Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Identification of a novel arthritis-associated osteoclast precursor macrophage regulated by FoxM1

This article has been updated


Osteoclasts have a unique bone-destroying capacity, playing key roles in steady-state bone remodeling and arthritic bone erosion. Whether the osteoclasts in these different tissue settings arise from the same precursor states of monocytoid cells is presently unknown. Here, we show that osteoclasts in pannus originate exclusively from circulating bone marrow-derived cells and not from locally resident macrophages. We identify murine CX3CR1hiLy6CintF4/80+I-A+/I-E+ macrophages (termed here arthritis-associated osteoclastogenic macrophages (AtoMs)) as the osteoclast precursor-containing population in the inflamed synovium, comprising a subset distinct from conventional osteoclast precursors in homeostatic bone remodeling. Tamoxifen-inducible Foxm1 deletion suppressed the capacity of AtoMs to differentiate into osteoclasts in vitro and in vivo. Furthermore, synovial samples from human patients with rheumatoid arthritis contained CX3CR1+HLA-DRhiCD11c+CD80CD86+ cells that corresponded to mouse AtoMs, and human osteoclastogenesis was inhibited by the FoxM1 inhibitor thiostrepton, constituting a potential target for rheumatoid arthritis treatment.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: BM-derived CX3CR1+ cells differentiate into osteoclasts in pannus.
Fig. 2: CX3CR1hiLy6CintF4/80hiI-A+/I-E+ macrophages in the inflamed synovium have high osteoclast differentiation potential.
Fig. 3: The RANKL–RANK–OPG axis is essential for R3′ cell osteoclastogenesis.
Fig. 4: Transcriptional profiling by RNA-Seq identifies FoxM1 as a key regulator of R3′ cells.
Fig. 5: Single-cell RNA-Seq analysis of synovial R3 cells.
Fig. 6: M-CSF mediates R2 to R3 cell transition.
Fig. 7: FoxM1 contributes to arthritis-induced bone destruction.
Fig. 8: Rheumatoid arthritis synovial CX3CR1+HLA-DRhiCD11c+CD86+ cells have high osteoclastogenic potential.

Data availability

The datasets analyzed during the current study are available from the corresponding author on reasonable request. Raw RNA-Seq data and single-cell RNA-Seq data related to this study are available from the Gene Expression Omnibus (accession numbers GSE117149 and GSM3712154, respectively).

Change history

  • 24 January 2020

    The caption for Source Data Extended Data Fig. 8 was given as “Gel source Data for Figure 6c”; it has been changed to “Gel source Data for Figure 7b.”


  1. 1.

    Pirzgalska, R. M. et al. Sympathetic neuron-associated macrophages contribute to obesity by importing and metabolizing norepinephrine. Nat. Med. 23, 1309–1318 (2017).

    CAS  PubMed  Google Scholar 

  2. 2.

    Okabe, Y. & Medzhitov, R. Tissue-specific signals control reversible program of localization and functional polarization of macrophages. Cell 157, 832–844 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Satoh, T. et al. Identification of an atypical monocyte and committed progenitor involved in fibrosis. Nature 541, 96–101 (2017).

    CAS  PubMed  Google Scholar 

  4. 4.

    Asano, K. et al. CD169-positive macrophages dominate antitumor immunity by crosspresenting dead cell-associated antigens. Immunity 34, 85–95 (2011).

    CAS  PubMed  Google Scholar 

  5. 5.

    Arai, F. et al. Commitment and differentiation of osteoclast precursor cells by the sequential expression of c-Fms and receptor activator of nuclear factor κB (RANK) receptors. J. Exp. Med. 190, 1741–1754 (2002).

    Google Scholar 

  6. 6.

    Schett, G. & Gravallese, E. Bone erosion in rheumatoid arthritis: mechanisms, diagnosis and treatment. Nat. Rev. Rheumatol. 8, 656–664 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. 7.

    McInnes, I. The pathogenesis of rheumatoid arthritis. N. Engl. J. Med. 365, 2205–2219 (2011).

    CAS  PubMed  Google Scholar 

  8. 8.

    Charles, J. F. et al. Inflammatory arthritis increases mouse osteoclast precursors with myeloid suppressor function. J. Clin. Invest. 122, 4592–4605 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Seeling, M. et al. Inflammatory monocytes and Fc receptor IV on osteoclasts are critical for bone destruction during inflammatory arthritis in mice. Proc. Natl Acad. Sci. USA 110, 10729–10734 (2013).

    CAS  PubMed  Google Scholar 

  10. 10.

    Ibáñez, L. et al. Inflammatory osteoclasts prime TNFα-producing CD4+ T cells and express CX3CR1. J. Bone Miner. Res. 31, 1899–1908 (2016).

    PubMed  Google Scholar 

  11. 11.

    Werner, D. et al. Early changes of the cortical micro-channel system in the bare area of the joints of patients with rheumatoid arthritis. Arthritis Rheumatol. 69, 1580–1587 (2017).

    PubMed  Google Scholar 

  12. 12.

    Adamopoulos, I. E. & Mellins, E. D. Alternative pathways of osteoclastogenesis in inflammatory arthritis. Nat. Rev. Rheumatol. 11, 189–194 (2015).

    CAS  PubMed  Google Scholar 

  13. 13.

    Jacome-Galarza, C. E., Lee, S. K., Lorenzo, J. A. & Aguila, H. L. Identification, characterization, and isolation of a common progenitor for osteoclasts, macrophages, and dendritic cells from murine bone marrow and periphery. J. Bone Miner. Res. 28, 1203–1213 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Ishii, M. et al. Sphingosine-1-phosphate mobilizes osteoclast precursors and regulates bone homeostasis. Nature 458, 524–528 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Misharin, A. V. et al. Non-classical Ly6C monocytes drive the development of inflammatory arthritis in mice. Cell Rep. 9, 591–604 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Geissmann, F., Jung, S. & Littman, D. R. Blood monocytes consist of two principal subsets with distinct migratory properties. Immunity 19, 71–82 (2003).

    CAS  PubMed  Google Scholar 

  17. 17.

    Yona, S. et al. Fate mapping reveals origins and dynamics of monocytes and tissue macrophages under homeostasis. Immunity 38, 79–91 (2013).

    CAS  PubMed  Google Scholar 

  18. 18.

    Yokota, K. et al. Combination of tumor necrosis factor α and interleukin-6 induces mouse osteoclast-like cells with bone resorption activity both in vitro and in vivo. Arthritis Rheumatol. 66, 121–129 (2014).

    CAS  PubMed  Google Scholar 

  19. 19.

    O’Brien, W. et al. RANK-independent osteoclast formation and bone erosion in inflammatory arthritis. Arthritis Rheumatol. 68, 2889–2900 (2016).

    PubMed  PubMed Central  Google Scholar 

  20. 20.

    Lam, J. et al. TNF-α induces osteoclastogenesis by direct stimulation of macrophages exposed to permissive levels of RANK ligand. J. Clin. Invest. 106, 1481–1488 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Ochi, S. et al. Pathological role of osteoclast costimulation in arthritis-induced bone loss. Proc. Natl Acad. Sci. USA 104, 11394–11399 (2007).

    CAS  PubMed  Google Scholar 

  22. 22.

    Tamura, T. et al. Soluble interleukin-6 receptor triggers osteoclast formation by interleukin 6. Proc. Natl Acad. Sci. USA 90, 11924–11928 (2006).

    Google Scholar 

  23. 23.

    Murata, K. et al. Hypoxia-sensitive COMMD1 integrates signaling and cellular metabolism in human macrophages and suppresses osteoclastogenesis. Immunity 47, 66–79 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Lam, E. W.-F., Brosens, J. J., Gomes, A. R. & Koo, C.-Y. Forkhead box proteins: tuning forks for transcriptional harmony. Nat. Rev. Cancer 13, 482–495 (2013).

    CAS  PubMed  Google Scholar 

  25. 25.

    Wang, Z., Banerjee, S., Kong, D., Li, Y. & Sarkar, F. H. Down-regulation of forkhead box M1 transcription factor leads to the inhibition of invasion and angiogenesis of pancreatic cancer cells. Cancer Res. 67, 8293–8300 (2007).

    CAS  PubMed  Google Scholar 

  26. 26.

    Hegde, N. S., Sanders, D. A., Rodriguez, R. & Balasubramanian, S. The transcription factor FOXM1 is a cellular target of the natural product thiostrepton. Nat. Chem. 3, 725–731 (2011).

    CAS  PubMed  Google Scholar 

  27. 27.

    Halasi, M. & Gartel, A. L. A novel mode of FoxM1 regulation: positive auto-regulatory loop. Cell Cycle 8, 1966–1967 (2009).

    CAS  PubMed  Google Scholar 

  28. 28.

    Kwok, J. M.-M. et al. Thiostrepton selectively targets breast cancer cells through inhibition of forkhead box M1 expression. Mol. Cancer Ther. 7, 2022–2032 (2008).

    CAS  PubMed  Google Scholar 

  29. 29.

    Mbalaviele, G., Novack, D. V., Schett, G. & Teitelbaum, S. L. Inflammatory osteolysis: a conspiracy against bone. J. Clin. Invest. 127, 2030–2039 (2017).

    PubMed  PubMed Central  Google Scholar 

  30. 30.

    Hasegawa, T., Kaneko, Y., Izumi, K. & Takeuchi, T. Efficacy of denosumab combined with bDMARDs on radiographic progression in rheumatoid arthritis. Joint Bone Spine 84, 379–380 (2017).

    CAS  PubMed  Google Scholar 

  31. 31.

    Campbell, I. K., Rich, M. J., Bischof, R. J. & Hamilton, J. A. The colony-stimulating factors and collagen-induced arthritis: exacerbation of disease by M-CSF and G-CSF and requirement for endogenous M-CSF. J. Leukoc. Biol. 68, 144–150 (2000).

    CAS  PubMed  Google Scholar 

  32. 32.

    Ando, W. et al. Imatinib mesylate inhibits osteoclastogenesis and joint destruction in rats with collagen-induced arthritis (CIA). J. Bone Miner. Metab. 24, 274–282 (2006).

    CAS  PubMed  Google Scholar 

  33. 33.

    Hamilton, J. A. Colony-stimulating factors in inflammation and autoimmunity. Nat. Rev. Immunol. 8, 533–544 (2008).

    CAS  PubMed  Google Scholar 

  34. 34.

    Campbell, I. K., Ianches, G. & Hamilton, J. A. Production of macrophage colony-stimulating factor (M-CSF) by human articular cartilage and chondrocytes. Modulation by interleukin-1 and tumor necrosis factor α. Biochim. Biophys. Acta 1182, 57–63 (1993).

    CAS  PubMed  Google Scholar 

  35. 35.

    Nakano, K. et al. Rheumatoid synovial endothelial cells produce macrophage colony-stimulating factor leading to osteoclastogenesis in rheumatoid arthritis. Rheumatology 46, 597–603 (2007).

    CAS  PubMed  Google Scholar 

  36. 36.

    Hutamekalin, P. et al. Collagen antibody-induced arthritis in mice: development of a new arthritogenic 5-clone cocktail of monoclonal anti-type II collagen antibodies. J. Immunol. Methods 343, 49–55 (2009).

    CAS  PubMed  Google Scholar 

  37. 37.

    Šućur, A. et al. Induction of osteoclast progenitors in inflammatory conditions: key to bone destruction in arthritis. Int. Orthop. 38, 1893–1903 (2014).

    PubMed  Google Scholar 

  38. 38.

    Wakkach, A. et al. Bone marrow microenvironment controls the in vivo differentiation of murine dendritic cells into osteoclasts. Blood 112, 5074–5083 (2008).

    CAS  PubMed  Google Scholar 

  39. 39.

    Rivollier, A. et al. Immature dendritic cell transdifferentiation into osteoclasts: a novel pathway sustained by the rheumatoid arthritis microenvironment. Blood 104, 4029–4037 (2004).

    CAS  PubMed  Google Scholar 

  40. 40.

    De Luca, A. et al. Mitochondrial biogenesis is required for the anchorage-independent survival and propagation of stem-like cancer cells. Oncotarget 6, 14777–14795 (2015).

    PubMed  PubMed Central  Google Scholar 

  41. 41.

    Ishii, K. A. et al. Coordination of PGC-1β and iron uptake in mitochondrial biogenesis and osteoclast activation. Nat. Med. 15, 259–266 (2009).

    CAS  PubMed  Google Scholar 

  42. 42.

    Ruth, J. H. et al. Fractalkine, a novel chemokine in rheumatoid arthritis and in rat adjuvant-induced arthritis. Arthritis Rheum. 44, 1568–1581 (2001).

    CAS  PubMed  Google Scholar 

  43. 43.

    Blaschke, S. et al. Proinflammatory role of fractalkine (CX3CL1) in rheumatoid arthritis. J. Rheumatol. 30, 1918–1927 (2003).

    CAS  PubMed  Google Scholar 

  44. 44.

    Nanki, T., Imai, T. & Kawai, S. Fractalkine/CX3CL1 in rheumatoid arthritis. Mod. Rheumatol. 27, 392–397 (2017).

    CAS  PubMed  Google Scholar 

  45. 45.

    Tanaka, Y. et al. Safety, pharmacokinetics, and efficacy of E6011, an antifractalkine monoclonal antibody, in a first-in-patient phase 1/2 study on rheumatoid arthritis. Mod. Rheumatol. 28, 58–65 (2018).

    CAS  PubMed  Google Scholar 

  46. 46.

    Jung, S. et al. Analysis of fractalkine receptor CX3CR1 function by targeted deletion and green fluorescent protein reporter gene insertion. Mol. Cell. Biol. 20, 4106–4114 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. 47.

    Kikuta, J. et al. Dynamic visualization of RANKL and Th17-mediated osteoclast function. J. Clin. Invest. 123, 866–873 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. 48.

    Takeda, K. et al. Enhanced Th1 activity and development of chronic enterocolitis in mice devoid of Stat3 in macrophages and neutrophils. Immunity 10, 39–49 (1999).

    CAS  PubMed  Google Scholar 

  49. 49.

    Brand, D. D., Latham, K. A. & Rosloniec, E. F. Collagen-induced arthritis. Nat. Protoc. 2, 1269–1275 (2007).

    CAS  PubMed  Google Scholar 

  50. 50.

    Kamran, P. et al. Parabiosis in mice: a detailed protocol. J. Vis. Exp. 6, e50556 (2013).

    Google Scholar 

  51. 51.

    Kawamoto, T. Use of a new adhesive film for the preparation of multi-purpose fresh-frozen sections from hard tissues, whole-animals, insects and plants. Arch. Histol. Cytol. 66, 123–143 (2003).

    PubMed  Google Scholar 

  52. 52.

    Ishii, M., Kikuta, J., Shimazu, Y., Meier-Schellersheim, M. & Germain, R. N. Chemorepulsion by blood S1P regulates osteoclast precursor mobilization and bone remodeling in vivo. J. Exp. Med. 207, 2793–2798 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references


We thank R. N. Germain (NIAID/NIH, USA) for critically reviewing this manuscript. This work was supported by CREST at the Japan Science and Technology Agency (J170701506 to M. I.), Grants-in-Aid for Scientific Research (S) from the Japan Society for the Promotion of Science (19H056570 to M.I.), a Grant-in-Aid for Young Scientists (A) from the Japan Society for the Promotion of Science (15H056710 to J.K.), and grants from the Uehara Memorial Foundation (to M.I.), Kanae Foundation for the Promotion of Medical Sciences (to M.I.), Mochida Memorial Foundation (to M.I.), Takeda Science Foundation (to M.I.) and PRIME at the Japan Agency for Medical Research and Development (19gm6210005h to J.K.).

Author information




T.H. and M.I. conceived the study. T.H. and J.K. designed the experiments. T.S., Y.M., S.S., T.M., K.Y. and T.T. discussed the experiments and results. K.E. and M.H. provided the samples from patients with rheumatoid arthritis. Y.Y., A.H. and V.V.K. provided the Foxm1fl/fl mouse line. A.H. provided the RosaERT2Cre mouse line. D.O. performed the RNA-Seq analysis and single-cell RNA-Seq analysis. T.H. wrote the initial draft. J.K. and M.I. revised the final draft.

Corresponding author

Correspondence to Masaru Ishii.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Zoltan Fehervari was the primary editor on this article and managed its editorial process and peer review in collaboration with the rest of the editorial team.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–8 and Tables 1 and 2

Reporting Summary

Supplementary Video 1 Ex vivo incubation of inflamed synovium from double-transgenic mice (CX3CR1-EGFP and TRAP-tdTomato).

Source data

Source Data Fig. 1

Statistical Source Data

Source Data Fig. 2

Statistical Source Data

Source Data Fig. 3

Statistical Source Data

Source Data Fig. 4

Statistical Source Data

Source Data Fig. 5

Statistical Source Data

Source Data Fig. 6

Statistical Source Data

Source Data Fig. 7

Statistical Source Data

Source Data Fig. 8

Statistical Source Data

Source Data Extended Data Fig. 1

Statistical Source Data

Source Data Extended Data Fig. 2

Statistical Source Data

Source Data Extended Data Fig. 3

Statistical Source Data

Source Data Extended Data Fig. 4

Statistical Source Data

Source Data Extended Data Fig. 5

Statistical Source Data

Source Data Extended Data Fig. 6

Statistical Source Data

Source Data Extended Data Fig. 7

Gel source Data for Figure 6c

Source Data Extended Data Fig. 8

Gel source Data for Figure 7b

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hasegawa, T., Kikuta, J., Sudo, T. et al. Identification of a novel arthritis-associated osteoclast precursor macrophage regulated by FoxM1. Nat Immunol 20, 1631–1643 (2019).

Download citation

Further reading


Quick links