Endogenous oxidized phospholipids reprogram cellular metabolism and boost hyperinflammation

Abstract

Pathogen-associated molecular patterns (PAMPs) have the capacity to couple inflammatory gene expression to changes in macrophage metabolism, both of which influence subsequent inflammatory activities. Similar to their microbial counterparts, several self-encoded damage-associated molecular patterns (DAMPs) induce inflammatory gene expression. However, whether this symmetry in host responses between PAMPs and DAMPs extends to metabolic shifts is unclear. Here, we report that the self-encoded oxidized phospholipid oxPAPC alters the metabolism of macrophages exposed to lipopolysaccharide. While cells activated by lipopolysaccharide rely exclusively on glycolysis, macrophages exposed to oxPAPC also use mitochondrial respiration, feed the Krebs cycle with glutamine, and favor the accumulation of oxaloacetate in the cytoplasm. This metabolite potentiates interleukin-1β production, resulting in hyperinflammation. Similar metabolic adaptions occur in vivo in hypercholesterolemic mice and human subjects. Drugs that interfere with oxPAPC-driven metabolic changes reduce atherosclerotic plaque formation in mice, thereby underscoring the importance of DAMP-mediated activities in pathophysiological conditions.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: oxPAPC induces a hypermetabolic state in macrophages.
Fig. 2: oxPAPC promotes a hyperinflammatory phenotype in LPS-stimulated macrophages.
Fig. 3: Nitric oxide inhibition and respiration maintenance promoted by oxPAPC enables the hyperproduction of IL-1β.
Fig. 4: Glutamine is strictly required for oxPAPC-mediated hyperinflammation.
Fig. 5: oxPAPC potentiates HIF-1α through OAA accumulation.
Fig. 6: Conversion of citrate into OAA in the cytoplasm governs the induction of the hyperinflammatory phenotype in macrophages treated with oxPAPC and LPS.
Fig. 7: oxPAPC-driven immunometabolic adaptations occur in hypercholesterolemic mice.
Fig. 8: The hypermetabolism induced by oxidized phospholipids can be targeted against atherosclerosis.

Data availability

The data that support the findings of this study are available from the corresponding author upon request. Uncropped raw immunoblot images can be found in the ‘Source data’ section of the Supplementary Information. Participant-level phenotype and genotype data from the FHS are accessible from the US National Center for Biotechnology Information database of Genotypes and Phenotypes at https://dbgap.ncbi.nlm.nih.gov/ to approved scientific investigators pursuing research questions that are consistent with the informed consent agreements provided by individual research participants. The FHS expression data are available from the database of Genotypes and Phenotypes at https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000363.v3.p6.

References

  1. 1.

    Brubaker, S. W., Bonham, K. S., Zanoni, I. & Kagan, J. C. Innate immune pattern recognition: a cell biological perspective. Annu. Rev. Immunol. 33, 257–290 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Janeway, C. A. Jr Approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harb. Symp. Quant. Biol. 54, 1–13 (1989).

    CAS  PubMed  Google Scholar 

  3. 3.

    Matzinger, P. Tolerance, danger, and the extended family. Annu. Rev. Immunol. 12, 991–1045 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Nathan, C. Points of control in inflammation. Nature 420, 846–852 (2002).

    CAS  PubMed  Google Scholar 

  5. 5.

    Iwasaki, A. & Medzhitov, R. Regulation of adaptive immunity by the innate immune system. Science 327, 291–295 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Zanoni, I., Tan, Y., Di Gioia, M., Springstead, J. R. & Kagan, J. C. By capturing inflammatory lipids released from dying cells, the receptor CD14 induces inflammasome-dependent phagocyte hyperactivation. Immunity 47, 697–709 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Zanoni, I. et al. An endogenous caspase-11 ligand elicits interleukin-1 release from living dendritic cells. Science 352, 1232–1236 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Imai, Y. et al. Identification of oxidative stress and Toll-like receptor 4 signaling as a key pathway of acute lung injury. Cell 133, 235–249 (2008).

    CAS  PubMed  Google Scholar 

  9. 9.

    Shirey, K. A. et al. The TLR4 antagonist Eritoran protects mice from lethal influenza infection. Nature 497, 498–502 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Berliner, J. A., Leitinger, N. & Tsimikas, S. The role of oxidized phospholipids in atherosclerosis. J. Lipid Res. 50, S207–S212 (2009).

    PubMed  PubMed Central  Google Scholar 

  11. 11.

    Chang, M. K. et al. Apoptotic cells with oxidation-specific epitopes are immunogenic and proinflammatory. J. Exp. Med. 200, 1359–1370 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Bochkov, V. N. et al. Protective role of phospholipid oxidation products in endotoxin-induced tissue damage. Nature 419, 77–81 (2002).

    CAS  PubMed  Google Scholar 

  13. 13.

    Leitinger, N. Oxidized phospholipids as modulators of inflammation in atherosclerosis. Curr. Opin. Lipidol. 14, 421–430 (2003).

    CAS  PubMed  Google Scholar 

  14. 14.

    Que, X. et al. Oxidized phospholipids are proinflammatory and proatherogenic in hypercholesterolaemic mice. Nature 558, 301–306 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Dinarello, C. A. Interleukin-1 in the pathogenesis and treatment of inflammatory diseases. Blood 117, 3720–3732 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Jung, J., Zeng, H. & Horng, T. Metabolism as a guiding force for immunity. Nat. Cell Biol. 21, 85–93 (2019).

    CAS  PubMed  Google Scholar 

  17. 17.

    O’Neill, L. A. & Pearce, E. J. Immunometabolism governs dendritic cell and macrophage function. J. Exp. Med. 213, 15–23 (2016).

    PubMed  PubMed Central  Google Scholar 

  18. 18.

    Jha, A. K. et al. Network integration of parallel metabolic and transcriptional data reveals metabolic modules that regulate macrophage polarization. Immunity 42, 419–430 (2015).

    CAS  PubMed  Google Scholar 

  19. 19.

    Van den Bossche, J. et al. Mitochondrial dysfunction prevents repolarization of inflammatory macrophages. Cell Rep. 17, 684–696 (2016).

    CAS  PubMed  Google Scholar 

  20. 20.

    Serbulea, V. et al. Macrophage phenotype and bioenergetics are controlled by oxidized phospholipids identified in lean and obese adipose tissue. Proc. Natl Acad. Sci. USA 115, E6254–E6263 (2018).

    CAS  PubMed  Google Scholar 

  21. 21.

    Everts, B. et al. TLR-driven early glycolytic reprogramming via the kinases TBK1-IKKɛ supports the anabolic demands of dendritic cell activation. Nat. Immunol. 15, 323–332 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Tannahill, G. M. et al. Succinate is an inflammatory signal that induces IL-1β through HIF-1α. Nature 496, 238–242 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Palsson-McDermott, E. M. et al. Pyruvate kinase M2 regulates Hif-1α activity and IL-1β induction and is a critical determinant of the Warburg effect in LPS-activated macrophages. Cell Metab. 21, 65–80 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Serbulea, V. et al. Macrophages sensing oxidized DAMPs reprogram their metabolism to support redox homeostasis and inflammation through a TLR2-Syk-ceramide dependent mechanism. Mol. Metab. 7, 23–34 (2018).

    CAS  PubMed  Google Scholar 

  25. 25.

    Mills, E. L. et al. Succinate dehydrogenase supports metabolic repurposing of mitochondria to drive inflammatory macrophages. Cell 167, 457–470 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Bailey, J. D. et al. Nitric oxide modulates metabolic remodeling in inflammatory macrophages through TCA cycle regulation and itaconate accumulation. Cell Rep. 28, 218–230 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Meiser, J. et al. Pro-inflammatory macrophages sustain pyruvate oxidation through pyruvate dehydrogenase for the synthesis of itaconate and to enable cytokine expression. J. Biol. Chem. 291, 3932–3946 (2016).

    CAS  PubMed  Google Scholar 

  28. 28.

    Wang, F. et al. Glycolytic stimulation is not a requirement for M2 macrophage differentiation. Cell Metab. 28, 463–475 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Liu, P. S. et al. α-Ketoglutarate orchestrates macrophage activation through metabolic and epigenetic reprogramming. Nat. Immunol. 18, 985–994 (2017).

    CAS  PubMed  Google Scholar 

  30. 30.

    Lampropoulou, V. et al. Itaconate links inhibition of succinate dehydrogenase with macrophage metabolic remodeling and regulation of inflammation. Cell Metab. 24, 158–166 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Koivunen, P. et al. Inhibition of hypoxia-inducible factor (HIF) hydroxylases by citric acid cycle intermediates: possible links between cell metabolism and stabilization of HIF. J. Biol. Chem. 282, 4524–4532 (2007).

    CAS  PubMed  Google Scholar 

  32. 32.

    Ridker, P. M. et al. Antiinflammatory therapy with canakinumab for atherosclerotic disease. New Engl. J. Med. 377, 1119–1131 (2017).

    CAS  PubMed  Google Scholar 

  33. 33.

    Koelwyn, G. J., Corr, E. M., Erbay, E. & Moore, K. J. Regulation of macrophage immunometabolism in atherosclerosis. Nat. Immunol. 19, 526–537 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Steinberg, D. & Witztum, J. L. Oxidized low-density lipoprotein and atherosclerosis. Arter. Thromb. Vasc. Biol. 30, 2311–2316 (2010).

    CAS  Google Scholar 

  35. 35.

    Oskolkova, O. V. et al. Oxidized phospholipids are more potent antagonists of lipopolysaccharide than inducers of inflammation. J. Immunol. 185, 7706–7712 (2010).

    CAS  PubMed  Google Scholar 

  36. 36.

    Kim, K. et al. Transcriptome analysis reveals nonfoamy rather than foamy plaque macrophages are proinflammatory in atherosclerotic murine models. Circ. Res. 123, 1127–1142 (2018).

    CAS  PubMed  Google Scholar 

  37. 37.

    Cochain, C. et al. Single-cell RNA-Seq reveals the transcriptional landscape and heterogeneity of aortic macrophages in murine atherosclerosis. Circ. Res. 122, 1661–1674 (2018).

    CAS  PubMed  Google Scholar 

  38. 38.

    Mahmood, S. S., Levy, D., Vasan, R. S. & Wang, T. J. The Framingham Heart Study and the epidemiology of cardiovascular disease: a historical perspective. Lancet 383, 999–1008 (2014).

    PubMed  Google Scholar 

  39. 39.

    Sanin, D. E. et al. Mitochondrial membrane potential regulates nuclear gene expression in macrophages exposed to prostaglandin E2. Immunity 49, 1021–1033 (2018).

    CAS  PubMed  Google Scholar 

  40. 40.

    Johnson, M. O. et al. Distinct regulation of Th17 and Th1 cell differentiation by glutaminase-dependent metabolism. Cell 175, 1780–1795 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Shirai, T. et al. The glycolytic enzyme PKM2 bridges metabolic and inflammatory dysfunction in coronary artery disease. J. Exp. Med. 213, 337–354 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Tavakoli, S. et al. Characterization of macrophage polarization states using combined measurement of 2-deoxyglucose and glutamine accumulation: implications for imaging of atherosclerosis. Arter. Thromb. Vasc. Biol. 37, 1840–1848 (2017).

    CAS  Google Scholar 

  43. 43.

    Hitzel, J. et al. Oxidized phospholipids regulate amino acid metabolism through MTHFD2 to facilitate nucleotide release in endothelial cells. Nat. Commun. 9, 2292 (2018).

    PubMed  PubMed Central  Google Scholar 

  44. 44.

    Bekkering, S. et al. Metabolic induction of trained immunity through the mevalonate pathway. Cell 172, 135–146 (2018).

    CAS  PubMed  Google Scholar 

  45. 45.

    Christ, A. et al. Western diet triggers NLRP3-dependent innate immune reprogramming. Cell 172, 162–175 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. 46.

    Geng, S. et al. The persistence of low-grade inflammatory monocytes contributes to aggravated atherosclerosis. Nat. Commun. 7, 13436 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. 47.

    Michelsen, K. S. et al. Lack of Toll-like receptor 4 or myeloid differentiation factor 88 reduces atherosclerosis and alters plaque phenotype in mice deficient in apolipoprotein E. Proc. Natl Acad. Sci. USA 101, 10679–10684 (2004).

    CAS  PubMed  Google Scholar 

  48. 48.

    Carnevale, R. et al. Localization of lipopolysaccharide from Escherichia coli into human atherosclerotic plaque. Sci. Rep. 8, 3598 (2018).

    PubMed  PubMed Central  Google Scholar 

  49. 49.

    Philippova, M. et al. Analysis of fragmented oxidized phosphatidylcholines in human plasma using mass spectrometry: comparison with immune assays. Free Radic. Biol. Med. 144, 167–175 (2019).

    CAS  PubMed  Google Scholar 

  50. 50.

    Bjorkbacka, H. et al. Reduced atherosclerosis in MyD88-null mice links elevated serum cholesterol levels to activation of innate immunity signaling pathways. Nat. Med. 10, 416–421 (2004).

    PubMed  Google Scholar 

  51. 51.

    Yuan, M., Breitkopf, S. B., Yang, X. & Asara, J. M. A positive/negative ion-switching, targeted mass spectrometry-based metabolomics platform for bodily fluids, cells, and fresh and fixed tissue. Nat. Protoc. 7, 872–881 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. 52.

    Watson, A. D. et al. Structural identification of a novel pro-inflammatory epoxyisoprostane phospholipid in mildly oxidized low density lipoprotein. J. Biol. Chem. 274, 24787–24798 (1999).

    CAS  PubMed  Google Scholar 

  53. 53.

    Yuan, M. et al. Ex vivo and in vivo stable isotope labelling of central carbon metabolism and related pathways with analysis by LC-MS/MS. Nat. Protoc. 14, 313–330 (2019).

    CAS  PubMed  Google Scholar 

  54. 54.

    Kannel, W. B., Feinleib, M., McNamara, P. M., Garrison, R. J. & Castelli, W. P. An investigation of coronary heart disease in families. The Framingham Offspring Study. Am. J. Epidemiol. 110, 281–290 (1979).

    CAS  PubMed  Google Scholar 

  55. 55.

    Joehanes, R. et al. Gene expression signatures of coronary heart disease. Arter. Thromb. Vasc. Biol. 33, 1418–1426 (2013).

    CAS  Google Scholar 

  56. 56.

    Irizarry, R. A. et al. Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 4, 249–264 (2003).

    Google Scholar 

  57. 57.

    Joehanes, R. et al. Integrated genome-wide analysis of expression quantitative trait loci aids interpretation of genomic association studies. Genome Biol. 18, 16 (2017).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank F. Granucci, J. C. Kagan and L. R. Marek for discussions, help and support. R.S. thanks the UCLA QCBio Collaboratory community, directed by M. Pellegrini. I.Z. is supported by National Institutes of Health (NIH) grants 1R01AI121066, 1R01DK115217 and NIAID-DAIT-NIHAI201700100. J.R.S. is supported by NIH grant 1R15HL121770-01A1. The FHS is funded by NIH contracts N01-HC-25195 and HHSN268201500001I. The laboratory work for the FHS investigation was funded by the Division of Intramural Research, National Heart, Lung, and Blood Institute, NIH, and by a Director’s Challenge Award, NIH (principal investigator: D.L.). This study utilized the computational resources of the Biowulf system at the NIH in Bethesda, Maryland (http://hpc.nih.gov). M.M.M. is supported by NIH grant K99HL136875. The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH.

Author information

Affiliations

Authors

Contributions

M.D.G. designed, performed and analyzed the experiments. R.S. performed the statistical comparisons on the FHS aggregated data. J.R.S. produced oxPAPC and PEIPC, and participated in the analyses of data. M.M.M., R.J. and D.L. developed and analyzed the FHS expression project. I.Z. conceived the project, designed the experiments, supervised the study and wrote the paper.

Corresponding author

Correspondence to Ivan Zanoni.

Ethics declarations

Competing interests

I.Z., M.D.G. and Boston Children’s Hospital have filed an international patent application (US patent application number 62/851,561) that relates to the metabolic activity of oxPAPC.

Additional information

Peer review information Zoltan Fehervari was the primary editor on this article and managed its editorial process and peer review in collaboration with the rest of the editorial team.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 oxPAPC drives hyperactivation and hypermetabolism in macrophages.

Schematic depicting oxPAPC activities. oxPAPC is a mixture of oxidized phospholipids that induce an hyperinflammatory state in phagocytes upon LPS encounter and/or during atherosclerosis development. Moieties such as POVPC or PGPC contained in oxPAPC drive the formation of hyperactive cells that are characterized by inflammasome activation in the absence of pyroptosis. In contrast to POVPC or PGPC, PEIPC engages a hypermetabolic state in phagocytes that favors IL-1β accumulation and that is characterized by: i) the simultaneous activation of OXPHOS and aerobic glycolysis; ii) glutamine utilization to feed the TCA cycle; iii) oxaloacetate (OAA) accumulation in the cytoplasm to potentiate HIF-1α activation.

Supplementary information

Supplementary Information

Supplementary Figs. 1–8.

Reporting Summary

Supplementary Table 1

Metabolomic analysis of BMDMs primed for 3 h with LPS (1 μg ml−1) and treated, or not, with oxPAPC (100 μg ml−1).

Supplementary Table 2

FHS gene expression analysis.

Source data

Source Data Fig. 1

Statistical Data

Source Data Fig. 2

Statistical Data

Source Data Fig. 3

Statistical Data

Source Data Fig. 4

Statistical Data

Source Data Fig. 5

Statistical Data

Source Data Fig. 6

Statistical Data

Source Data Fig. 7

Statistical Data

Source Data Fig. 8

Statistical Data

Source Data, Supplementary Fig. 1

Statistical Data

Source Data, Supplementary Fig. 2

Statistical Data

Source Data, Supplementary Fig. 3

Statistical Data

Source Data, Supplementary Fig. 4

Statistical Data

Source Data, Supplementary Fig. 5

Statistical Data

Source Data, Supplementary Fig. 6

Statistical Data

Source Data, Supplementary Fig. 7

Statistical Data

Source Data, Supplementary Fig. 8

Statistical Data

Source Data Fig. 3

Unprocessed WB

Source Data Fig. 5

Unprocessed WB

Source Data Fig. 6

Unprocessed WB

Source Data Supplementary Fig. 3

Unprocessed WB

Source Data Supplementary Fig. 6

Unprocessed WB

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Di Gioia, M., Spreafico, R., Springstead, J.R. et al. Endogenous oxidized phospholipids reprogram cellular metabolism and boost hyperinflammation. Nat Immunol 21, 42–53 (2020). https://doi.org/10.1038/s41590-019-0539-2

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing