Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

PD-L1 engagement on T cells promotes self-tolerance and suppression of neighboring macrophages and effector T cells in cancer

Abstract

Programmed cell death protein 1 (PD-1) ligation delimits immunogenic responses in T cells. However, the consequences of programmed cell death 1 ligand 1 (PD-L1) ligation in T cells are uncertain. We found that T cell expression of PD-L1 in cancer was regulated by tumor antigen and sterile inflammatory cues. PD-L1+ T cells exerted tumor-promoting tolerance via three distinct mechanisms: (1) binding of PD-L1 induced STAT3-dependent ‘back-signaling’ in CD4+ T cells, which prevented activation, reduced TH1-polarization and directed TH17-differentiation. PD-L1 signaling also induced an anergic T-betIFN-γ phenotype in CD8+ T cells and was equally suppressive compared to PD-1 signaling; (2) PD-L1+ T cells restrained effector T cells via the canonical PD-L1–PD-1 axis and were sufficient to accelerate tumorigenesis, even in the absence of endogenous PD-L1; (3) PD-L1+ T cells engaged PD-1+ macrophages, inducing an alternative M2-like program, which had crippling effects on adaptive antitumor immunity. Collectively, we demonstrate that PD-L1+ T cells have diverse tolerogenic effects on tumor immunity.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: T cells are a primary source of PD-L1 in PDA.
Fig. 2: Regulation of PD-L1 expression in T cells.
Fig. 3: Conditional deletion of PD-L1 in T cells enhances adaptive tumor immunity and activates tumor-associated macrophages.
Fig. 4: Ligation of PD-L1 induces suppressive back-signaling in T cells.
Fig. 5: PD-L1 signaling in T cells induces STAT3-dependent TH17 differentiation.
Fig. 6: PD-L1+ T cells suppress effector T cells in cancer.
Fig. 7: PD-L1+ T cells promote suppressive macrophage differentiation.

Data availability

Sequence data are available in the Gene Expression Omnibus (GEO) database at NCBI under accession code GSE145905.

References

  1. 1.

    Kythreotou, A., Siddique, A., Mauri, F. A., Bower, M. & Pinato, D. J. PD-L1. J. Clin. Pathol. 71, 189–194 (2018).

    PubMed  Google Scholar 

  2. 2.

    Ribas, A. & Wolchok, J. D. Cancer immunotherapy using checkpoint blockade. Science 359, 1350–1355 (2018).

    CAS  PubMed  Google Scholar 

  3. 3.

    Juneja, V. R. et al. PD-L1 on tumor cells is sufficient for immune evasion in immunogenic tumors and inhibits CD8 T cell cytotoxicity. J. Exp. Med. 214, 895–904 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Dong, H. et al. Costimulating aberrant T cell responses by B7-H1 autoantibodies in rheumatoid arthritis. J. Clin. Invest. 111, 363–370 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Pulko, V. et al. B7-H1 expressed by activated CD8 T cells is essential for their survival. J. Immunol. 187, 5606–5614 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Liu, X. et al. B7-H1 antibodies lose antitumor activity due to activation of p38 MAPK that leads to apoptosis of tumor-reactive CD8+ T cells. Sci. Rep. 6, 36722 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Clark, C. E. et al. Dynamics of the immune reaction to pancreatic cancer from inception to invasion. Cancer Res. 67, 9518–9527 (2007).

    CAS  PubMed  Google Scholar 

  8. 8.

    Wang, W. et al. RIP1 kinase drives macrophage-mediated adaptive immune tolerance in pancreatic cancer. Cancer Cell 34, 757–774.e7 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Loke, P. & Allison, J. P. PD-L1 and PD-L2 are differentially regulated by TH1 and TH2 cells. Proc. Natl Acad. Sci. USA 100, 5336–5341 (2003).

    CAS  PubMed  Google Scholar 

  10. 10.

    Thorn, M. et al. Tumor-associated GM-CSF overexpression induces immunoinhibitory molecules via STAT3 in myeloid-suppressor cells infiltrating liver metastases. Cancer Gene Ther. 23, 188–198 (2016).

    CAS  PubMed  Google Scholar 

  11. 11.

    Horlad, H. et al. An IL-27/Stat3 axis induces expression of programmed cell death 1 ligands (PD-L1/2) on infiltrating macrophages in lymphoma. Cancer Sci. 107, 1696–1704 (2016).

    PubMed  PubMed Central  Google Scholar 

  12. 12.

    Yang, B. et al. The role of interleukin 17 in tumour proliferation, angiogenesis, and metastasis. Mediators Inflamm. 2014, 623759 (2014).

    PubMed  PubMed Central  Google Scholar 

  13. 13.

    Blogowski, W. et al. Selected cytokines in patients with pancreatic cancer: a preliminary report. PLoS One 9, e97613 (2014).

    PubMed  PubMed Central  Google Scholar 

  14. 14.

    Jenkins, R. W. et al. Ex vivo profiling of PD-1 blockade using organotypic tumor spheroids. Cancer Discov. 8, 196–215 (2018).

    CAS  PubMed  Google Scholar 

  15. 15.

    Afkarian, M. et al. T-bet is a STAT1-induced regulator of IL-12R expression in naive CD4+ T cells. Nat. Immunol. 3, 549–557 (2002).

    CAS  PubMed  Google Scholar 

  16. 16.

    Yoon, J.-H. et al. Phosphorylation status determines the opposing functions of Smad2/Smad3 as STAT3 cofactors in TH17 differentiation. Nat. Commun. 6, 7600 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Chen, Z. et al. Selective regulatory function of Socs3 in the formation of IL-17-secreting T cells. Proc. Natl Acad. Sci. USA 103, 8137–8142 (2006).

    CAS  PubMed  Google Scholar 

  18. 18.

    Oh, H.-M., Yu, C. R., Dambuza, I., Marrero, B. & Egwuagu, C. E. STAT3 protein interacts with Class O Forkhead transcription factors in the cytoplasm and regulates nuclear/cytoplasmic localization of FoxO1 and FoxO3a proteins in CD4+ T cells. J. Biol. Chem. 287, 30436–30443 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Coffre, M. et al. miRNAs are essential for the regulation of the PI3K/AKT/FOXO pathway and receptor editing during B cell maturation. Cell Rep. 17, 2271–2285 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Procaccia, S., Ordan, M., Cohen, I., Bendetz-Nezer, S. & Seger, R. Direct binding of MEK1 and MEK2 to AKT induces Foxo1 phosphorylation, cellular migration and metastasis. Sci. Rep. 7, 43078 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Gordon, S. R. et al. PD-1 expression by tumour-associated macrophages inhibits phagocytosis and tumour immunity. Nature 545, 495–499 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Sica, A., Invernizzi, P. & Mantovani, A. Macrophage plasticity and polarization in liver homeostasis and pathology. Hepatology 59, 2034–2042 (2014).

    PubMed  Google Scholar 

  23. 23.

    Vergadi, E., Ieronymaki, E., Lyroni, K., Vaporidi, K. & Tsatsanis, C. Akt signaling pathway in macrophage activation and M1/M2 polarization. J. Immunol. 198, 1006–1014 (2017).

    CAS  PubMed  Google Scholar 

  24. 24.

    Amarnath, S. et al. The PDL1-PD1 axis converts human TH1 cells into regulatory T cells. Sci. Transl. Med. 3, 111ra120 (2011).

    PubMed  PubMed Central  Google Scholar 

  25. 25.

    Daley, D. et al. γδ T cells support pancreatic oncogenesis by restraining αβ T cell activation. Cell 166, 1485–1499.e15 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Winograd, R. et al. Induction of T-cell immunity overcomes complete resistance to PD-1 and CTLA-4 blockade and improves survival in pancreatic carcinoma. Cancer Immunol. Res. 3, 399–411 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Gato-Canas, M. et al. PDL1 signals through conserved sequence motifs to overcome interferon-mediated cytotoxicity. Cell Rep. 20, 1818–1829 (2017).

    CAS  PubMed  Google Scholar 

  28. 28.

    Melton, A. C. et al. Regulation of IL-17A production is distinct from IL-17F in a primary human cell co-culture model of T cell-mediated B cell activation. PLoS One 8, e58966 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Gomez-Rodriguez, J. et al. Differential expression of interleukin-17A and -17F is coupled to T cell receptor signaling via inducible T cell kinase. Immunity 31, 587–597 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. 30.

    McAllister, F. et al. Oncogenic Kras activates a hematopoietic-to-epithelial IL-17 signaling axis in preinvasive pancreatic neoplasia. Cancer Cell 25, 621–637 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Chen, C. L. et al. IL-17 induces antitumor immunity by promoting beneficial neutrophil recruitment and activation in esophageal squamous cell carcinoma. Oncoimmunology 7, e1373234 (2017).

    PubMed  PubMed Central  Google Scholar 

  32. 32.

    Benchetrit, F. et al. Interleukin-17 inhibits tumor cell growth by means of a T-cell-dependent mechanism. Blood 99, 2114–2121 (2002).

    CAS  PubMed  Google Scholar 

  33. 33.

    Corcoran, R. B. et al. STAT3 plays a critical role in KRAS-induced pancreatic tumorigenesis. Cancer Res. 71, 5020–5029 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Fukuda, A. et al. Stat3 and MMP7 contribute to pancreatic ductal adenocarcinoma initiation and progression. Cancer Cell 19, 441–455 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Daley, D. et al. Dectin 1 activation on macrophages by galectin 9 promotes pancreatic carcinoma and peritumoral immune tolerance. Nat. Med. 23, 556–567 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Mantovani, A., Marchesi, F., Malesci, A., Laghi, L. & Allavena, P. Tumour-associated macrophages as treatment targets in oncology. Nat. Rev. Clin. Oncol. 14, 399–416 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Talay, O., Shen, C. H., Chen, L. & Chen, J. B7-H1 (PD-L1) on T cells is required for T-cell-mediated conditioning of dendritic cell maturation. Proc. Natl Acad. Sci. USA 106, 2741–2746 (2009).

    CAS  PubMed  Google Scholar 

  38. 38.

    Zambirinis, C. P. et al. TLR9 ligation in pancreatic stellate cells promotes tumorigenesis. J. Exp. Med. 212, 2077–2094 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Pushalkar, S. et al. The pancreatic cancer microbiome promotes oncogenesis by induction of innate and adaptive immune suppression. Cancer Discov. 8, 403–416 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Ochi, A. et al. MyD88 inhibition amplifies dendritic cell capacity to promote pancreatic carcinogenesis via TH2 cells. J. Exp. Med. 209, 1671–1687 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Bedrosian, A. S. et al. Dendritic cells promote pancreatic viability in mice with acute pancreatitis. Gastroenterology 141, 1915–1926.e14 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Greco, S. H. et al. Mincle suppresses Toll-like receptor 4 activation. J. Leukoc. Biol. 100, 185–194 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. 43.

    Rehman, A. et al. Role of fatty-acid synthesis in dendritic cell generation and function. J. Immunol. 190, 4640–4649 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Liao, Y., Smyth, G. K. & Shi, W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923–930 (2014).

    CAS  PubMed  Google Scholar 

  46. 46.

    Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

    PubMed  PubMed Central  Google Scholar 

  47. 47.

    Shannon, P. et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13, 2498–2504 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. 48.

    Jenkins, R. W. et al. Ex vivo profiling of PD-1 blockade using organotypic tumor spheroids. Cancer Discov. 8, 196–215 (2017).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We acknowledge the use of the Genome Technology, Experimental Pathology and Flow Cytometry core facilities at NYU School of Medicine. These shared resources are partially supported by the Cancer Center Support Grant, P30CA016087, at the Laura and Isaac Perlmutter Cancer Center. The Vectra3 imaging system was purchased through NIH Shared Instrument Grant S10 OD021747. This work was supported by the American College of Surgeons Resident Research Fellowship (B.D.) and NIH grants CA168611 (G.M.), CA203105 (G.M.), CA215471 (G.M.), CA19311 (G.M.) and DK106025 (G.M.).

Author information

Affiliations

Authors

Contributions

B.D. and S.A. prepared the manuscript, performed in vivo and in vitro experiments and data analysis, and designed, supervised and interpreted the study; M.F.C., G.S., R.D.S., D.W., C.F., K.H.T. and T.C. performed in vitro experiments; M.L, C.B, E.L., B.S., R.C., J.W. and Z.S. performed in vivo experiments in addition to manuscript and figure preparation; M.K. performed data analyis; B.A., M.S.F., S.N., J.A.K.R., E. Kruger, M.I.U.H. and J.K. performed in vivo experiments, data analysis and manuscript review; W.W., M.H. S.A.A.S, G.B., G.W., K.-K.W., J.L. and E. Kurz performed data analysis and critical review; S.S. and C.L. performed immunofluorescence; G.M. conceived, designed, supervised, analyzed and interpreted the study and provided critical review, and is senior author and corresponding author.

Corresponding author

Correspondence to George Miller.

Ethics declarations

Competing interests

G.M. has research agreements with GSK, Pfizer and Puretech Health. K.K.W. is a founder and equity holder of G1 Therapeutics and has sponsored research agreements with MedImmune, Takeda, TargImmune, Bristol-Myers Squibb, Mirati, Merus and Alkermes, and has consulting and sponsored research agreements with AstraZeneca, Janssen, Pfizer, Novartis, Merck, Ono and Array. The remaining authors declare no competing interests.

Additional information

Peer review information Zoltan Fehervari was the primary editor on this article and managed its editorial process and peer review in collaboration with the rest of the editorial team.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Diskin, B., Adam, S., Cassini, M.F. et al. PD-L1 engagement on T cells promotes self-tolerance and suppression of neighboring macrophages and effector T cells in cancer. Nat Immunol 21, 442–454 (2020). https://doi.org/10.1038/s41590-020-0620-x

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing