Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

IL-17 receptor–based signaling and implications for disease

Abstract

IL-17 is a highly versatile pro-inflammatory cytokine crucial for a variety of processes, including host defense, tissue repair, the pathogenesis of inflammatory disease and the progression of cancer. In contrast to its profound impact in vivo, IL-17 exhibits surprisingly moderate activity in cell-culture models, which presents a major knowledge gap about the molecular mechanisms of IL-17 signaling. Emerging studies are revealing a new dimension of complexity in the IL-17 pathway that may help explain its potent and diverse in vivo functions. Discoveries of new mRNA stabilizers and receptor-directed mRNA metabolism have provided insights into the means by which IL-17 cooperates functionally with other stimuli in driving inflammation, whether beneficial or destructive. The integration of IL-17 with growth-receptor signaling in specific cell types offers new understanding of the mitogenic effect of IL-17 on tissue repair and cancer. This Review summarizes new developments in IL-17 signaling and their pathophysiological implications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of IL-17 signaling functions in vivo.
Fig. 2: Canonical IL-17 signaling pathways.
Fig. 3: Noncanonical IL-17 signaling.

Similar content being viewed by others

References

  1. Rouvier, E., Luciani, M. F., Mattéi, M. G., Denizot, F. & Golstein, P. CTLA-8, cloned from an activated T cell, bearing AU-rich messenger RNA instability sequences, and homologous to a herpesvirus saimiri gene. J. Immunol. 150, 5445–5456 (1993).

    CAS  PubMed  Google Scholar 

  2. Park, H. et al. A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat. Immunol. 6, 1133–1141 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Veldhoen, M., Hocking, R. J., Atkins, C. J., Locksley, R. M. & Stockinger, B. TGFβ in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity 24, 179–189 (2006).

    Article  CAS  PubMed  Google Scholar 

  4. Veldhoen, M. Interleukin 17 is a chief orchestrator of immunity. Nat. Immunol. 18, 612–621 (2017).

    Article  CAS  PubMed  Google Scholar 

  5. McGeachy, M. J., Cua, D. J. & Gaffen, S. L. The IL-17 family of cytokines in health and disease. Immunity 50, 892–906 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wright, J. F. et al. The human IL-17F/IL-17A heterodimeric cytokine signals through the IL-17RA/IL-17RC receptor complex. J. Immunol. 181, 2799–2805 (2008).

    Article  CAS  PubMed  Google Scholar 

  7. Wright, J. F. et al. Identification of an interleukin 17F/17A heterodimer in activated human CD4+ T cells. J. Biol. Chem. 282, 13447–13455 (2007).

    Article  CAS  PubMed  Google Scholar 

  8. Su, Y. et al. Interleukin-17 receptor D constitutes an alternative receptor for interleukin-17A important in psoriasis-like skin inflammation. Sci. Immunol. 4, eaau9657 (2019).

    Article  CAS  PubMed  Google Scholar 

  9. Novatchkova, M., Leibbrandt, A., Werzowa, J., Neubüser, A. & Eisenhaber, F. The STIR-domain superfamily in signal transduction, development and immunity. Trends Biochem. Sci. 28, 226–229 (2003).

    Article  CAS  PubMed  Google Scholar 

  10. Qian, Y. et al. The adaptor Act1 is required for interleukin 17-dependent signaling associated with autoimmune and inflammatory disease. Nat. Immunol. 8, 247–256 (2007).

    Article  CAS  PubMed  Google Scholar 

  11. Chang, S. H., Park, H. & Dong, C. Act1 adaptor protein is an immediate and essential signaling component of interleukin-17 receptor. J. Biol. Chem. 281, 35603–35607 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. Sønder, S. U. et al. IL-17-induced NF-κB activation via CIKS/Act1: physiologic significance and signaling mechanisms. J. Biol. Chem. 286, 12881–12890 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Liu, C. et al. A CC’ loop decoy peptide blocks the interaction between Act1 and IL-17RA to attenuate IL-17- and IL-25-induced inflammation. Sci. Signal. 4, ra72 (2011).

    PubMed  PubMed Central  Google Scholar 

  14. Liu, C. et al. Act1, a U-box E3 ubiquitin ligase for IL-17 signaling. Sci. Signal. 2, ra63 (2009).

    PubMed  PubMed Central  Google Scholar 

  15. Herjan, T. et al. IL-17-receptor-associated adaptor Act1 directly stabilizes mRNAs to mediate IL-17 inflammatory signaling. Nat. Immunol. 19, 354–365 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Shi, P. et al. Persistent stimulation with interleukin-17 desensitizes cells through SCFβ-TrCP-mediated degradation of Act1. Sci. Signal. 4, ra73 (2011).

    Article  CAS  PubMed  Google Scholar 

  17. Ho, A. W. et al. IL-17RC is required for immune signaling via an extended SEF/IL-17R signaling domain in the cytoplasmic tail. J. Immunol. 185, 1063–1070 (2010).

    Article  CAS  PubMed  Google Scholar 

  18. Maitra, A. et al. Distinct functional motifs within the IL-17 receptor regulate signal transduction and target gene expression. Proc. Natl Acad. Sci. USA 104, 7506–7511 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Onishi, R., Park, S., Hanel, W., Maitra, A. & Gaffen, S. The SEFIR is not enough: an extended region downstream of the interleukin-17RA SEFIR domain is required for IL-17-dependent signal transduction. J. Biol. Chem. 285, 32751–32759 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhang, B. et al. Crystal structure of IL-17 receptor B SEFIR domain. J. Immunol. 190, 2320–2326 (2013).

    Article  CAS  PubMed  Google Scholar 

  21. Shen, F. et al. IL-17 receptor signaling inhibits C/EBPβ by sequential phosphorylation of the regulatory 2 domain. Sci. Signal. 2, ra8 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Amatya, N., Garg, A. V. & Gaffen, S. L. IL-17 signaling: the yin and the yang. Trends Immunol. 38, 310–322 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Shen, F., Hu, Z., Goswami, J. & Gaffen, S. L. Identification of common transcriptional regulatory elements in interleukin-17 target genes. J. Biol. Chem. 281, 24138–24148 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. Patel, D. N. et al. Interleukin-17 stimulates C-reactive protein expression in hepatocytes and smooth muscle cells via p38 MAPK and ERK1/2-dependent NF-κB and C/EBPβ activation. J. Biol. Chem. 282, 27229–27238 (2007).

    Article  CAS  PubMed  Google Scholar 

  25. Garg, A. V., Ahmed, M., Vallejo, A. N., Ma, A. & Gaffen, S. L. The deubiquitinase A20 mediates feedback inhibition of interleukin-17 receptor signaling. Sci. Signal. 6, ra44–ra55 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ho, A. W. et al. The anaphase-promoting complex protein 5 (AnapC5) associates with A20 and inhibits IL-17-mediated signal transduction. PLoS One 8, e70168 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhong, B. et al. Negative regulation of IL-17-mediated signaling and inflammation by the ubiquitin-specific protease USP25. Nat. Immunol. 13, 1110–1117 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zepp, J. A. et al. Cutting edge: TNF receptor-associated factor 4 restricts IL-17-mediated pathology and signaling processes. J. Immunol. 189, 33–37 (2012).

    Article  CAS  PubMed  Google Scholar 

  29. Zhu, S. et al. Modulation of experimental autoimmune encephalomyelitis through TRAF3-mediated suppression of interleukin 17 receptor signaling. J. Exp. Med. 207, 2647–2662 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Karlsen, J. R., Borregaard, N. & Cowland, J. B. Induction of neutrophil gelatinase-associated lipocalin expression by co-stimulation with interleukin-17 and tumor necrosis factor-α is controlled by IκB-ζ but neither by C/EBP-β nor C/EBP-δ. J. Biol. Chem. 285, 14088–14100 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Yamazaki, S., Muta, T., Matsuo, S. & Takeshige, K. Stimulus-specific induction of a novel nuclear factor-κB regulator, IκB-ζ, via Toll/interleukin-1 receptor is mediated by mRNA stabilization. J. Biol. Chem. 280, 1678–1687 (2005).

    Article  CAS  PubMed  Google Scholar 

  32. Shen, F., Ruddy, M. J., Plamondon, P. & Gaffen, S. L. Cytokines link osteoblasts and inflammation: microarray analysis of interleukin-17- and TNF-α-induced genes in bone cells. J. Leukoc. Biol. 77, 388–399 (2005).

    Article  CAS  PubMed  Google Scholar 

  33. Johansen, C. et al. IκBζ is a key driver in the development of psoriasis. Proc. Natl Acad. Sci. USA 112, E5825–E5833 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Amatya, N. et al. IL-17 integrates multiple self-reinforcing, feed-forward mechanisms through the RNA-binding protein Arid5a. Sci. Signal. 11, eaat4617 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ruddy, M. J. et al. Functional cooperation between interleukin-17 and tumor necrosis factor-alpha is mediated by CCAAT/enhancer-binding protein family members. J. Biol. Chem. 279, 2559–2567 (2004).

    Article  CAS  PubMed  Google Scholar 

  36. Maekawa, T. et al. Antagonistic effects of IL-17 and D-resolvins on endothelial Del-1 expression through a GSK-3β-C/EBPβ pathway. Nat. Commun. 6, 8272 (2015).

    Article  CAS  PubMed  Google Scholar 

  37. Kafasla, P., Skliris, A. & Kontoyiannis, D. L. Post-transcriptional coordination of immunological responses by RNA-binding proteins. Nat. Immunol. 15, 492–502 (2014).

    Article  CAS  PubMed  Google Scholar 

  38. Bulek, K. et al. The inducible kinase IKKi is required for IL-17-dependent signaling associated with neutrophilia and pulmonary inflammation. Nat. Immunol. 12, 844–852 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sun, D. et al. Treatment with IL-17 prolongs the half-life of chemokine CXCL1 mRNA via the adaptor TRAF5 and the splicing-regulatory factor SF2 (ASF). Nat. Immunol. 12, 853–860 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Herjan, T. et al. HuR is required for IL-17-induced Act1-mediated CXCL1 and CXCL5 mRNA stabilization. J. Immunol. 191, 640–649 (2013).

    Article  CAS  PubMed  Google Scholar 

  41. Mino, T. et al. Regnase-1 and Roquin regulate a common element in inflammatory mRNAs by spatiotemporally distinct mechanisms. Cell 161, 1058–1073 (2015).

    Article  CAS  PubMed  Google Scholar 

  42. Somma, D. et al. CIKS/DDX3X interaction controls the stability of the Zc3h12a mRNA induced by IL-17. J. Immunol. 194, 3286–3294 (2015).

    Article  CAS  PubMed  Google Scholar 

  43. Garg, A. V. et al. MCPIP1 endoribonuclease activity negatively regulates interleukin-17-mediated signaling and inflammation. Immunity 43, 475–487 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Monin, L. et al. MCPIP1/Regnase-1 restricts IL-17A- and IL-17C-dependent skin inflammation. J. Immunol. 198, 767–775 (2017).

    Article  CAS  PubMed  Google Scholar 

  45. Tanaka, H. et al. Phosphorylation-dependent Regnase-1 release from endoplasmic reticulum is critical in IL-17 response. J. Exp. Med. 216, 1431–1449 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Crooke, S. T., Witztum, J. L., Bennett, C. F. & Baker, B. F. RNA-targeted therapeutics. Cell Metab. 27, 714–739 (2018).

    Article  CAS  PubMed  Google Scholar 

  47. Zhu, S. et al. The microRNA miR-23b suppresses IL-17-associated autoimmune inflammation by targeting TAB2, TAB3 and IKK-α. Nat. Med. 18, 1077–1086 (2012).

    Article  CAS  PubMed  Google Scholar 

  48. Wan, Q., Zhou, Z., Ding, S. & He, J. The miR-30a negatively regulates IL-17-mediated signal transduction by targeting Traf3ip2. J. Interferon Cytokine Res. 35, 917–923 (2015).

    Article  CAS  PubMed  Google Scholar 

  49. Song, X. et al. Growth factor FGF2 cooperates with interleukin-17 to repair intestinal epithelial damage. Immunity 43, 488–501 (2015).

    Article  CAS  PubMed  Google Scholar 

  50. Verma, A. et al. Oral epithelial cells orchestrate innate type 17 responses to Candida albicans through the virulence factor Candidalysin. Sci. Immunol. 2, eeam8834 (2017).

    Article  Google Scholar 

  51. Faour, W. H., Mancini, A., He, Q. W. & Di Battista, J. A. T-cell-derived interleukin-17 regulates the level and stability of cyclooxygenase-2 (COX-2) mRNA through restricted activation of the p38 mitogen-activated protein kinase cascade: role of distal sequences in the 3′-untranslated region of COX-2 mRNA. J. Biol. Chem. 278, 26897–26907 (2003).

    Article  CAS  PubMed  Google Scholar 

  52. Chen, X. et al. IL-17R-EGFR axis links wound healing to tumorigenesis in Lrig1+ stem cells. J. Exp. Med. 216, 195–214 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Wu, L. et al. A novel IL-17 signaling pathway controlling keratinocyte proliferation and tumorigenesis via the TRAF4-ERK5 axis. J. Exp. Med. 212, 1571–1587 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Sun, W. et al. MEK kinase 2 and the adaptor protein Lad regulate extracellular signal-regulated kinase 5 activation by epidermal growth factor via Src. Mol. Cell. Biol. 23, 2298–2308 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Wang, Y., van Boxel-Dezaire, A. H., Cheon, H., Yang, J. & Stark, G. R. STAT3 activation in response to IL-6 is prolonged by the binding of IL-6 receptor to EGF receptor. Proc. Natl Acad. Sci. USA 110, 16975–16980 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Rousseau, A. et al. TRAF4 is a novel phosphoinositide-binding protein modulating tight junctions and favoring cell migration. PLoS Biol. 11, e1001726 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Singh, R. et al. TRAF4-mediated ubiquitination of NGF receptor TrkA regulates prostate cancer metastasis. J. Clin. Invest. 128, 3129–3143 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Cai, G. et al. TRAF4 binds to the juxtamembrane region of EGFR directly and promotes kinase activation. Proc. Natl Acad. Sci. USA 115, 11531–11536 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Wong, V. W. et al. Lrig1 controls intestinal stem-cell homeostasis by negative regulation of ErbB signalling. Nat. Cell Biol. 14, 401–408 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Shao, X. et al. FGF2 cooperates with IL-17 to promote autoimmune inflammation. Sci. Rep. 7, 7024 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Wang, K. et al. Interleukin-17 receptor a signaling in transformed enterocytes promotes early colorectal tumorigenesis. Immunity 41, 1052–1063 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Zepp, J. A. et al. IL-17A-induced PLET1 expression contributes to tissue repair and colon tumorigenesis. J. Immunol. 199, 3849–3857 (2017).

    Article  CAS  PubMed  Google Scholar 

  63. Schweppe, R. E., Cheung, T. H. & Ahn, N. G. Global gene expression analysis of ERK5 and ERK1/2 signaling reveals a role for HIF-1 in ERK5-mediated responses. J. Biol. Chem. 281, 20993–21003 (2006).

    Article  CAS  PubMed  Google Scholar 

  64. Finegan, K. G. et al. ERK5 is a critical mediator of inflammation-driven cancer. Cancer Res. 75, 742–753 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Kang, Z. et al. Act1 mediates IL-17-induced EAE pathogenesis selectively in NG2+ glial cells. Nat. Neurosci. 16, 1401–1408 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Wang, C. et al. IL-17 induced NOTCH1 activation in oligodendrocyte progenitor cells enhances proliferation and inflammatory gene expression. Nat. Commun. 8, 15508 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Langley, R. G. et al. Secukinumab in plaque psoriasis–results of two phase 3 trials. N. Engl. J. Med. 371, 326–338 (2014).

    Article  CAS  PubMed  Google Scholar 

  68. Wang, M. et al. Gain-of-function mutation of Card14 leads to spontaneous psoriasis-like skin inflammation through enhanced keratinocyte response to IL-17A. Immunity 49, 66–79 e65 (2018).

    Article  CAS  PubMed  Google Scholar 

  69. Wu, N. L., Huang, D. Y., Tsou, H. N., Lin, Y. C. & Lin, W. W. Syk mediates IL-17-induced CCL20 expression by targeting Act1-dependent K63-linked ubiquitination of TRAF6. J. Invest. Dermatol. 135, 490–498 (2015).

    Article  CAS  PubMed  Google Scholar 

  70. Buckley, K. M. et al. IL17 factors are early regulators in the gut epithelium during inflammatory response to Vibrio in the sea urchin larva. eLife 6, e23481 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Ivanov, I. I. et al. Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell 139, 485–498 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Khader, S. A. et al. IL-23 and IL-17 in the establishment of protective pulmonary CD4+ T cell responses after vaccination and during Mycobacterium tuberculosis challenge. Nat. Immunol. 8, 369–377 (2007).

    Article  CAS  PubMed  Google Scholar 

  73. Gopal, R. et al. Unexpected role for IL-17 in protective immunity against hypervirulent Mycobacterium tuberculosis HN878 infection. PLoS Pathog. 10, e1004099 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Yao, Z. et al. Herpesvirus Saimiri encodes a new cytokine, IL-17, which binds to a novel cytokine receptor. Immunity 3, 811–821 (1995).

    Article  CAS  PubMed  Google Scholar 

  75. Peng, T. et al. Keratinocytes produce IL-17c to protect peripheral nervous systems during human HSV-2 reactivation. J. Exp. Med. 214, 2315–2329 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Li, J., Casanova, J. L. & Puel, A. Mucocutaneous IL-17 immunity in mice and humans: host defense vs. excessive inflammation. Mucosal Immunol. 11, 581–589 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Acosta-Rodriguez, E. V. et al. Surface phenotype and antigenic specificity of human interleukin 17-producing T helper memory cells. Nat. Immunol. 8, 639–646 (2007).

    Article  CAS  PubMed  Google Scholar 

  78. Bacher, P. et al. Human anti-fungal Th17 immunity and pathology rely on cross-reactivity against Candida albicans. Cell 176, 1340–1355.e1315 (2019).

    Article  CAS  PubMed  Google Scholar 

  79. Shao, T. Y. et al. Commensal Candida albicans positively calibrates systemic Th17 immunological responses. Cell Host Microbe 25, 404–417.e406 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Whibley, N. et al. Antibody blockade of IL-17 family cytokines in immunity to acute murine oral mucosal candidiasis. J. Leukoc. Biol. 99, 1153–1164 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Liu, F. et al. Sequential dysfunction and progressive depletion of Candida albicans-specific CD4 T cell response in HIV-1 infection. PLoS Pathog. 12, e1005663 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Hernandez-Santos, N. et al. Lung epithelial cells coordinate innate lymphocytes and immunity against pulmonary fungal infection. Cell Host Microbe 23, 511–522.e515 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Wüthrich, M. et al. Vaccine-induced protection against 3 systemic mycoses endemic to North America requires Th17 cells in mice. J. Clin. Invest. 121, 554–568 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Hung, C. Y., Gonzalez, A., Wüthrich, M., Klein, B. S. & Cole, G. T. Vaccine immunity to coccidioidomycosis occurs by early activation of three signal pathways of T helper cell response (Th1, Th2, and Th17). Infect. Immun. 79, 4511–4522 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Deepe, G. S. Jr. et al. Vaccination with an alkaline extract of Histoplasma capsulatum packaged in glucan particles confers protective immunity in mice. Vaccine 36, 3359–3367 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Guerra, E. S. et al. Central role of IL-23 and IL-17 producing eosinophils as immunomodulatory effector cells in acute pulmonary aspergillosis and allergic asthma. PLoS Pathog. 13, e1006175 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Ha, H. L. et al. IL-17 drives psoriatic inflammation via distinct, target cell-specific mechanisms. Proc. Natl Acad. Sci. USA 111, E3422–E3431 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Lai, Y. et al. The antimicrobial protein REG3A regulates keratinocyte proliferation and differentiation after skin injury. Immunity 37, 74–84 (2012).

    Article  CAS  PubMed  Google Scholar 

  89. Kaiko, G. E. et al. PAI-1 augments mucosal damage in colitis. Sci. Transl. Med. 11, eaat0852 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Maxwell, J. R. et al. Differential roles for interleukin-23 and interleukin-17 in intestinal immunoregulation. Immunity 43, 739–750 (2015).

    Article  CAS  PubMed  Google Scholar 

  91. Zhang, Y. et al. Immune cell production of interleukin 17 induces stem cell features of pancreatic intraepithelial neoplasia cells. Gastroenterology 155, 210–223.e213 (2018).

    Article  CAS  PubMed  Google Scholar 

  92. Wang, L., Yi, T., Zhang, W., Pardoll, D. M. & Yu, H. IL-17 enhances tumor development in carcinogen-induced skin cancer. Cancer Res. 70, 10112–10120 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Sun, C. et al. Interleukin-17A plays a pivotal role in chemically induced hepatocellular carcinoma in mice. Dig. Dis. Sci. 61, 474–488 (2016).

    Article  CAS  PubMed  Google Scholar 

  94. Jin, C. et al. Commensal microbiota promote lung cancer development via γδ T cells. Cell 176, 998–1013.e1016 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Calcinotto, A. et al. Microbiota-driven interleukin-17-producing cells and eosinophils synergize to accelerate multiple myeloma progression. Nat. Commun. 9, 4832 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Coffelt, S. B. et al. IL-17-producing γδ T cells and neutrophils conspire to promote breast cancer metastasis. Nature 522, 345–348 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Chung, A. S. et al. An interleukin-17-mediated paracrine network promotes tumor resistance to anti-angiogenic therapy. Nat. Med. 19, 1114–1123 (2013).

    Article  CAS  PubMed  Google Scholar 

  98. Nakae, S. et al. IL-17 production from activated T cells is required for the spontaneous development of destructive arthritis in mice deficient in IL-1 receptor antagonist. Proc. Natl Acad. Sci. USA 100, 5986–5990 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Ye, P. et al. Requirement of interleukin 17 receptor signaling for lung CXC chemokine and granulocyte colony-stimulating factor expression, neutrophil recruitment, and host defense. J. Exp. Med. 194, 519–527 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Steinman, L. A brief history of TH17, the first major revision in the TH1/TH2 hypothesis of T cell-mediated tissue damage. Nat. Med. 13, 139–145 (2007).

    Article  CAS  PubMed  Google Scholar 

  101. Hirahara, K. et al. Mechanisms underlying helper T-cell plasticity: implications for immune-mediated disease. J. Allergy Clin. Immunol. 131, 1276–1287 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Cua, D. J. et al. Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain. Nature 421, 744–748 (2003).

    Article  CAS  PubMed  Google Scholar 

  103. Miossec, P. & Kolls, J. K. Targeting IL-17 and TH17 cells in chronic inflammation. Nat. Rev. Drug Discov. 11, 763–776 (2012).

    Article  CAS  PubMed  Google Scholar 

  104. Leonardi, C. et al. Anti-interleukin-17 monoclonal antibody ixekizumab in chronic plaque psoriasis. N. Engl. J. Med. 366, 1190–1199 (2012).

    Article  CAS  PubMed  Google Scholar 

  105. Hueber, W. et al. Effects of AIN457, a fully human antibody to interleukin-17A, on psoriasis, rheumatoid arthritis, and uveitis. Sci. Transl. Med. 2, 52ra72 (2010).

    Article  CAS  PubMed  Google Scholar 

  106. Rich, H. E. & Alcorn, J. F. IL-17 strikes a chord in chronic obstructive pulmonary disease exacerbation. Am. J. Respir. Cell Mol. Biol. 58, 669–670 (2018).

    Article  CAS  PubMed  Google Scholar 

  107. McKinley, L. et al. TH17 cells mediate steroid-resistant airway inflammation and airway hyperresponsiveness in mice. J. Immunol. 181, 4089–4097 (2008).

    Article  CAS  PubMed  Google Scholar 

  108. Christenson, S. A. et al. An airway epithelial IL-17A response signature identifies a steroid-unresponsive COPD patient subgroup. J. Clin. Invest. 129, 169–181 (2019).

    Article  PubMed  Google Scholar 

  109. Östling, J. et al. IL-17-high asthma with features of a psoriasis immunophenotype. J. Allergy Clin. Immunol. https://doi.org/10.1016/j.jaci.2019.03.027 (2019).

  110. Majumder, S. et al. IL-17 metabolically reprograms activated fibroblastic reticular cells for proliferation and survival. Nat. Immunol. 20, 534–545 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Eddens, T. et al. Pneumocystis-driven inducible bronchus-associated lymphoid tissue formation requires th2 and th17 immunity. Cell Rep. 18, 3078–3090 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Rangel-Moreno, J. et al. The development of inducible bronchus-associated lymphoid tissue depends on IL-17. Nat. Immunol. 12, 639–646 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Pikor, N. B. et al. Integration of Th17- and lymphotoxin-derived signals initiates meningeal-resident stromal cell remodeling to propagate neuroinflammation. Immunity 43, 1160–1173 (2015).

    Article  CAS  PubMed  Google Scholar 

  114. Peters, A. et al. Th17 cells induce ectopic lymphoid follicles in central nervous system tissue inflammation. Immunity 35, 986–996 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Ahlgren, K. M. et al. Increased IL-17A secretion in response to Candida albicans in autoimmune polyendocrine syndrome type 1 and its animal model. Eur. J. Immunol. 41, 235–245 (2011).

    Article  CAS  PubMed  Google Scholar 

  116. Puel, A. et al. Chronic mucocutaneous candidiasis in humans with inborn errors of interleukin-17 immunity. Science 332, 65–68 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Ling, Y. et al. Inherited IL-17RC deficiency in patients with chronic mucocutaneous candidiasis. J. Exp. Med. 212, 619–631 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Boisson, B. et al. An ACT1 mutation selectively abolishes interleukin-17 responses in humans with chronic mucocutaneous candidiasis. Immunity 39, 676–686 (2013).

    Article  CAS  PubMed  Google Scholar 

  119. Wang, C. et al. The psoriasis-associated D10N variant of the adaptor Act1 with impaired regulation by the molecular chaperone hsp90. Nat. Immunol. 14, 72–81 (2013).

    Article  CAS  PubMed  Google Scholar 

  120. Li, J., Vinh, D. C., Casanova, J. L. & Puel, A. Inborn errors of immunity underlying fungal diseases in otherwise healthy individuals. Curr. Opin. Microbiol. 40, 46–57 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Supported by US National Institutes of Health grants DE022550 and AI107825 (S.L.G.), P01CA062220 and P01HL103453 (X.L.) and R01AI110822-01 (M.J.M.), and by the National Multiple Sclerosis Society grant RG5130A2/1 (X.L.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaoxia Li or Sarah L. Gaffen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review statement Laurie A. Dempsey was the primary editor on this article and managed its editorial process and peer review in collaboration with the rest of the editorial team.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Bechara, R., Zhao, J. et al. IL-17 receptor–based signaling and implications for disease. Nat Immunol 20, 1594–1602 (2019). https://doi.org/10.1038/s41590-019-0514-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41590-019-0514-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing