Distinct microbial and immune niches of the human colon

Abstract

Gastrointestinal microbiota and immune cells interact closely and display regional specificity; however, little is known about how these communities differ with location. Here, we simultaneously assess microbiota and single immune cells across the healthy, adult human colon, with paired characterization of immune cells in the mesenteric lymph nodes, to delineate colonic immune niches at steady state. We describe distinct helper T cell activation and migration profiles along the colon and characterize the transcriptional adaptation trajectory of regulatory T cells between lymphoid tissue and colon. Finally, we show increasing B cell accumulation, clonal expansion and mutational frequency from the cecum to the sigmoid colon and link this to the increasing number of reactive bacterial species.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Variation in the microbiome from proximal to distal colon.
Fig. 2: Profiling immune cells along the steady-state colon.
Fig. 3: Dissemination of helper T cells in the colon and region-determined transcriptional profiles.
Fig. 4: Treg activation pathway from lymphoid to peripheral tissue.
Fig. 5: B cells are more abundant, clonally expanded and mutated in the sigmoid colon.
Fig. 6: Increasing number of microbiome species recognized by antibodies in the sigmoid colon.

Data availability

Raw sequencing data files are available at ArrayExpress (accession nos. E-MTAB-8007, E-MTAB-8474, E-MTAB-8476, E-MTAB-8484 and E-MTAB-8486). Sequencing data for the microbiome are available at MGnify. (ERA numbers are listed in Supplementary Table 6.) Processed scRNA-seq data are available for online visualization and download at the Gut Cell Atlas (https://www.gutcellatlas.org/).

References

  1. 1.

    Halfvarson, J. et al. Dynamics of the human gut microbiome in inflammatory bowel disease. Nat. Microbiol. 2, 17004 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Donaldson, G. P., Lee, S. M. & Mazmanian, S. K. Gut biogeography of the bacterial microbiota. Nat. Rev. Microbiol. 14, 20–32 (2016).

    CAS  PubMed  Google Scholar 

  3. 3.

    Wang, X., Heazlewood, S. P., Krause, D. O. & Florin, T. H. J. Molecular characterization of the microbial species that colonize human ileal and colonic mucosa by using 16S rDNA sequence analysis. J. Appl. Microbiol. 95, 508–520 (2003).

    CAS  PubMed  Google Scholar 

  4. 4.

    Mowat, A. M. & Agace, W. W. Regional specialization within the intestinal immune system. Nat. Rev. Immunol. 14, 667–685 (2014).

    CAS  PubMed  Google Scholar 

  5. 5.

    Denning, T. L. et al. Functional specializations of intestinal dendritic cell and macrophage subsets that control Th17 and regulatory T cell responses are dependent on the T cell/APC ratio, source of mouse strain, and regional localization. J. Immunol. 187, 733–747 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Atarashi, K. et al. Th17 cell induction by adhesion of microbes to intestinal epithelial cells. Cell 163, 367–380 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Ivanov, I. I. et al. Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell 139, 485–498 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Atarashi, K. et al. Induction of colonic regulatory T cells by indigenous Clostridium species. Science 331, 337–341 (2011).

    CAS  PubMed  Google Scholar 

  9. 9.

    Mazmanian, S. K., Liu, C. H., Tzianabos, A. O. & Kasper, D. L. An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system. Cell 122, 107–118 (2005).

    CAS  PubMed  Google Scholar 

  10. 10.

    Atarashi, K. et al. Ectopic colonization of oral bacteria in the intestine drives TH1 cell induction and inflammation. Science 358, 359–365 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Fanning, S. et al. Bifidobacterial surface-exopolysaccharide facilitates commensal-host interaction through immune modulation and pathogen protection. Proc. Natl Acad. Sci. USA 109, 2108–2113 (2012).

    CAS  PubMed  Google Scholar 

  12. 12.

    Huttenhower, C. et al. Structure, function and diversity of the healthy human microbiome. Nature 486, 207–214 (2012).

    CAS  Google Scholar 

  13. 13.

    Wu, G. D. et al. Linking long-term dietary patterns with gut microbial enterotypes. Science 334, 105–108 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Jones, R. B. et al. Inter-niche and inter-individual variation in gut microbial community assessment using stool, rectal swab, and mucosal samples. Sci. Rep. 8, 4139 (2018).

    PubMed  PubMed Central  Google Scholar 

  15. 15.

    Smillie, C. S. et al. Intra- and inter-cellular rewiring of the human colon during ulcerative colitis. Cell 178, 714–730.e22 (2019).

    CAS  PubMed  Google Scholar 

  16. 16.

    Chakarov, S. et al. Two distinct interstitial macrophage populations coexist across tissues in specific subtissular niches. Science 363, eaau0964 (2019).

    CAS  PubMed  Google Scholar 

  17. 17.

    Kumar, B. V. et al. Human tissue-resident memory T cells are defined by core transcriptional and functional signatures in lymphoid and mucosal sites. Cell Rep. 20, 2921–2934 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Cook, D. N. et al. CCR6 mediates dendritic cell localization, lymphocyte homeostasis, and immune responses in mucosal tissue. Immunity 12, 495–503 (2000).

    CAS  PubMed  Google Scholar 

  19. 19.

    Sebzda, E., Zou, Z., Lee, J. S., Wang, T. & Kahn, M. L. Transcription factor KLF2 regulates the migration of naive T cells by restricting chemokine receptor expression patterns. Nat. Immunol. 9, 292–300 (2008).

    CAS  PubMed  Google Scholar 

  20. 20.

    Toribio-Fernández, R. et al. Lamin A/C augments Th1 differentiation and response against vaccinia virus and Leishmania major. Cell Death Dis. 9, 9 (2018).

    PubMed  PubMed Central  Google Scholar 

  21. 21.

    Lönnberg, T. et al. Single-cell RNA-seq and computational analysis using temporal mixture modelling resolves TH1/TFH fate bifurcation in malaria. Sci. Immunol. 2, eaal2192 (2017).

    PubMed  PubMed Central  Google Scholar 

  22. 22.

    Miragaia, R. J. et al. Single-cell transcriptomics of regulatory T cells reveals trajectories of tissue adaptation. Immunity 50, 493–504.e7 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Miyao, T. et al. Plasticity of Foxp3+ T cells reflects promiscuous Foxp3 expression in conventional T cells but not reprogramming of regulatory T cells. Immunity 36, 262–275 (2012).

    CAS  PubMed  Google Scholar 

  24. 24.

    Povoleri, G. A. M. et al. Human retinoic acid-regulated CD161+ regulatory T cells support wound repair in intestinal mucosa. Nat. Immunol. 19, 1403–1414 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Schiering, C. et al. The alarmin IL-33 promotes regulatory T-cell function in the intestine. Nature 513, 564–568 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Krzysiek, R. et al. Antigen receptor engagement selectively induces macrophage inflammatory protein-1α (MIP-1α) and MIP-1β chemokine production in human B cells. J. Immunol. 162, 4455–4463 (1999).

    CAS  PubMed  Google Scholar 

  27. 27.

    Mencarelli, A. et al. Highly specific blockade of CCR5 inhibits leukocyte trafficking and reduces mucosal inflammation in murine colitis. Sci. Rep. 6, 30802 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Zhang, Y. et al. Plasma cell output from germinal centers is regulated by signals from Tfh and stromal cells. J. Exp. Med. 215, 1227–1243 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Caraux, A. et al. Circulating human B and plasma cells. Age-associated changes in counts and detailed characterization of circulating normal CD138 and CD138+ plasma cells. Haematologica 95, 1016–1020 (2010).

    PubMed  PubMed Central  Google Scholar 

  30. 30.

    Mora, J. R. & von Andrian, U. H. Differentiation and homing of IgA-secreting cells. Mucosal Immunol. 1, 96–109 (2008).

    CAS  PubMed  Google Scholar 

  31. 31.

    Zhang, W. et al. Characterization of the B cell receptor repertoire in the intestinal mucosa and of tumor-infiltrating lymphocytes in colorectal adenoma and carcinoma. J. Immunol. 198, 3719–3728 (2017).

    CAS  PubMed  Google Scholar 

  32. 32.

    Macpherson, A. J. A primitive T cell-independent mechanism of intestinal mucosal IgA responses to commensal bacteria. Science 288, 2222–2226 (2000).

    CAS  PubMed  Google Scholar 

  33. 33.

    Harbour, S. N., Maynard, C. L., Zindl, C. L., Schoeb, T. R. & Weaver, C. T. Th17 cells give rise to Th1 cells that are required for the pathogenesis of colitis. Proc. Natl Acad. Sci. USA 112, 7061–7066 (2015).

    CAS  PubMed  Google Scholar 

  34. 34.

    Ferreira, R. C. et al. Cells with Treg-specific FOXP3 demethylation but low CD25 are prevalent in autoimmunity. J. Autoimmun. 84, 75–86 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Hoffmann, P. et al. Loss of FOXP3 expression in natural human CD4+CD25+ regulatory T cells upon repetitive in vitro stimulation. Eur. J. Immunol. 39, 1088–1097 (2009).

    CAS  PubMed  Google Scholar 

  36. 36.

    Kyewski, B. & Suri-Payer, E. CD4 +CD25 + Regulatory T Cells: Origin, Function and Therapeutic Potential (Springer, 2005).

  37. 37.

    Brandtzaeg, P. Function of mucosa-associated lymphoid tissue in antibody formation. Immunol. Invest. 39, 303–355 (2010).

    CAS  PubMed  Google Scholar 

  38. 38.

    Meng, W. et al. An atlas of B-cell clonal distribution in the human body. Nat. Biotechnol. 35, 879–884 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Dunn-Walters, D. K., Boursier, L. & Spencer, J. Hypermutation, diversity and dissemination of human intestinal lamina propria plasma cells. Eur. J. Immunol. 27, 2959–2964 (1997).

    CAS  PubMed  Google Scholar 

  40. 40.

    Tsuji, M. et al. Requirement for lymphoid tissue-inducer cells in isolated follicle formation and T cell-independent immunoglobulin A generation in the gut. Immunity 29, 261–271 (2008).

    CAS  PubMed  Google Scholar 

  41. 41.

    Imam, T., Park, S., Kaplan, M. H. & Olson, M. R. Effector T helper cell subsets in inflammatory bowel diseases. Front. Immunol. 9, 1212 (2018).

    PubMed  PubMed Central  Google Scholar 

  42. 42.

    Castro-Dopico, T. et al. Anti-commensal IgG drives intestinal inflammation and type 17 immunity in ulcerative colitis. Immunity 50, 1099–1114.e10 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. 43.

    Wolf, F. A., Angerer, P. & Theis, F. J. SCANPY: large-scale single-cell gene expression data analysis. Genome Biol. 19, 15 (2018).

    PubMed  PubMed Central  Google Scholar 

  44. 44.

    Polański, K., Park, J.-E., Young, M. D., Miao, Z., Meyer, K. B. & Teichmann, S. A. BBKNN: fast batch alignment of single cell transcriptomes. Bioinformatics https://doi.org/10.1093/bioinformatics/btz625 (2019).

  45. 45.

    Stuart, T. et al. Comprehensive integration of single-cell data. Cell 177, 1888–1902.e21 (2019).

    CAS  PubMed  Google Scholar 

  46. 46.

    Trapnell, C. et al. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat. Biotechnol. 32, 381–386 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. 47.

    Browne, H. P. et al. Culturing of ‘unculturable’ human microbiota reveals novel taxa and extensive sporulation. Nature 533, 543–546 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. 48.

    Kozich, J. J., Westcott, S. L., Baxter, N. T., Highlander, S. K. & Schloss, P. D. Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. Appl. Environ. Microbiol. 79, 5112–5120 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree 2: approximately maximum-likelihood trees for large alignments. PLoS One 5, e9490 (2010).

    PubMed  PubMed Central  Google Scholar 

  50. 50.

    Letunic, I. & Bork, P. Interactive Tree of Life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res. 44, W242–W245 (2016).

    CAS  Google Scholar 

  51. 51.

    Stubbington, M. J. T. et al. T cell fate and clonality inference from single-cell transcriptomes. Nat. Methods 13, 329–332 (2016).

    PubMed  PubMed Central  Google Scholar 

  52. 52.

    Petrova, V. N. et al. Combined influence of B-cell receptor rearrangement and somatic hypermutation on B-cell class-switch fate in health and in chronic lymphocytic leukemia. Front. Immunol. 9, 1784 (2018).

    PubMed  PubMed Central  Google Scholar 

  53. 53.

    Bolotin, D. A. et al. MiXCR: software for comprehensive adaptive immunity profiling. Nat. Methods 12, 380–381 (2015).

    CAS  PubMed  Google Scholar 

  54. 54.

    Nazarov, V. I. et al. tcR: an R package for T cell receptor repertoire advanced data analysis. BMC Bioinformatics 16, 175 (2015).

    PubMed  PubMed Central  Google Scholar 

  55. 55.

    Heiden, J. A. V. et al. pRESTO: a toolkit for processing high-throughput sequencing raw reads of lymphocyte receptor repertoires. Bioinformatics 30, 1930–1932 (2014).

    Google Scholar 

  56. 56.

    Ye, J., Ma, N., Madden, T. L. & Ostell, J. M. IgBLAST: an immunoglobulin variable domain sequence analysis tool. Nucleic Acids Res. 41, W34–W40 (2013).

    PubMed  PubMed Central  Google Scholar 

  57. 57.

    Gupta, N. T. et al. Change-O: a toolkit for analyzing large-scale B cell immunoglobulin repertoire sequencing data. Bioinformatics 31, 3356–3358 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We acknowledge the support received from the Wellcome Sanger Cytometry Core Facility, Cellular Genetics Informatics team and Core DNA Pipelines. We thank F. Rouhani and T. Castro-Dopico for insightful discussions about project and experimental design and K. Mahbubani for help with the collection of human tissue. We acknowledge J. Eliasova for the graphical images. This research was supported by funding from the Wellcome Trust (grant no. WT206194 to S.A.T.) and the European Research Council (grant no. 646794 ThDEFINE to S.A.T.). K.R.J. holds a Non-Stipendiary Junior Research Fellowship from Christ’s College, University of Cambridge. T.G. was funded by the European Union’s H2020 research and innovation programme ‘ENLIGHT-TEN’ under Marie Skłodowska-Curie grant agreement no. 675395. H.W.K. was funded by a Sir Henry Wellcome Postdoctoral Fellowship (grant no. 213555/Z/18/Z). B.R.B. was funded by the NIHR Cambridge Biomedical Research Centre (grant no. RG92051). We thank the deceased organ donors, donor families and the Cambridge Biorepository for Translational Medicine for access to the tissue samples. This publication is part of the Human Cell Atlas (https://www.humancellatlas.org/publications/).

Author information

Affiliations

Authors

Contributions

K.R.J. initiated this project, designed and performed the scRNA-seq and microbiome experiments, analyzed the data and wrote the manuscript. T.G. analyzed the bulk BCR-seq data and contributed extensively to the scRNA-seq data analysis. R.E. contributed to data interpretation and scRNA-seq data analysis. N.K. and E.L.G. analyzed the 16S ribosomal sequencing and metagenomics data. M.D.S. assisted in the microbiome-related experiments. H.W.K. and L.K.J. analyzed the 10x Genomics VDJ datasets and contributed to the generation of figures. B.R.B. and K.S.P. carried out the tissue collection. J.R.F. designed the flow-sorting panel and assisted with flow-sorting. V.N.P. assisted with bulk BCR library preparation and analysis. L.B.J., O.S., S.H. and J.L.J. dissociated tissues from donor 390c. K.P. carried out the scRNA-seq read alignment and quality control. S.C.F., K.B.M. and M.R.C. designed the experiments and interpreted the data. T.D.L. and S.A.T. initiated and supervised the project and interpreted the data. All authors edited the paper.

Corresponding authors

Correspondence to Kylie R. James or Sarah A. Teichmann.

Ethics declarations

Competing interests

S.C.F. and T.D.L. are either employees of, or consultants to, Microbiotica.

Additional information

Editor recognition statement Zoltan Fehervari was the primary editor(s) on this article and managed its editorial process and peer review in collaboration with the rest of the editorial team.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–6 and figure legends.

Reporting Summary

Supplementary Table

Supplementary table legends and Tables 1–6.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

James, K.R., Gomes, T., Elmentaite, R. et al. Distinct microbial and immune niches of the human colon. Nat Immunol 21, 343–353 (2020). https://doi.org/10.1038/s41590-020-0602-z

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing