Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

IL-1R3 blockade broadly attenuates the functions of six members of the IL-1 family, revealing their contribution to models of disease

Abstract

Interleukin (IL)-1R3 is the co-receptor in three signaling pathways that involve six cytokines of the IL-1 family (IL-1α, IL-1β, IL-33, IL-36α, IL-36β and IL-36γ). In many diseases, multiple cytokines contribute to disease pathogenesis. For example, in asthma, both IL-33 and IL-1 are of major importance, as are IL-36 and IL-1 in psoriasis. We developed a blocking monoclonal antibody (mAb) to human IL-1R3 (MAB-hR3) and demonstrate here that this antibody specifically inhibits signaling via IL-1, IL-33 and IL-36 in vitro. Also, in three distinct in vivo models of disease (crystal-induced peritonitis, allergic airway inflammation and psoriasis), we found that targeting IL-1R3 with a single mAb to mouse IL-1R3 (MAB-mR3) significantly attenuated heterogeneous cytokine-driven inflammation and disease severity. We conclude that in diseases driven by multiple cytokines, a single antagonistic agent such as a mAb to IL-1R3 is a therapeutic option with considerable translational benefit.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: MAB-hR3 binds dose-dependently and with high affinity to IL-1R3.
Fig. 2: MAB-hR3 inhibits IL-1R1, IL-1R4 and IL-1R6 signaling in vitro and is functional ex vivo.
Fig. 3: MAB-mR3 reduces in vivo MSU crystal-mediated peritonitis.
Fig. 4: IL-1R3 blockade results in a broader anti-inflammatory phenotype compared to primary pathway inhibition.
Fig. 5: MAB-mR3 decreases OVA-induced allergic airway inflammation.
Fig. 6: Improvement of imiquimod- induced psoriasis in vivo using MAB-mR3.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available upon request to the corresponding author.

References

  1. Kopf, M., Bachmann, M. F. & Marsland, B. J. Averting inflammation by targeting the cytokine environment. Nat. Rev. Drug Discovery 9, 703–718 (2010).

    Article  CAS  Google Scholar 

  2. Lappalainen, U., Whitsett, J. A., Wert, S. E., Tichelaar, J. W. & Bry, K. Interleukin-1β causes pulmonary inflammation, emphysema, and airway remodeling in the adult murine lung. Am. J.Respir. Cell Mol. Biol. 32, 311–318 (2005).

    Article  CAS  Google Scholar 

  3. Prefontaine, D. et al. Increased expression of IL-33 in severe asthma: evidence of expression by airway smooth muscle cells. J. Immunol. 183, 5094–5103 (2009).

    Article  CAS  Google Scholar 

  4. Towne, J. E. & Sims, J. E. IL-36 in psoriasis. Curr. Opin. Pharmacol. 12, 486–490 (2012).

    Article  CAS  Google Scholar 

  5. Tortola, L. et al. Psoriasiform dermatitis is driven by IL-36-mediated DC-keratinocyte crosstalk. J. Clin. Invest. 122, 3965–3976 (2012).

    Article  CAS  Google Scholar 

  6. Garlanda, C., Dinarello, C. A. & Mantovani, A. The interleukin-1 family: back to the future. Immunity 39, 1003–1018 (2013).

    Article  CAS  Google Scholar 

  7. Boraschi, D. & Tagliabue, A. The interleukin-1 receptor family. Semin. Immunol. 25, 394–407 (2013).

    Article  CAS  Google Scholar 

  8. Wesche, H. et al. The interleukin-1 receptor accessory protein (IL-1RAcP) is essential for IL-1-induced activation of interleukin-1 receptor-associated kinase (IRAK) and stress-activated protein kinases (SAP kinases). J. Biol. Chem. 272, 7727–7731 (1997).

    Article  CAS  Google Scholar 

  9. Korherr, C., Hofmeister, R., Wesche, H. & Falk, W. A critical role for interleukin-1 receptor accessory protein in interleukin-1 signaling. Eur. J. Immunol. 27, 262–267 (1997).

    Article  CAS  Google Scholar 

  10. Hezareh, M., Hessell, A. J., Jensen, R. C., van de Winkel, J. G. & Parren, P. W. Effector function activities of a panel of mutants of a broadly neutralizing antibody against human immunodeficiency virus type 1. J. Virol. 75, 12161–12168 (2001).

    Article  CAS  Google Scholar 

  11. Leabman, M. K. et al. Effects of altered FcgammaR binding on antibody pharmacokinetics in cynomolgus monkeys. MAbs 5, 896–903 (2013).

    Article  Google Scholar 

  12. Hansel, T. T., Kropshofer, H., Singer, T., Mitchell, J. A. & George, A. J. The safety and side effects of monoclonal antibodies. Nat. Rev. Drug Discovery 9, 325–338 (2010).

    Article  CAS  Google Scholar 

  13. Lee, D. W. et al. Current concepts in the diagnosis and management of cytokine release syndrome. Blood 124, 188–195 (2014).

    Article  CAS  Google Scholar 

  14. Smith, D. E. et al. The soluble form of IL-1 receptor accessory protein enhances the ability of soluble type II IL-1 receptor to inhibit IL-1 action. Immunity 18, 87–96 (2003).

    Article  CAS  Google Scholar 

  15. Ter Horst, R. et al. Host and environmental factors influencing individual human cytokine responses. Cell 167, 1111–1124 e1113 (2016).

    Article  Google Scholar 

  16. Gantner, B. N., Simmons, R. M., Canavera, S. J., Akira, S. & Underhill, D. M. Collaborative induction of inflammatory responses by dectin-1 and Toll-like receptor 2. J. Exp. Med. 197, 1107–1117 (2003).

    Article  CAS  Google Scholar 

  17. Gow, N. A. et al. Immune recognition of Candida albicans beta-glucan by dectin-1. J. Infect. Dis. 196, 1565–1571 (2007).

    Article  CAS  Google Scholar 

  18. Martinon, F., Petrilli, V., Mayor, A., Tardivel, A. & Tschopp, J. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature 440, 237–241 (2006).

    Article  CAS  Google Scholar 

  19. Busso, N. & So, A. Mechanisms of inflammation in gout. Arthritis Res. Ther. 12, 206 (2010).

    Article  Google Scholar 

  20. Joosten, L. A. et al. Engagement of fatty acids with Toll-like receptor 2 drives interleukin-1beta production via the ASC/caspase 1 pathway in monosodium urate monohydrate crystal-induced gouty arthritis. Arthritis Rheum. 62, 3237–3248 (2010).

    Article  CAS  Google Scholar 

  21. Pham, C. T. Neutrophil serine proteases: specific regulators of inflammation. Nat. Rev. Immunol. 6, 541–550 (2006).

    Article  CAS  Google Scholar 

  22. Kakimoto, K., Matsukawa, A., Yoshinaga, M. & Nakamura, H. Suppressive effect of a neutrophil elastase inhibitor on the development of collagen-induced arthritis. Cell Immunol. 165, 26–32 (1995).

    Article  CAS  Google Scholar 

  23. Lee, H. Y. et al. Blockade of IL-33/ST2 ameliorates airway inflammation in a murine model of allergic asthma. Exp. Lung Res. 40, 66–76 (2014).

    Article  CAS  Google Scholar 

  24. Marrakchi, S. et al. Interleukin-36-receptor antagonist deficiency and generalized pustular psoriasis. N. Engl J. Med. 365, 620–628 (2011).

    Article  CAS  Google Scholar 

  25. Rossi-Semerano, L. et al. First clinical description of an infant with interleukin-36-receptor antagonist deficiency successfully treated with anakinra. Pediatrics 132, e1043–e1047 (2013).

    Article  Google Scholar 

  26. Flutter, B. & Nestle, F. O. TLRs to cytokines: mechanistic insights from the imiquimod mouse model of psoriasis. Eur. J. Immunol. 43, 3138–3146 (2013).

    Article  CAS  Google Scholar 

  27. Libby, P. Inflammation in atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 32, 2045–2051 (2012).

    Article  CAS  Google Scholar 

  28. Grivennikov, S. I., Greten, F. R. & Karin, M. Immunity, inflammation, and cancer. Cell 140, 883–899 (2010).

    Article  CAS  Google Scholar 

  29. Ramanan, V. K. et al. GWAS of longitudinal amyloid accumulation on 18F-florbetapir PET in Alzheimer’s disease implicates microglial activation gene IL1RAP. Brain 138, 3076–3088 (2015).

    Article  Google Scholar 

  30. Jaras, M. et al. Isolation and killing of candidate chronic myeloid leukemia stem cells by antibody targeting of IL-1 receptor accessory protein. Proc. Natl Acad. Sci. USA 107, 16280–16285 (2010).

    Article  CAS  Google Scholar 

  31. Ridker, P. M. et al. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N. Engl J. Med. 377, 1119–1131 (2017).

    Article  CAS  Google Scholar 

  32. Ridker, P. M. et al. Effect of interleukin-1beta inhibition with canakinumab on incident lung cancer in patients with atherosclerosis: exploratory results from a randomised, double-blind, placebo-controlled trial. Lancet 390, 1833–1842 (2017).

    Article  CAS  Google Scholar 

  33. Bertheloot, D. & Latz, E. HMGB1, IL-1alpha, IL-33 and S100 proteins: dual-function alarmins. Cell Mol. Immunol. 14, 43–64 (2017).

    Article  CAS  Google Scholar 

  34. Hueber, A. J. et al. IL-33 induces skin inflammation with mast cell and neutrophil activation. Eur. J. Immunol. 41, 2229–2237 (2011).

    Article  CAS  Google Scholar 

  35. Enoksson, M. et al. Intraperitoneal influx of neutrophils in response to IL-33 is mast cell-dependent. Blood 121, 530–536 (2013).

    Article  CAS  Google Scholar 

  36. Afonina, I. S., Muller, C., Martin, S. J. & Beyaert, R. Proteolytic processing of interleukin-1 family cytokines: Variations on a common theme. Immunity 42, 991–1004 (2015).

    Article  CAS  Google Scholar 

  37. Guma, M. et al. Caspase 1-independent activation of interleukin-1beta in neutrophil-predominant inflammation. Arthritis Rheum. 60, 3642–3650 (2009).

    Article  CAS  Google Scholar 

  38. Nakae, S. et al. IL-1 is required for allergen-specific Th2 cell activation and the development of airway hypersensitivity response. Int. Immunol. 15, 483–490 (2003).

    Article  CAS  Google Scholar 

  39. Rabeony, H. et al. IMQ-induced skin inflammation in mice is dependent on IL-1R1 and MyD88 signaling but independent of the NLRP3 inflammasome. Eur. J. Immunol. 45, 2847–2857 (2015).

    Article  CAS  Google Scholar 

  40. Possa, S. S., Leick, E. A., Prado, C. M., Martins, M. A. & Tiberio, I. F. Eosinophilic inflammation in allergic asthma. Front. Pharmacol. 4, 46 (2013).

    Article  CAS  Google Scholar 

  41. Tanabe, T., Shimokawaji, T., Kanoh, S. & Rubin, B. K. IL-33 stimulates CXCL8/IL-8 secretion in goblet cells but not normally differentiated airway cells. Clin. Exp. Allergy 44, 540–552 (2014).

    Article  CAS  Google Scholar 

  42. Alvarez, P. & Jensen, L. E. Imiquimod treatment causes systemic disease in mice resembling generalized pustular psoriasis in an IL-1 and IL-36 dependent manner. Mediators Inflamm. 2016, 6756138 (2016).

    Article  Google Scholar 

  43. Sticherling, M., Sautier, W., Schroder, J. M. & Christophers, E. Interleukin-8 plays its role at local level in psoriasis vulgaris. Acta Derm. Venereol. 79, 4–8 (1999).

    Article  CAS  Google Scholar 

  44. Hawkes, J. E., Chan, T. C. & Krueger, J. G. Psoriasis pathogenesis and the development of novel targeted immune therapies. J. Allergy Clin. Immunol. 140, 645–653 (2017).

    Article  CAS  Google Scholar 

  45. Mashiko, S. et al. Human mast cells are major IL-22 producers in patients with psoriasis and atopic dermatitis. J. Allergy Clin. Immunol. 136, 351–359 e351 (2015).

    Article  CAS  Google Scholar 

  46. Betz, U. A. et al. Postnatally induced inactivation of gp130 in mice results in neurological, cardiac, hematopoietic, immunological, hepatic, and pulmonary defects. J. Exp. Med. 188, 1955–1965 (1998).

    Article  CAS  Google Scholar 

  47. Cao, X. et al. Defective lymphoid development in mice lacking expression of the common cytokine receptor gamma chain. Immunity 2, 223–238 (1995).

    Article  CAS  Google Scholar 

  48. Cullinan, E. B. et al. IL-1 receptor accessory protein is an essential component of the IL-1 receptor. J. Immunol. 161, 5614–5620 (1998).

    CAS  PubMed  Google Scholar 

  49. Dyballa, N. & Metzger, S. Fast and sensitive colloidal coomassie G-250 staining for proteins in polyacrylamide gels. J. Vis. Exp. 3, 1431 (2009).

    Google Scholar 

  50. Moore, H. B. et al. Hemolysis exacerbates hyperfibrinolysis, whereas platelolysis shuts down fibrinolysis: evolving concepts of the spectrum of fibrinolysis in response to severe injury. Shock 43, 39–46 (2015).

    Article  CAS  Google Scholar 

  51. van de Veerdonk, F. L. et al. Protective host defense against disseminated candidiasis is impaired in mice expressing human interleukin-37. Front. Microbiol. 5, 762 (2014).

    PubMed  Google Scholar 

  52. McKee, A. S., Mack, D. G., Crawford, F. & Fontenot, A. P. MyD88 dependence of beryllium-induced dendritic cell trafficking and CD4(+) T-cell priming. Mucosal Immunol. 8, 1237–1247 (2015).

    Article  CAS  Google Scholar 

  53. Lunding, L. P. et al. Poly(inosinic-cytidylic) acid-triggered exacerbation of experimental asthma depends on IL-17A produced by NK cells. J. Immunol. 194, 5615–5625 (2015).

    Article  CAS  Google Scholar 

  54. Fehrenbach, H. et al. Ultrastructural pathology of the alveolar type II pneumocytes of human donor lungs. Electron microscopy, stereology, and microanalysis. Virchows Arch. 432, 229–239 (1998).

    Article  CAS  Google Scholar 

  55. Mattfeldt, T., Mall, G., Gharehbaghi, H. & Moller, P. Estimation of surface area and length with the orientator. J. Microsc. 159, 301–317 (1990).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Domenico and M. Wade for their technical assistance, and S.H. Kim (Laboratory of Cytokine Immunology, Konkuk Univ., Republic of Korea) and M. Fujita for providing cell lines. We thank the OLAR Vivarium, the ClinImmune Flow Core Facility and the Histology Shared Resource Center funded by the University of Colorado Cancer Center NIH grant (no. P30CA046934) at the University of Colorado Anschutz Medical Campus. We also thank the University of Colorado School of Medicine Biological Mass Spectrometry Facility for analyzing IP samples. J.F.H. was supported by the Oticon Foundation, Lundbeck Foundation, Knud Højgaard Foundation and the Interleukin Foundation. M.L.V.K and B.J.S. was supported by the Interleukin Foundation. A.S.M. was funded by NIH grants no. HL126736, ES025534 and HL135872-01. C.A.D. was funded by NIH grant no. AI-15614.

Author information

Authors and Affiliations

Authors

Contributions

J.F.H. designed and performed experiments, analyzed data and wrote the manuscript. M.L.V.K. designed and performed experiments and analyzed data and assisted with manuscript preparation. A.S.M. and M.T.W. designed and performed experiments and analyzed data. T.A., L.P.L, D.M.D.G., B.J.S. and M.W. performed experiments and analyzed data. M.T. assisted in the experimental design and manuscript preparation. K.B. designed experiments and analyzed data. M.F. designed and supervised experiments and analyzed data. S.F. produced the human and mouse anti-IL-1R3 antibodies, designed experiments and analyzed data. C.A.D. designed experiments, analyzed data and edited the manuscript. All authors read and accepted the final manuscript.

Corresponding author

Correspondence to Charles A. Dinarello.

Ethics declarations

Competing interests

K.B. is employed by MAB Discovery GmbH, Neuried, Germany. S.F. is the CEO of MAB Discovery GmbH. All other authors declare no competing interests.

Additional information

Peer review information: Zoltan Fehervari was the primary editor on this article and managed its editorial process and peer review in collaboration with the rest of the editorial team.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Integrated supplementary information

Supplementary Figure 1 Properties of MAB-hR3.

(a) Gating strategy for FACS analysis of MAB-hR3 and isotype binding to SK-MEL-30 and NIH-3T3 cell lines (Fig. 1b) (b) MAB-hR3 immunoprecipitate from A549 cell lysate. Gel electrophoresis of immunoprecipitate stained with collodial coomassie. The arrow at 80kDa indicate the primary location of IL-1R3 peptides as analyzed by MS. IL-1R3 peptides, presumably proteolytic breakdown products, were similar found at 60kDa (5 peptides) and 20kDa (3 peptides). (c) Viability of PBMCs using MAB-hR3 (20μg/mL or 1μg/mL) compared to media alone (percentage) (left y-axis) and viability of media alone as compared to 24hrs (right y-axis), using a WST-1 cell proliferation reagent at 24 hours, 3 days and 5 days, respectively. (d) IL-6 production in unstimulated PBMCs using MAB-hR3 (20μg/mL or 1μg/mL) alone. Assayed at 24 hours, 3 days and 5 days, respectively. Mean +SEM, data from 3 donors, all in triplicates.

Supplementary Figure 2 Properties of anti-mouse IL-1R3 antibody (MAB-mR3) and comparison to MAB-hR3.

(a+b) MAB-mR3 (a) and MAB-hR3 (b) in a murine NIH-3T3 luciferase reporter assay (NF-κB activation) stimulated with 50pg/mL of mIL-1β, relative luciferase units (RLU) depicted. (a) IC50: 281.7 ng/mL. (c+d) MAB-mR3 (c) and MAB-hR3 (d) inhibition of IL-6 production in murine NIH-3T3 cells stimulated with hIL-1β (50 pg/mL). (c) IC50: 1276 ng/mL. (e+f) MAB-mR3 in a murine NIH-3T3 luciferase reporter assay (NF-κB activation) stimulated with (e) 1ng/mL of mIL-33 (IC50: 559.5ng/mL) or (f) 170ng/mL of mIL-36γ (IC50: 65.3ng/mL), RLU depicted. (g) MAB-mR3 kinetics analyzed using SPR (1 measurement depicted). Single-cycle kinetics were done using increasing concentrations of murine IL-1R3 (0.185nM - 15nM). Data are from one representative experiment, repeated once to confirm results. (a-d) Data made in triplicates. OD; optical density. Mean + SEM depicted.

Supplementary Figure 3 Gating Strategy for analysis of bronchoalveolar cells.

Singlet cells were gated for cells to eliminate debris and analyzed for live vs dead cells. Live cells were analyzed for the presence of alveolar macrophages (Siglec F+, CD11chi) and eosinophils (Siglec F-, CD11clo). The Siglec F negative cells were analyzed for the presence of neutrophils (Ly6Ghi CD11bhi) and monocytes (Ly6Glo CD11bhi). The scatter of each population of cells was confirmed by backgating as shown.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Højen, J.F., Kristensen, M.L.V., McKee, A.S. et al. IL-1R3 blockade broadly attenuates the functions of six members of the IL-1 family, revealing their contribution to models of disease. Nat Immunol 20, 1138–1149 (2019). https://doi.org/10.1038/s41590-019-0467-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41590-019-0467-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing