Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Comment
  • Published:

Cascading risks of waterborne diseases from climate change

Climate change can trigger a sequence of events of significant magnitude with consequences for waterborne diseases. Heavy rainfall, flooding and hot weather are associated with waterborne diseases, but early warning systems could intercept these cascading risks.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Graphical representation of the cascading risk pathways from climate change for waterborne diseases.
Fig. 2

References

  1. Semenza, J. C. et al. Transbound. Emerg. Dis. 66, 1855–1863 (2019).

    Article  Google Scholar 

  2. Semenza, J. C. & Menne, B. Lancet Infect. Dis. 9, 365–375 (2009).

    Article  Google Scholar 

  3. IPCC. Special Report on Global Warming of 1.5 °C (eds Masson-Delmotte, V. P. et al.) (WMO, 2018).

  4. Suk, J. E., Vaughan, E. C., Cook, R. G. & Semenza, J. C. Eur. J. Public Health https://doi.org/10.1093/eurpub/ckz111 (2019).

  5. Guzman Herrador, B. R. et al. Environ. Health 14, 29 (2015).

    Article  Google Scholar 

  6. Levy, K., Woster, A. P., Goldstein, R. S. & Carlton, E. J. Environ. Sci. Technol. 50, 4905–4922 (2016).

    Article  CAS  Google Scholar 

  7. Lo Iacono, G. et al. PLoS Negl. Trop. Dis. 11, e0005659 (2017).

    Article  Google Scholar 

  8. Semenza, J. C. et al. Crit. Rev. Environ. Sci. Technol. 42, 857–890 (2012).

    Article  Google Scholar 

  9. Curriero, F. C., Patz, J. A., Rose, J. B. & Lele, S. Am. J. Public Health 91, 1194–1199 (2001).

    Article  CAS  Google Scholar 

  10. Guzman Herrador, B. R. et al. J. Water Health 14, 1019–1027 (2016).

    Article  Google Scholar 

  11. Thomas, K. M. et al. Int. J. Environ. Health Res. 16, 167–180 (2006).

    Article  Google Scholar 

  12. Nichols, G., Lane, C., Asgari, N., Verlander, N. Q. & Charlett, A. J. Water Health 7, 1–8 (2009).

    Article  Google Scholar 

  13. Semenza, J. C. & Nichols, G. Euro Surveill. 12, E13-4 (2007).

    Article  Google Scholar 

  14. Sterk, A., Schijven, J., de Roda Husman, A. M. & de Nijs, T. Water Res. 95, 90–102 (2016).

    Article  CAS  Google Scholar 

  15. Adkins, H. J. et al. J. Clin. Microbiol. 25, 1143–1147 (1987).

    Article  CAS  Google Scholar 

  16. Dewan, A. M., Corner, R., Hashizume, M. & Ongee, E. T. PLoS Negl. Trop. Dis. 7, e1998 (2013).

    Article  Google Scholar 

  17. Desai, S. et al. Clin. Infect. Dis. 48, 691–697 (2009).

    Article  Google Scholar 

  18. Kelley, C. P., Mohtadi, S., Cane, M. A., Seager, R. & Kushnir, Y. Proc. Natl Acad. Sci. USA 112, 3241–3246 (2015).

    Article  CAS  Google Scholar 

  19. Singh, R. B. et al. Environ. Health Perspect. 109, 155–159 (2001).

    Article  CAS  Google Scholar 

  20. Effler, E. et al. Emerg. Infect. Dis. 7, 812–819 (2001).

    Article  CAS  Google Scholar 

  21. Schijven, J. et al. Risk Anal. 33, 2154–2167 (2013).

    Article  Google Scholar 

  22. Shapiro, R. S. & Cowen, L. E. MBio 3, e00238–12 (2012).

    Article  CAS  Google Scholar 

  23. Cherrie, M. P. C. et al. BMC Public Health 18, 1067 (2018).

    Article  Google Scholar 

  24. Lake, I. R. Environ. Health 16(Suppl. 1), 117 (2017).

    Article  Google Scholar 

  25. Yun, J. et al. Sci. Rep. 6, 28442 (2016).

    Article  CAS  Google Scholar 

  26. Hume, R., Berndt, K. D., Normark, S. J. & Rhen, M. Cell 90, 55–64 (1997).

    Article  Google Scholar 

  27. Djennad, A. et al. BMC Infect. Dis. 19, 255 (2019).

    Article  Google Scholar 

  28. Lake, I. R. et al. Euro Surveill. 24, 180028 (2019).

    Article  Google Scholar 

  29. Baker-Austin, C. et al. Emerg. Infect. Dis. 22, 1216–1220 (2016).

    Article  CAS  Google Scholar 

  30. Semenza, J. C. et al. Environ. Health Perspect. 125, 107004 (2017).

    Article  Google Scholar 

  31. Damania, R. et al. Uncharted Waters : The New Economics of Water Scarcity and Variability (World Bank, 2017).

  32. European Centre for Disease Prevention and Control. Vibrio map viewer. E3 Geoportal https://e3geoportal.ecdc.europa.eu/SitePages/Vibrio%20Map%20Viewer.aspx (2020).

Download references

Acknowledgements

I would like to thank J. Takkinen and M. Catchpole at the European Centre for Disease Prevention and Control for critical feedback on the manuscript. The views and opinions expressed herein are the author’s own and do not necessarily state or reflect those of the ECDC. The ECDC is not responsible for the data and information collation and analysis and cannot be held liable for conclusions or opinions drawn.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan C. Semenza.

Ethics declarations

Competing interests

The author declares no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Semenza, J.C. Cascading risks of waterborne diseases from climate change. Nat Immunol 21, 484–487 (2020). https://doi.org/10.1038/s41590-020-0631-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41590-020-0631-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing