Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Novel specialized cell state and spatial compartments within the germinal center

Abstract

Within germinal centers (GCs), complex and highly orchestrated molecular programs must balance proliferation, somatic hypermutation and selection to both provide effective humoral immunity and to protect against genomic instability and neoplastic transformation. In contrast to this complexity, GC B cells are canonically divided into two principal populations, dark zone (DZ) and light zone (LZ) cells. We now demonstrate that, following selection in the LZ, B cells migrated to specialized sites within the canonical DZ that contained tingible body macrophages and were sites of ongoing cell division. Proliferating DZ (DZp) cells then transited into the larger DZ to become differentiating DZ (DZd) cells before re-entering the LZ. Multidimensional analysis revealed distinct molecular programs in each population commensurate with observed compartmentalization of noncompatible functions. These data provide a new three-cell population model that both orders critical GC functions and reveals essential molecular programs of humoral adaptive immunity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Transcriptional differences between the LZ, GZ and DZ.
Fig. 2: LZ, DZ and GZ B cells have unique genome accessibility profiles.
Fig. 3: Proteomic analysis of GCBC subsets.
Fig. 4: Histological identification of GZ B cells within GCs.
Fig. 5: GZ B cells are the main dividing population in the GC.
Fig. 6: GCBCs progress from LZ to GZ to DZ.
Fig. 7: Molecular regulation of GCBC progression.
Fig. 8: GZ clusters are sites of ongoing cell division.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request. Bulk RNA-seq, scRNA-seq, ATAC–seq and ChIP–seq data have been deposited in the Gene Expression Omnibus database under accession code GSE133743. Proteome and phosphoproteome data have been uploaded to ProteomeXchange via the PRIDE database. The project name is ‘Proteome profiling of mouse GCBCs’, and the project accession code is PXD015524. Data from GSE100738 were also analyzed.

References

  1. De Silva, N. S. & Klein, U. Dynamics of B cells in germinal centres. Nat. Rev. Immunol. 15, 137–148 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. MacLennan, I. C. Germinal centers. Annu. Rev. Immunol. 12, 117–139 (1994).

    Article  CAS  PubMed  Google Scholar 

  3. Bannard, O. et al. Germinal center centroblasts transition to a centrocyte phenotype according to a timed program and depend on the dark zone for effective selection. Immunity 39, 912–924 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Victora, G. D. & Nussenzweig, M. C. Germinal centers. Ann. Rev. Immunol. 30, 429–457 (2012).

    Article  CAS  Google Scholar 

  5. Victora, G. D. et al. Germinal center dynamics revealed by multiphoton microscopy with a photoactivatable fluorescent reporter. Cell 143, 592–605 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Shulman, Z. et al. Dynamic signaling by T follicular helper cells during germinal center B cell selection. Science 345, 1058–1062 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Khalil, A. M., Cambier, J. C. & Shlomchik, M. J. B cell receptor signal transduction in the GC is short-circuited by high phosphatase activity. Science 336, 1178–1181 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Calado, D. P. et al. The cell-cycle regulator c-Myc is essential for the formation and maintenance of germinal centers. Nat. Immunol. 13, 1092–1100 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Dominguez-Sola, D. et al. The proto-oncogene MYC is required for selection in the germinal center and cyclic reentry. Nat. Immunol. 13, 1083–1091 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Allen, C. D. et al. Germinal center dark and light zone organization is mediated by CXCR4 and CXCR5. Nat. Immunol. 5, 943–952 (2004).

    Article  CAS  PubMed  Google Scholar 

  11. Song, S. & Matthias, P. D. The transcriptional regulation of germinal center formation. Front. Immunol. 9, 2026 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Tunyaplin, C. et al. Direct repression of prdm1 by Bcl-6 inhibits plasmacytic differentiation. J. Immunol. 173, 1158–1165 (2004).

    Article  CAS  PubMed  Google Scholar 

  13. Ochiai, K. et al. Transcriptional regulation of germinal center B and plasma cell fates by dynamical control of IRF4. Immunity 38, 918–929 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Recaldin, T. & Fear, D. J. Transcription factors regulating B cell fate in the germinal centre. Clin. Exp. Immunol. 183, 65–75 (2016).

    Article  CAS  PubMed  Google Scholar 

  15. Dominguez-Sola, D. et al. The FOXO1 transcription factor instructs the germinal center dark zone program. Immunity 43, 1064–1074 (2015).

    Article  CAS  PubMed  Google Scholar 

  16. Trabucco, S. E., Gerstein, R. M. & Zhang, H. YY1 Regulates the germinal center reaction by inhibiting apoptosis. J. Immunol. 197, 1699–1707 (2016).

    Article  CAS  PubMed  Google Scholar 

  17. Perez-Garcia, A. et al. CTCF orchestrates the germinal centre transcriptional program and prevents premature plasma cell differentiation. Nat. Commun. 8, 16067 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Caganova, M. et al. Germinal center dysregulation by histone methyltransferase EZH2 promotes lymphomagenesis. J. Clin. Invest. 123, 5009–5022 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Beguelin, W. et al. EZH2 is required for germinal center formation and somatic EZH2 mutations promote lymphoid transformation. Cancer Cell 23, 677–692 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Yoshida, H. et al. The cis-regulatory atlas of the mouse immune system. Cell 176, 897–912.e20 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Röhlich, K. Beitrag zur Cytologie der Keimzentren der Lymphknoten. Z. Mikrosk. Anat. Forsch 20, 287–297 (1930).

    Google Scholar 

  22. Endl, E. & Gerdes, J. Posttranslational modifications of the KI-67 protein coincide with two major checkpoints during mitosis. J. Cell. Physiol. 182, 371–380 (2000).

    Article  CAS  PubMed  Google Scholar 

  23. Chistiakov, D. A., Killingsworth, M. C., Myasoedova, V. A., Orekhov, A. N. & Bobryshev, Y. V. CD68/macrosialin: not just a histochemical marker. Lab. Invest. 97, 4–13 (2017).

    Article  CAS  PubMed  Google Scholar 

  24. Brink, R. & Phan, T. G. Self-reactive B cells in the germinal center reaction. Annu. Rev. Immunol. 36, 339–357 (2018).

    Article  CAS  PubMed  Google Scholar 

  25. Weber, T. S. Cell cycle-associated CXCR4 expression in germinal center B cells and its implications on affinity maturation. Front. Immunol. 9, 1313 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Allen, C. D., Okada, T., Tang, H. L. & Cyster, J. G. Imaging of germinal center selection events during affinity maturation. Science 315, 528–531 (2007).

    Article  CAS  PubMed  Google Scholar 

  27. Mesin, L., Ersching, J. & Victora, G. D. Germinal center B cell dynamics. Immunity 45, 471–482 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Gitlin, A. D., Shulman, Z. & Nussenzweig, M. C. Clonal selection in the germinal centre by regulated proliferation and hypermutation. Nature 509, 637–640 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Finkin, S., Hartweger, H., Oliveira, T. Y., Kara, E. E. & Nussenzweig, M. C. Protein amounts of the MYC transcription factor determine germinal center B cell division capacity. Immunity 51, 324–336.e5 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Vervoorts, J., Luscher-Firzlaff, J. & Luscher, B. The ins and outs of MYC regulation by posttranslational mechanisms. J. Biol. Chem. 281, 34725–34729 (2006).

    Article  CAS  PubMed  Google Scholar 

  31. Yao, S., Fan, L. Y. & Lam, E. W. The FOXO3-FOXM1 axis: a key cancer drug target and a modulator of cancer drug resistance. Semin. Cancer Biol. 50, 77–89 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ersching, J. et al. Germinal center selection and affinity maturation require dynamic regulation of mTORC1 kinase. Immunity 46, 1045–1058.e6 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Gitlin, A. D. et al. T cell help controls the speed of the cell cycle in germinal center B cells. Science 349, 643–646 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Vitale, I., Galluzzi, L., Castedo, M. & Kroemer, G. Mitotic catastrophe: a mechanism for avoiding genomic instability. Nat. Rev. Mol. Cell Biol. 12, 385–392 (2011).

    Article  CAS  PubMed  Google Scholar 

  35. Kuppers, R. & Dalla-Favera, R. Mechanisms of chromosomal translocations in B cell lymphomas. Oncogene 20, 5580–5594 (2001).

    Article  CAS  PubMed  Google Scholar 

  36. Clark, M. R., Mandal, M., Ochiai, K. & Singh, H. Orchestrating B cell lymphopoiesis through interplay of IL-7 receptor and pre-B cell receptor signalling. Nat. Rev. Immunol. 14, 69–80 (2014).

    Article  CAS  PubMed  Google Scholar 

  37. Zhang, L., Reynolds, T. L., Shan, X. & Desiderio, S. Coupling of V(D)J recombination to the cell cycle suppresses genomic instability and lymphoid tumorigenesis. Immunity 34, 163–174 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Khair, L. et al. ATM increases activation-induced cytidine deaminase activity at downstream S regions during class-switch recombination. J. Immunol. 192, 4887–4896 (2014).

    Article  CAS  PubMed  Google Scholar 

  39. Schrader, C. E., Guikema, J. E., Linehan, E. K., Selsing, E. & Stavnezer, J. Activation-induced cytidine deaminase-dependent DNA breaks in class switch recombination occur during G1 phase of the cell cycle and depend upon mismatch repair. J. Immunol. 179, 6064–6071 (2007).

    Article  CAS  PubMed  Google Scholar 

  40. Petersen, S. et al. AID is required to initiate Nbs1/γ-H2AX focus formation and mutations at sites of class switching. Nature 414, 660–665 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Sharbeen, G., Yee, C. W., Smith, A. L. & Jolly, C. J. Ectopic restriction of DNA repair reveals that UNG2 excises AID-induced uracils predominantly or exclusively during G1 phase. J. Exp. Med. 209, 965–974 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wang, Q. et al. The cell cycle restricts activation-induced cytidine deaminase activity to early G1. J. Exp. Med. 214, 49–58 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Storb, U. Why does somatic hypermutation by AID require transcription of its target genes? Adv. Immunol. 122, 253–277 (2014).

    Article  CAS  PubMed  Google Scholar 

  44. Zan, H. & Casali, P. Regulation of Aicda expression and AID activity. Autoimmunity 46, 83–101 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Stewart, I., Radtke, D., Phillips, B., McGowan, S. J. & Bannard, O. Germinal center B cells replace their antigen receptors in dark zones and fail light zone entry when immunoglobulin gene mutations are damaging. Immunity 49, 477–489.e7 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hodson, D. J. et al. Regulation of normal B-cell differentiation and malignant B-cell survival by OCT2. Proc. Natl Acad. Sci. USA 113, E2039–E2046 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Vilagos, B. et al. Essential role of EBF1 in the generation and function of distinct mature B cell types. J. Exp. Med. 209, 775–792 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kwon, K. et al. Instructive role of the transcription factor E2A in early B lymphopoiesis and germinal center B cell development. Immunity 28, 751–762 (2008).

    Article  CAS  PubMed  Google Scholar 

  49. Milpied, P. et al. Human germinal center transcriptional programs are de-synchronized in B cell lymphoma. Nat. Immunol. 19, 1013–1024 (2018).

    Article  CAS  PubMed  Google Scholar 

  50. Veselits, M. et al. Igβ ubiquitination activates PI3K signals required for endosomal sorting. J. Exp. Med. 214, 3775–3790 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).

    Article  CAS  PubMed  Google Scholar 

  52. Liao, Y., Smyth, G. K. & Shi, W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923–930 (2014).

    Article  CAS  PubMed  Google Scholar 

  53. Mandal, M. et al. CXCR4 signaling directs Igk recombination and the molecular mechanisms of late B lymphopoiesis. Nat. Immunol. 20, 1393–1403 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. Preprint at ArXiv https://arxiv.org/abs/1303.3997 (2013).

  55. Zhang, Y. et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol. 9, R137 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Li, Q., Brown, J., Huang, H. & Bickel, P. Measuring reproducibility of high-throughput experiments. Ann. Appl. Stat. 5, 1752–1779 (2011).

    Article  Google Scholar 

  57. Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010).

    Article  CAS  PubMed  Google Scholar 

  59. Zhou, Y. et al. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat. Commun. 10, 1523 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Heinz, S. et al. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol. Cell 38, 576–589 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Tan, H. et al. Integrative proteomics and phosphoproteomics profiling reveals dynamic signaling networks and bioenergetics pathways underlying T cell activation. Immunity 46, 488–503 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Tan, H. et al. Refined phosphopeptide enrichment by phosphate additive and the analysis of human brain phosphoproteome. Proteomics 15, 500–507 (2015).

    Article  CAS  PubMed  Google Scholar 

  63. Wang, H. et al. Systematic optimization of long gradient chromatography mass spectrometry for deep analysis of brain proteome. J. Proteome Res. 14, 829–838 (2015).

    Article  CAS  PubMed  Google Scholar 

  64. Niu, M. et al. Extensive peptide fractionation and y 1 ion-based interference detection method for enabling accurate quantification by isobaric labeling and mass spectrometry. Anal. Chem. 89, 2956–2963 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Stewart, E. et al. Identification of therapeutic targets in rhabdomyosarcoma through integrated genomic, epigenomic, and proteomic analyses. Cancer Cell 34, 411–426 e419 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Langfelder, P. & Horvath, S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinf. 9, 559 (2008).

    Article  CAS  Google Scholar 

  67. Macosko, E. Z. et al. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell 161, 1202–1214 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Qiu, X. et al. Single-cell mRNA quantification and differential analysis with Census. Nat. Methods 14, 309–315 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Qiu, X. et al. Reversed graph embedding resolves complex single-cell trajectories. Nat. Methods 14, 979–982 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102, 15545–15550 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank D. Leclerc and the UChicago flow cytometry core for providing the latest flow cytometry technologies. We also thank Y. Wang for assistance in proteomics experiments. This work is supported by the US National Institutes of Health grant nos. R01AI143778 and R21AI128785 (to M.R.C.), T32 HL007605 and F32AI143120 (to D.E.K.), T32HD007009 (to M.K.O.), R01AG047928 (to J.P.) and the Cancer Center Support grant (no. P30CA014599) for the UChicago flow cytometry core.

Author information

Authors and Affiliations

Authors

Contributions

D.E.K. and M.R.C. conceived and designed experiments. D.E.K. performed and analyzed most of the experiments. D.E.K. and M.M.-C. analyzed the high throughput sequencing data. M.K.O assisted in scRNA-seq experiments. J.A. assisted with imaging experiments. M.V. assisted in influenza experiments. Y.D., H.W., J.P. and H.C. assisted with proteomics experiments and analyses. M.M. and K.C.M. assisted with some experiments. M.M. provided valuable insights into the study design. D.E.K. and M.R.C. oversaw the entire project and edited the final manuscript.

Corresponding author

Correspondence to Marcus R. Clark.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information L.A. Dempsey was the primary editor on this article and managed its editorial process and peer review in collaboration with the rest of the editorial team.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Transcriptional analysis of GCBC subsets in support of Fig. 1.

a, Schematic of immunization strategy. Mice were immunized intraperitoneally with sheep red blood cells (SRBCs), boosted on day 5, followed by isolation of GCBC subsets from spleens. b, RNA-Seq volcano plot displaying the -Log10 FDR vs Log2 fold-change of genes differentially expressed between DZ and LZ cells isolated by the Classical GC strategy. c, RNA-Seq heatmap and volcano plot displaying head-to-head differentially expressed genes between DZ vs LZ B cells isolated using the New Strategy in Fig. 1c. d and e, RNA-Seq heatmaps and volcano plots displaying head-to-head differentially expressed genes between GZ vs LZ (d) and DZ vs GZ (e) B cells isolated using the New Strategy in Fig. 1c. For RNA-Seq, n = 2 per cell type. Each n represents cells pooled from 20 mice. q values were generated with edgeR (see Methods).

Extended Data Fig. 2 Epigenetic differences between GCBC subsets in support of Fig. 2.

a, Genome accessibility and enhancer tracks aligned at the Otub2 locus. b, mRNA expression of Otub2. c, mRNA expression of the indicated TF in LZ, GZ and DZ B cells. d, TF motifs enriched in accessible regions for the indicated genome accessibility cluster and associated GCBC subset. p values were generated using HOMER (see Methods). For each cluster, n= the number of accessibility peaks indicated in Fig. 2f. e and f, Genome accessibility and enhancer tracks aligned at the Foxn2 (e) and Ccnb1 (f) locus for GCBCs isolated by the Classic GC method. For ATAC-Seq data, n = 2 per cell type. Each n represents cells pooled from 20 mice. (b,c) Each dot corresponds to an independent biological sample.

Extended Data Fig. 3 Phosphoproteomic analysis of GCBC subsets in support of Fig. 3.

a, Schematic of phosphoproteome differential expression analysis on GC populations isolated with the New gating strategy. b, Phosphoproteome cell distance plot of the indicated cell populations. Scale represents Euclidian distance. c, Box plots of phosphoproteomic clustering analysis (left). Boxes represent interquartile ranges (IQRs; Q1–Q3 percentile) and black vertical lines represent median values. Maximum and minimum values (ends of whiskers) are defined as Q3 + 1.5× the IQR and Q1 − 1.5× the IQR, respectively. Pathway analysis associated with the indicated cluster (right). Numbers correspond to -log10 p value. For each cluster, n= the number of phosphoproteins indicated above boxplot. P values were generated by Metascape using an established hypergeometric test coupled with Benjamini-Hochberg p-value correction algorithm. Light blue, gray, and dark blue (left side of heatmap) correspond to the LZ, GZ, or DZ subsets respectively. d, Total protein expression of Ki67. e, Relative levels of the indicated Ki67 phosphopeptides from cluster 1. f, List of GZ upregulated phosphopeptides for Ki67 from cluster 1. For phosphoproteome data, n = 2 per cell type. Cells were isolated from a total of 120 mice. Each n was generated from 5-6 million purified B cell subsets. See also Supplementary Data 5.

Extended Data Fig. 4 Histological analysis of the GZ in support of Fig. 4.

a and b, Immunofluorescence microscopy of GCs 14 days post SRBC immunization. Single panels and merged image displaying GL7, CD35, and Cyclin B1 in two distinct GCs. (n > 7 mice) c, Expression of Lars2 (mitochondrial leucyl-tRNA synthetase) in LZ, GZ and DZ. Each dot corresponds to an independent biological sample. d, Immunofluorescence microscopy of GC 14 days post SRBC immunization examining colocalization of Cyclin B1 and LARS2. (a) is related to Fig. 4 panel a.

Extended Data Fig. 5 Analysis of single GCBC transcription in support of Fig. 6.

scRNA-Seq UMAP plots generated with Monocle3 displaying the enrichment for gene expression signatures derived from bulk RNA-Seq clusters 1-8. Bulk RNA-Seq gene expression trend is displayed to the side of each scRNA-Seq UMAP plot. Boxes represent interquartile ranges (IQRs; Q1–Q3 percentile) and black vertical lines represent median values. Maximum and minimum values (ends of whiskers) are defined as Q3 + 1.5× the IQR and Q1 − 1.5× the IQR, respectively.

Extended Data Fig. 6 Integration of transcriptional and proteomic analysis in support of Fig. 7.

a-c, Heatmap of gene expressions (left) and protein expressions (right) for the indicated genes. Full lists related to Fig. 7a, c, e. d-i, Heatmaps of head-to-head GCBC subset comparisons for IPA upstream regulator analysis. For factors indicated. d-f, Analysis of total proteome dataset. g-i, Analysis of phosphoproteome dataset. j, Summary of relative activation status for panels (d-i), for the indicated activated factors and cell types. For head-to-head comparisons, increased activation for the indicated factors corresponds to increased color intensity GZ (green), DZ (magenta), and LZ (blue).

Extended Data Fig. 7 Visualization of GZ proliferative clusters in support of Fig. 8.

a, Immunofluorescence microscopy 3D z stacks displaying whole GCs and focusing on GZ clusters within the GC. GL7 (green), Cyclin B1 (red), DAPI (blue). (n = 4) Right panel is related to GZ displayed in Fig. 7m. b, Schematic of EdU and BrdU injection experimental design. c and d, Immunofluorescence microscopy of whole GCs for the indicated markers 5.5 hr post BrdU injection (n≥3 mice per timepoint indicated in panel b). e and f, Immunofluorescent microscopy of GCs for the indicated markers (e) and quantification of EdU intensity within the GZ (f) 5.5 hr post BrdU injection. Each dot represents a cell. g, Schematic representing dilution of EdU during cell division (5.5 hr). h, Immunofluorescent microscopy of GCs for the indicated markers visualizing cells in multiple stages of active cell division within a GZ cluster 5.5 hr post BrdU injection (n > 3 mice).

Supplementary information

Supplementary Information

Supplementary Tables 1 and 2.

Reporting Summary

Supplementary Data

Supplementary Data 1–5.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kennedy, D.E., Okoreeh, M.K., Maienschein-Cline, M. et al. Novel specialized cell state and spatial compartments within the germinal center. Nat Immunol 21, 660–670 (2020). https://doi.org/10.1038/s41590-020-0660-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41590-020-0660-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing