pan-KIR2D blockade with IPH2101 in smoldering multiple myeloma. Haematologica 99, e81–e83 (2014).

    PubMed  PubMed Central  CAS  Google Scholar 

  152. 152.

    Carlsten, M. et al. Checkpoint inhibition of KIR2D with the monoclonal antibody IPH2101 induces contraction and hyporesponsiveness of NK cells in patients with myeloma. Clin. Cancer Res. 22, 5211–5222 (2016).

    PubMed  PubMed Central  CAS  Google Scholar 

  153. 153.

    Felices, M. & Miller, J. S. Targeting KIR blockade in multiple myeloma: trouble in checkpoint paradise? Clin. Cancer Res. 22, 5161–5163 (2016).

    PubMed  PubMed Central  CAS  Google Scholar 

  154. 154.

    van Hall, T. et al. Monalizumab: inhibiting the novel immune checkpoint NKG2A. J. Immunother. Cancer 7, 263 (2019).

    PubMed  PubMed Central  Google Scholar 

  155. 155.

    Haanen, J. B. & Cerundolo, V. NKG2A, a new kid on the immune checkpoint block. Cell 175, 1720–1722 (2018).

    PubMed  CAS  Google Scholar 

  156. 156.

    van Montfoort, N. et al. NKG2A blockade potentiates CD8 T cell immunity induced by cancer vaccines. Cell 175, 1744–1755.e15 (2018).

    PubMed  PubMed Central  Google Scholar 

  157. 157.

    André, P. et al. Anti-NKG2A mAb is a checkpoint inhibitor that promotes antitumor immunity by unleashing both T and NK cells. Cell 175, 1731–1743.e13 (2018).

    PubMed  PubMed Central  Google Scholar 

  158. 158.

    Chen, Z., Yang, Y., Liu, L. L. & Lundqvist, A. Strategies to augment natural killer (NK) cell activity against solid tumors. Cancers (Basel) 11, 1040 (2019).

    CAS  Google Scholar 

  159. 159.

    Doberstein, S. K. Bempegaldesleukin (NKTR-214): a CD-122-biased IL-2 receptor agonist for cancer immunotherapy. Expert Opin. Biol. Ther. 19, 1223–1228 (2019).

    PubMed  Google Scholar 

  160. 160.

    Bentebibel, S.-E. et al. A first-in-human study and biomarker analysis of NKTR-214, a novel IL2Rβγ-biased cytokine, in patients with advanced or metastatic solid tumors. Cancer Discov. 9, 711–721 (2019).

    PubMed  Google Scholar 

  161. 161.

    Donskov, F., Jensen, N. V., Smidt-Hansen, T., Brøndum, L. & Geertsen, P. A randomized phase II trial of interleukin-2 and interferon-α plus bevacizumab versus interleukin-2 and interferon-α in metastatic renal-cell carcinoma (mRCC): results from the Danish Renal Cancer Group (DaRenCa) study-1. Acta Oncol. 57, 589–594 (2018).

    PubMed  CAS  Google Scholar 

  162. 162.

    Conlon, K. C. et al. Redistribution, hyperproliferation, activation of natural killer cells and CD8 T cells, and cytokine production during first-in-human clinical trial of recombinant human interleukin-15 in patients with cancer. J. Clin. Oncol. 33, 74–82 (2015).

    PubMed  CAS  Google Scholar 

  163. 163.

    Miller, J. S. et al. A first-in-human phase I study of subcutaneous outpatient recombinant human IL15 (rhIL15) in adults with advanced solid tumors. Clin. Cancer Res. 24, 1525–1535 (2018).

    PubMed  CAS  Google Scholar 

  164. 164.

    Cooley, S. et al. First-in-human trial of rhIL-15 and haploidentical natural killer cell therapy for advanced acute myeloid leukemia. Blood Adv. 3, 1970–1980 (2019).

    PubMed  PubMed Central  Google Scholar 

  165. 165.

    Guo, Y., Luan, L., Patil, N. K. & Sherwood, E. R. Immunobiology of the IL-15/IL-15Rα complex as an antitumor and antiviral agent. Cytokine Growth Factor Rev. 38, 10–21 (2017).

    PubMed  PubMed Central  CAS  Google Scholar 

  166. 166.

    Romee, R. et al. First-in-human phase 1 clinical study of the IL-15 superagonist complex ALT-803 to treat relapse after transplantation. Blood 131, 2515–2527 (2018).

    PubMed  PubMed Central  CAS  Google Scholar 

  167. 167.

    Wrangle, J. M. et al. ALT-803, an IL-15 superagonist, in combination with nivolumab in patients with metastatic non-small cell lung cancer: a non-randomised, open-label, phase 1b trial. Lancet Oncol. 19, 694–704 (2018).

    PubMed  PubMed Central  CAS  Google Scholar 

  168. 168.

    Smits, E. L., Anguille, S. & Berneman, Z. N. Interferon α may be back on track to treat acute myeloid leukemia. Oncoimmunology 2, e23619 (2013).

    PubMed  PubMed Central  Google Scholar 

  169. 169.

    Mo, X.-D. et al. IFN-α is effective for treatment of minimal residual disease in patients with acute leukemia after allogeneic hematopoietic stem cell transplantation: results of a registry study. Biol. Blood Marrow Transplant. 23, 1303–1310 (2017).

    PubMed  CAS  Google Scholar 

  170. 170.

    Mo, X. et al. Minimal residual disease-directed immunotherapy for high-risk myelodysplastic syndrome after allogeneic hematopoietic stem cell transplantation. Front. Med. 13, 354–364 (2019).

    PubMed  Google Scholar 

  171. 171.

    Felices, M., Lenvik, T. R., Davis, Z. B., Miller, J. S. & Vallera, D. A. In Natural Killer Cells Methods and Protocols Vol. 1441 (ed. Somanchi, S. S.) 333–346 (Humana Press, 2016).

  172. 172.

    Runcie, K., Budman, D. R., John, V. & Seetharamu, N. Bi-specific and tri-specific antibodies- the next big thing in solid tumor therapeutics. Mol. Med. 24, 50 (2018).

    PubMed  PubMed Central  Google Scholar 

  173. 173.

    Labrijn, A. F., Janmaat, M. L., Reichert, J. M. & Parren, P. W. H. I. Bispecific antibodies: a mechanistic review of the pipeline. Nat. Rev. Drug Discov. 18, 585–608 (2019).

    PubMed  CAS  Google Scholar 

  174. 174.

    Ferrari de Andrade, L. et al. Antibody-mediated inhibition of MICA and MICB shedding promotes NK cell–driven tumor immunity. Science 359, 1537–1542 (2018).

    PubMed  PubMed Central  CAS  Google Scholar 

  175. 175.

    Ravi, R. et al. Bifunctional immune checkpoint-targeted antibody-ligand traps that simultaneously disable TGFβ enhance the efficacy of cancer immunotherapy. Nat. Commun. 9, 741 (2018).

    PubMed  PubMed Central  Google Scholar 

  176. 176.

    Nayyar, G., Chu, Y. & Cairo, M. S. Overcoming resistance to natural killer cell based immunotherapies for solid tumors. Front. Oncol. 9, 51 (2019).

    PubMed  PubMed Central  Google Scholar 

  177. 177.

    Schreiber, R. D., Old, L. J. & Smyth, M. J. Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion. Science 331, 1565–1570 (2011).

    PubMed  CAS  Google Scholar 

  178. 178.

    Vesely, M. D., Kershaw, M. H., Schreiber, R. D. & Smyth, M. J. Natural innate and adaptive immunity to cancer. Annu. Rev. Immunol. 29, 235–271 (2011).

    PubMed  CAS  Google Scholar 

  179. 179.

    Rosenberg, J. & Huang, J. CD8+ T cells and NK cells: parallel and complementary soldiers of immunotherapy. Curr. Opin. Chem. Eng. 19, 9–20 (2018).

    PubMed  Google Scholar 

  180. 180.

    Ingegnere, T. et al. Human CAR NK cells: a new non-viral method allowing high efficient transfection and strong tumor cell killing. Front. Immunol. 10, 957 (2019).

    PubMed  PubMed Central  CAS  Google Scholar 

  181. 181.

    Deguine, J., Breart, B., Lemaître, F., Di Santo, J. P. & Bousso, P. Intravital imaging reveals distinct dynamics for natural killer and CD8+ T cells during tumor regression. Immunity 33, 632–644 (2010).

    PubMed  CAS  Google Scholar 

  182. 182.

    Halle, S., Halle, O. & Förster, R. Mechanisms and dynamics of T cell-mediated cytotoxicity in vivo. Trends Immunol. 38, 432–443 (2017).

    CAS  Google Scholar 

  183. 183.

    Chiang, S. C. C. et al. Comparison of primary human cytotoxic T-cell and natural killer cell responses reveal similar molecular requirements for lytic granule exocytosis but differences in cytokine production. Blood 121, 1345–1356 (2013).

    PubMed  CAS  Google Scholar 

  184. 184.

    Vanherberghen, B. et al. Classification of human natural killer cells based on migration behavior and cytotoxic response. Blood 121, 1326–1334 (2013).

    PubMed  CAS  Google Scholar 

  185. 185.

    Choi, P. J. & Mitchison, T. J. Imaging burst kinetics and spatial coordination during serial killing by single natural killer cells. Proc. Natl Acad. Sci. USA 110, 6488–6493 (2013).

    PubMed  CAS  Google Scholar 

  186. 186.

    Vasconcelos, Z. et al. Individual human cytotoxic T lymphocytes exhibit intraclonal heterogeneity during sustained killing. Cell Rep. 11, 1474–1485 (2015).

    PubMed  CAS  Google Scholar 

  187. 187.

    Sun, J. C. & Lanier, L. L. NK cell development, homeostasis and function: parallels with CD8+ T cells. Nat. Rev. Immunol. 11, 645–657 (2011).

    PubMed  PubMed Central  CAS  Google Scholar 

  188. 188.

    Sun, J. C., Beilke, J. N. & Lanier, L. L. Adaptive immune features of natural killer cells. Nature 457, 557–561 (2009).

    PubMed  PubMed Central  CAS  Google Scholar 

  189. 189.

    Dokun, A. O. et al. Specific and nonspecific NK cell activation during virus infection. Nat. Immunol. 2, 951–956 (2001).

    PubMed  CAS  Google Scholar 

  190. 190.

    Bonifant, C. L., Jackson, H. J., Brentjens, R. J. & Curran, K. J. Toxicity and management in CAR T-cell therapy. Mol. Ther. Oncolytics 3, 16011 (2016).

    PubMed  PubMed Central  CAS  Google Scholar 

  191. 191.

    Yu, S., Yi, M., Qin, S. & Wu, K. Next generation chimeric antigen receptor T cells: safety strategies to overcome toxicity. Mol. Cancer 18, 125 (2019).

    PubMed  PubMed Central  Google Scholar 

  192. 192.

    Shimabukuro-Vornhagen, A. et al. Cytokine release syndrome. J. Immunother. Cancer 6, 56 (2018).

    PubMed  PubMed Central  Google Scholar 

  193. 193.

    Santomasso, B. D. et al. Clinical and biological correlates of neurotoxicity associated with CAR T-cell therapy in patients with B-cell acute lymphoblastic leukemia. Cancer Discov. 8, 958–971 (2018).

    PubMed  PubMed Central  CAS  Google Scholar 

  194. 194.

    Rezvani, K., Rouce, R., Liu, E. & Shpall, E. Engineering natural killer cells for cancer immunotherapy. Mol. Ther. 25, 1769–1781 (2017).

    PubMed  PubMed Central  CAS  Google Scholar 

  195. 195.

    Lupo, K. B. & Matosevic, S. Natural killer cells as allogeneic effectors in adoptive cancer immunotherapy. Cancers (Basel) 11, 769 (2019).

    CAS  Google Scholar 

  196. 196.

    Miller, J. S. et al. Successful adoptive transfer and in vivo expansion of human haploidentical NK cells in patients with cancer. Blood 105, 3051–3057 (2005).

    PubMed  PubMed Central  CAS  Google Scholar 

  197. 197.

    Rubnitz, J. E. et al. NKAML: a pilot study to determine the safety and feasibility of haploidentical natural killer cell transplantation in childhood acute myeloid leukemia. J. Clin. Oncol. 28, 955–959 (2010).

    PubMed  PubMed Central  CAS  Google Scholar 

  198. 198.

    Barkholt, L. et al. Safety analysis of ex vivo-expanded NK and NK-like T cells administered to cancer patients: a phase I clinical study. Immunotherapy 1, 753–764 (2009).

    PubMed  CAS  Google Scholar 

  199. 199.

    Vacca, P. et al. Exploiting human NK cells in tumor therapy. Front. Immunol. 10, 3013 (2019).

    PubMed  Google Scholar 

  200. 200.

    Woan, K. V. & Miller, J. S. Harnessing natural killer cell antitumor immunity: from the bench to bedside. Cancer Immunol. Res. 7, 1742–1747 (2019).

    PubMed  PubMed Central  CAS  Google Scholar 

  201. 201.

    Sparrow, E. & Bodman-Smith, M. D. Granulysin: the attractive side of a natural born killer. Immunol. Lett. 217, 126–132 (2020).

    PubMed  CAS  Google Scholar 

  202. 202.

    Kumar, S. Natural killer cell cytotoxicity and its regulation by inhibitory receptors. Immunology 154, 383–393 (2018).

    PubMed  PubMed Central  CAS  Google Scholar 

  203. 203.

    Orange, J. S. Formation and function of the lytic NK-cell immunological synapse. Nat. Rev. Immunol. 8, 713–725 (2008).

    PubMed  PubMed Central  CAS  Google Scholar 

  204. 204.

    Bengsch, B. et al. Deep immune profiling by mass cytometry links human T and NK cell differentiation and cytotoxic molecule expression patterns. J. Immunol. Methods 453, 3–10 (2018).

    PubMed  CAS  Google Scholar 

  205. 205.

    Smyth, M. J., Street, S. E. A. & Trapani, J. A. Cutting edge: granzymes A and B are not essential for perforin-mediated tumor rejection. J. Immunol. 171, 515–518 (2003).

    PubMed  CAS  Google Scholar 

  206. 206.

    Takeda, K. et al. TRAIL identifies immature natural killer cells in newborn mice and adult mouse liver. Blood 105, 2082–2089 (2005).

    PubMed  CAS  Google Scholar 

  207. 207.

    Smyth, M. J. et al. Tumor necrosis factor–related apoptosis-inducing ligand (TRAIL) contributes to interferon γ–dependent natural killer cell protection from tumor metastasis. J. Exp. Med. 193, 661–670 (2001).

    PubMed  PubMed Central  CAS  Google Scholar 

  208. 208.

    Hayakawa, Y. et al. NK cell TRAIL eliminates immature dendritic cells in vivo and limits dendritic cell vaccination efficacy. J. Immunol. 172, 123–129 (2004).

    PubMed  CAS  Google Scholar 

  209. 209.

    Josephs, S. F. et al. Unleashing endogenous TNF-alpha as a cancer immunotherapeutic. J. Transl. Med. 16, 242 (2018).

    PubMed  PubMed Central  CAS  Google Scholar 

  210. 210.

    Balkwill, F. Tumour necrosis factor and cancer. Nat. Rev. Cancer 9, 361–371 (2009).

    PubMed  CAS  Google Scholar 

  211. 211.

    Rafiq, S., Hackett, C. S. & Brentjens, R. J. Engineering strategies to overcome the current roadblocks in CAR T cell therapy. Nat. Rev. Clin. Oncol. 17, 147–167 (2020).

    PubMed  Google Scholar 

  212. 212.

    Long, E. O., Kim, H. S., Liu, D., Peterson, M. E. & Rajagopalan, S. Controlling natural killer cell responses: integration of signals for activation and inhibition. Annu. Rev. Immunol. 31, 227–258 (2013).

    CAS  Google Scholar 

  213. 213.

    Li, F. et al. Blocking the natural killer cell inhibitory receptor NKG2A increases activity of human natural killer cells and clears hepatitis B virus infection in mice. Gastroenterology 144, 392–401 (2013).

    PubMed  CAS  Google Scholar 

  214. 214.

    Sun, C. et al. High NKG2A expression contributes to NK cell exhaustion and predicts a poor prognosis of patients with liver cancer. Oncoimmunology 6, e1264562 (2017).

    PubMed  Google Scholar 

Download references

Acknowledgements

T.B. was supported by a National Health and Medical Research Council (NHMRC) Early Career Research Fellowship (1138757) and Project Grant (1124690). M.J.S. was supported by a NHMRC Investigator Award (1173958) and Program Grant (1132519), a Cancer Research Institute CLIP grant and a Cancer Council of Queensland Project Grant (1140251). M.F.K. received NCI grants (1RO1 CA197363, UOI CA217864).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Mark J. Smyth or Kevin C. Barry.

Ethics declarations

Competing interests

T.B. has research agreements with ENA Therapeutics and Bristol Myers Squibb and is on the scientific advisory board of Oncomyx. M.F.K. is a founder and shareholder of Pionyr Immunotherapeutics and has research agreements with Bristol Myers Squib, Eli Lilly, Pfizer, Amgen, Abbvie and Genentech. M.J.S. has research agreements with Bristol Myers Squibb and Tizona Therapeutics and is on the scientific advisory board of Tizona Therapeutics and Compass Therapeutics. K.C.B. declares no competing interests.

Additional information

Editor recognition statement Jamie D. K. Wilson was the primary editor on this article and managed its editorial process and peer review in collaboration with the rest of the editorial team.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bald, T., Krummel, M.F., Smyth, M.J. et al. The NK cell–cancer cycle: advances and new challenges in NK cell–based immunotherapies. Nat Immunol 21, 835–847 (2020). https://doi.org/10.1038/s41590-020-0728-z

Download citation