Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Type 1 Treg cells promote the generation of CD8+ tissue-resident memory T cells

Abstract

Tissue-resident memory T (TRM) cells, functionally distinct from circulating memory T cells, have a critical role in protective immunity in tissues, are more efficacious when elicited after vaccination and yield more effective antitumor immunity, yet the signals that direct development of TRM cells are incompletely understood. Here we show that type 1 regulatory T (Treg) cells, which express the transcription factor T-bet, promote the generation of CD8+ TRM cells. The absence of T-bet-expressing type 1 Treg cells reduces the presence of TRM cells in multiple tissues and increases pathogen burden upon infectious challenge. Using infection models, we show that type 1 Treg cells are specifically recruited to local inflammatory sites via the chemokine receptor CXCR3. Close proximity with effector CD8+ T cells and Treg cell expression of integrin-β8 endows the bioavailability of transforming growth factor-β in the microenvironment, thereby promoting the generation of CD8+ TRM cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Foxp3-dependent Tbx21 excision results in reduced number of type 1 Treg cells.
Fig. 2: Foxp3-dependent Tbx21 excision results in alterations in CD8+ T cell populations.
Fig. 3: Reduced development of TRM cells in absence of type 1 Treg cells.
Fig. 4: Reduced TRM cell development results in increased susceptibility to infection.
Fig. 5: Recruitment of type 1 Treg cells determines TRM cell differentiation.
Fig. 6: Type 1 Treg cells promote TRM cell development via TGF-β availability.

Similar content being viewed by others

References

  1. Masopust, D., Vezys, V., Marzo, A. L. & Lefrancois, L. Preferential localization of effector memory cells in nonlymphoid tissue. Science 291, 2413–2417 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Reinhardt, R. L., Khoruts, A., Merica, R., Zell, T. & Jenkins, M. K. Visualizing the generation of memory CD4+ T cells in the whole body. Nature 410, 101–105 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. Mueller, S. N. & Mackay, L. K. Tissue-resident memory T cells: local specialists in immune defence. Nat. Rev. Immunol. 16, 79–89 (2016).

    Article  CAS  PubMed  Google Scholar 

  4. Konjar, S., Ferreira, C., Blankenhaus, B. & Veldhoen, M. Intestinal barrier interactions with specialized CD8+ T Cells. Front. Immunol. 8, 1281 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Ariotti, S. et al. Tissue-resident memory CD8+ T cells continuously patrol skin epithelia to quickly recognize local antigen. PNAS 109, 19739–19744 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Konjar, S. et al. Mitochondria maintain controlled activation state of epithelial-resident T lymphocytes. Sci. Immunol. 3, eaan2543 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Joshi, N. S. et al. Inflammation directs memory precursor and short-lived effector CD8(+) T cell fates via the graded expression of T-bet transcription factor. Immunity 27, 281–295 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Intlekofer, A. M. et al. Requirement for T-bet in the aberrant differentiation of unhelped memory CD8+ T cells. J. Exp. Med. 204, 2015–2021 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Joshi, N. S. et al. Increased numbers of preexisting memory CD8+ T cells and decreased T-bet expression can restrain terminal differentiation of secondary effector and memory CD8+ T cells. J. Immunol. 187, 4068–4076 (2011).

    Article  CAS  PubMed  Google Scholar 

  10. Pipkin, M. E. et al. Interleukin-2 and inflammation induce distinct transcriptional programs that promote the differentiation of effector cytolytic T cells. Immunity 32, 79–90 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Mackay, L. K. et al. The developmental pathway for CD103(+)CD8+ tissue-resident memory T cells of skin. Nat. Immunol. 14, 1294–1301 (2013).

    Article  CAS  PubMed  Google Scholar 

  12. Wakim, L. M. et al. The molecular signature of tissue-resident memory CD8+ T cells isolated from the brain. J. Immunol. 189, 3462–3471 (2012).

    Article  CAS  PubMed  Google Scholar 

  13. Zhang, N. & Bevan, M. J. Transforming growth factor-β signaling controls the formation and maintenance of gut-resident memory T cells by regulating migration and retention. Immunity 39, 687–696 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Laidlaw, B. J. et al. CD4+ T cell help guides formation of CD103+ lung-resident memory CD8+ T cells during influenza viral infection. Immunity 41, 633–645 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mackay, L. K. et al. T-box transcription factors combine with the cytokines TGF-β and IL-15 to control tissue-resident memory T cell fate. Immunity 43, 1101–1111 (2015).

    Article  CAS  PubMed  Google Scholar 

  16. Laidlaw, B. J., Craft, J. E. & Kaech, S. M. The multifaceted role of CD4(+) T cells in CD8(+) T cell memory. Nat. Rev. Immunol. 16, 102–111 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Feau, S., Arens, R., Togher, S. & Schoenberger, S. P. Autocrine IL-2 is required for secondary population expansion of CD8(+) memory T cells. Nat. Immunol. 12, 908–913 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yu, F., Sharma, S., Edwards, J., Feigenbaum, L. & Zhu, J. Dynamic expression of transcription factors T-bet and GATA-3 by regulatory T cells maintains immunotolerance. Nat. Immunol. 16, 197–206 (2015).

    Article  CAS  PubMed  Google Scholar 

  19. de Goer de Herve, M. G., Jaafoura, S., Vallee, M. & Taoufik, Y. FoxP3(+) regulatory CD4+ T cells control the generation of functional CD8+ memory. Nat. Commun. 3, 986 (2012).

    Article  PubMed  CAS  Google Scholar 

  20. Pace, L. et al. Regulatory T cells increase the avidity of primary CD8+ T cell responses and promote memory. Science 338, 532–536 (2012).

    Article  CAS  PubMed  Google Scholar 

  21. Laidlaw, B. J. et al. Production of IL-10 by CD4(+) regulatory T cells during the resolution of infection promotes the maturation of memory CD8(+) T cells. Nat. Immunol. 16, 871–879 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kalia, V., Penny, L. A., Yuzefpolskiy, Y., Baumann, F. M. & Sarkar, S. Quiescence of memory CD8(+) T cells is mediated by regulatory T cells through inhibitory receptor CTLA-4. Immunity 42, 1116–1129 (2015).

    Article  CAS  PubMed  Google Scholar 

  23. Koch, M. A. et al. The transcription factor T-bet controls regulatory T cell homeostasis and function during type 1 inflammation. Nat. Immunol. 10, 595–602 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lord, G. M. et al. T-bet is required for optimal proinflammatory CD4+ T cell trafficking. Blood 106, 3432–3439 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Levine, A. G. et al. Stability and function of regulatory T cells expressing the transcription factor T-bet. Nature 546, 421–425 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Tan, T. G., Mathis, D. & Benoist, C. Singular role for T-BET+CXCR3+ regulatory T cells in protection from autoimmune diabetes. PNAS 113, 14103–14108 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Janssen, E. M. et al. CD4+ T cell help controls CD8+ T cell memory via TRAIL-mediated activation-induced cell death. Nature 434, 88–93 (2005).

    Article  CAS  PubMed  Google Scholar 

  28. Oh, S. et al. IL-15 as a mediator of CD4+ help for CD8+ T cell longevity and avoidance of TRAIL-mediated apoptosis. PNAS 105, 5201–5206 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Madakamutil, L. T. et al. CD8αα-mediated survival and differentiation of CD8+ memory T cell precursors. Science 304, 590–593 (2004).

    Article  CAS  PubMed  Google Scholar 

  30. Herndler-Brandstetter, D. et al. KLRG1(+) Effector CD8(+) T cells lose KLRG1, differentiate into all memory T cell lineages, and convey enhanced protective immunity. Immunity 48, 716–729 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Rose, M. E., Wakelin, D. & Hesketh, P. Gamma-interferon controls Eimeria vermiformis primary infection in BALB/c mice. Infect. Immun. 57, 1599–1603 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Belkaid, Y., Piccirillo, C. A., Mendez, S., Shevach, E. M. & Sacks, D. L. CD4+CD25+ regulatory T cells control Leishmania major persistence and immunity. Nature 420, 502–507 (2002).

    Article  CAS  PubMed  Google Scholar 

  33. Fernandez-Ruiz, D. et al. Liver-resident memory CD8(+) T cells form a front-line defense against malaria liver-stage infection. Immunity 45, 889–902 (2016).

    Article  CAS  PubMed  Google Scholar 

  34. Ramsburg, E., Tigelaar, R., Craft, J. & Hayday, A. Age-dependent requirement for γδ T cells in the primary but not secondary protective immune response against an intestinal parasite. J. Exp. Med. 198, 1403–1414 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Miragaia, R. J. et al. Single-cell transcriptomics of regulatory T cells reveals trajectories of tissue adaptation. Immunity 50, 493–504 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zemmour, D. et al. Single-cell gene expression reveals a landscape of regulatory T cell phenotypes shaped by the TCR. Nat. Immunol. 19, 291–301 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Xiong, Y., Ahmad, S., Iwami, D., Brinkman, C. C. & Bromberg, J. S. T-bet regulates natural regulatory T cell afferent lymphatic migration and suppressive function. J. Immunol. 196, 2526–2540 (2016).

    Article  CAS  PubMed  Google Scholar 

  38. Bergsbaken, T. & Bevan, M. J. Proinflammatory microenvironments within the intestine regulate the differentiation of tissue-resident CD8(+) T cells responding to infection. Nat. Immunol. 16, 406–414 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Bergsbaken, T., Bevan, M. J. & Fink, P. J. Local inflammatory cues regulate differentiation and persistence of CD8(+) tissue-resident memory T cells. Cell Rep. 19, 114–124 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Khan, T. N., Mooster, J. L., Kilgore, A. M., Osborn, J. F. & Nolz, J. C. Local antigen in nonlymphoid tissue promotes resident memory CD8+ T cell formation during viral infection. J. Exp. Med. 213, 951–966 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wakim, L. M., Woodward-Davis, A. & Bevan, M. J. Memory T cells persisting within the brain after local infection show functional adaptations to their tissue of residence. PNAS 107, 17872–17879 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Iijima, N. & Iwasaki, A. T cell memory. A local macrophage chemokine network sustains protective tissue-resident memory CD4+ T cells. Science 346, 93–98 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Natsuaki, Y. et al. Perivascular leukocyte clusters are essential for efficient activation of effector T cells in the skin. Nat. Immunol. 15, 1064–1069 (2014).

    Article  CAS  PubMed  Google Scholar 

  44. Worthington, J. J. et al. Integrin αvβ8-mediated TGF-β activation by effector regulatory T cells is essential for suppression of T cell-mediated inflammation. Immunity 42, 903–915 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Masopust, D. et al. Dynamic T cell migration program provides resident memory within intestinal epithelium. J. Exp. Med. 207, 553–564 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Butcher, E. C. & Picker, L. J. Lymphocyte homing and homeostasis. Science 272, 60–66 (1996).

    Article  CAS  PubMed  Google Scholar 

  47. Gebhardt, T. et al. Memory T cells in nonlymphoid tissue that provide enhanced local immunity during infection with herpes simplex virus. Nat. Immunol. 10, 524–530 (2009).

    Article  CAS  PubMed  Google Scholar 

  48. Mackay, L. K. et al. Long-lived epithelial immunity by tissue-resident memory T (TRM) cells in the absence of persisting local antigen presentation. PNAS 109, 7037–7042 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Graham, J. B., Da Costa, A. & Lund, J. M. Regulatory T cells shape the resident memory T cell response to virus infection in the tissues. J. Immunol. 192, 683–690 (2014).

    Article  CAS  PubMed  Google Scholar 

  50. Hickman, H. D. et al. CXCR3 chemokine receptor enables local CD8(+) T cell migration for the destruction of virus-infected cells. Immunity 42, 524–537 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Paust, H. J. et al. CXCR3+ regulatory T cells control TH1 responses in crescentic GN. J. Am. Soc. Nephrol. 27, 1933–1942 (2016).

    Article  CAS  PubMed  Google Scholar 

  52. Harrison, O. J. et al. Commensal-specific T cell plasticity promotes rapid tissue adaptation to injury. Science 363, eaat6280 (2019).

    Article  CAS  PubMed  Google Scholar 

  53. Casey, K. A. et al. Antigen-independent differentiation and maintenance of effector-like resident memory T cells in tissues. J. Immunol. 188, 4866–4875 (2012).

    Article  CAS  PubMed  Google Scholar 

  54. Mohammed, J. et al. Stromal cells control the epithelial residence of DCs and memory T cells by regulated activation of TGF-β. Nat. Immunol. 17, 414–421 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Intlekofer, A. M. et al. Anomalous type 17 response to viral infection by CD8+ T cells lacking T-bet and eomesodermin. Science 321, 408–411 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Rubtsov, Y. P. et al. Regulatory T cell-derived interleukin-10 limits inflammation at environmental interfaces. Immunity 28, 546–558 (2008).

    Article  CAS  PubMed  Google Scholar 

  57. Luche, H., Weber, O., Nageswara Rao, T., Blum, C. & Fehling, H. J. Faithful activation of an extra-bright red fluorescent protein in ‘knock-in’ Cre-reporter mice ideally suited for lineage tracing studies. Eur. J. Immunol. 37, 43–53 (2007).

    Article  CAS  PubMed  Google Scholar 

  58. Hancock, W. W. et al. Requirement of the chemokine receptor CXCR3 for acute allograft rejection. J. Exp. Med. 192, 1515–1520 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kuhn, R., Lohler, J., Rennick, D., Rajewsky, K. & Muller, W. Interleukin-10-deficient mice develop chronic enterocolitis. Cell 75, 263–274 (1993).

    Article  CAS  PubMed  Google Scholar 

  60. Nieuwenhuis, E. E. et al. Disruption of T helper 2-immune responses in Epstein–Barr virus-induced gene 3-deficient mice. PNAS 99, 16951–16956 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Travis, M. A. et al. Loss of integrin α(v)β8 on dendritic cells causes autoimmunity and colitis in mice. Nature 449, 361–365 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Azhar, M. et al. Generation of mice with a conditional allele for transforming growth factor-β 1 gene. Genesis 47, 423–431 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Li, Y. et al. Exogenous stimuli maintain intraepithelial lymphocytes via aryl hydrocarbon receptor activation. Cell 147, 629–640 (2011).

    Article  CAS  PubMed  Google Scholar 

  64. Figueiredo-Campo, P., Ferreira, C., Blankenhaus, B. & Veldhoen, M. Eimeria vermiformis infection model of murine small intestine. Bio. Protoc. 8, e3122 (2018).

    Google Scholar 

  65. Cossarizza, A. et al. Guidelines for the use of flow cytometry and cell sorting in immunological studies (second edition). Eur. J. Immunol. 49, 1457–1973 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Butler, A., Hoffman, P., Smibert, P., Papalexi, E. & Satija, R. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat. Biotechnol. 36, 411–420 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We acknowledge the excellent contributions from the iMM flow cytometry, rodent, histology and microscopy facilities. The project leading to these results has received funding from the European Union H2020 ERA project (no. 667824, EXCELLtoINNOV), Fundo iMM-Laço and ‘la caixa’ Foundation (ID 100010434) under agreement LCF/PR/HR19/52160005 for work in the Veldhoen laboratory, with additional funding from the Fundação para a Ciência e a Tecnologia to P.F.-C. (SFRH/BD/131605/2017), to L.B. (PD/BD/138847/2018) and to A.B. (SFRH/BD/138900/2018). In addition, the work was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) SFB1366 (project no. 394046768-SFB 1366; C02) and by SPP 1937 (CE 140/2-1) to A.C and SFB1292 (TP13) and TR156 (TPB02) to H.C.P. A.L. was supported by Ligue Nationale Contre le Cancer. Other grants supporting this study: Foncer Contre le Cancer (JCM) and EL-2016 LNCC Labelisation Ligue Nationale Contre Cancer. TL-tetramer was obtained through the National Institutes of Health Tetramer Core Facility.

Author information

Authors and Affiliations

Authors

Contributions

C.F., L.B., S.K., B.B., P.F.-C. and M.B. performed the experiments and provided assistance. A.B. performed bioinformatics analysis. A.S. and A.C. provided CXCR3-deficient animals. N.K. and H.C.P. provided EBI3-deficient animals and performed analysis. A.L. and J.C.M. provided Foxp3Cre Itgb8f/f and Foxp3Cre Tgfb1f/f animals and performed analysis. C.F. and M.V. conceived and directed the experiments and wrote the manuscript with input from all authors.

Corresponding authors

Correspondence to Cristina Ferreira or Marc Veldhoen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Zoltan Fehervari was the primary editor on this article and managed its editorial process and peer review in collaboration with the rest of the editorial team.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferreira, C., Barros, L., Baptista, M. et al. Type 1 Treg cells promote the generation of CD8+ tissue-resident memory T cells. Nat Immunol 21, 766–776 (2020). https://doi.org/10.1038/s41590-020-0674-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41590-020-0674-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing