Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

IL-17 metabolically reprograms activated fibroblastic reticular cells for proliferation and survival

Abstract

Lymph-node (LN) stromal cell populations expand during the inflammation that accompanies T cell activation. Interleukin-17 (IL-17)-producing helper T cells (TH17 cells) promote inflammation through the induction of cytokines and chemokines in peripheral tissues. We demonstrate a critical requirement for IL-17 in the proliferation of LN and splenic stromal cells, particularly fibroblastic reticular cells (FRCs), during experimental autoimmune encephalomyelitis and colitis. Without signaling via the IL-17 receptor, activated FRCs underwent cell cycle arrest and apoptosis, accompanied by signs of nutrient stress in vivo. IL-17 signaling in FRCs was not required for the development of TH17 cells, but failed FRC proliferation impaired germinal center formation and antigen-specific antibody production. Induction of the transcriptional co-activator IκBζ via IL-17 signaling mediated increased glucose uptake and expression of the gene Cpt1a, encoding CPT1A, a rate-limiting enzyme of mitochondrial fatty acid oxidation. Hence, IL-17 produced by locally differentiating TH17 cells is an important driver of the activation of inflamed LN stromal cells, through metabolic reprogramming required to support proliferation and survival.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: IL-23R–IL-17 axis drives increased fibronectin in draining LNs (dLNs) following immunization for EAE.
Fig. 2: FRC population expansion during TH17 response requires IL-17 signaling
Fig. 3: FRC-specific ablation of IL-17RA results in defective expansion.
Fig. 4: IL-17 signaling in FRC is required to support germinal centers and antibody production.
Fig. 5: Acute colonic inflammation drives IL-17-dependent increase of FRCs in MLNs.
Fig. 6: IL-17 promotes proliferation and cell survival of inflamed LN FRCs.
Fig. 7: FRCs undergo an IL-17-dependent metabolic shift during inflammation.
Fig. 8: IL-17 promotes glucose uptake through IκBζ expression.

Similar content being viewed by others

Data availability

The RNA-Seq datasets generated for Figs. 6 and 7 are available at GEO accession code GSE124649. All other data used to generate figures for the study are available upon request by the corresponding author.

References

  1. Patel, D. D. & Kuchroo, V. K. Th17 cell pathway in human immunity: lessons from genetics andtherapeutic interventions. Immunity 43, 1040–1051 (2015).

    Article  CAS  Google Scholar 

  2. Gaffen, S. L., Jain, R., Garg, A. V. & Cua, D. J. The IL-23-IL-17 immune axis: from mechanisms to therapeutic testing. Nat. Rev. Immunol. 14, 585–600 (2014).

    Article  CAS  Google Scholar 

  3. Lee, J. S. et al. Interleukin-23-independent IL-17 production regulates intestinal epithelialpermeability. Immunity 43, 727–738 (2015).

    Article  CAS  Google Scholar 

  4. Maxwell, J. R. et al. Differential roles for interleukin-23 and interleukin-17 in intestinal immunoregulation. Immunity 43, 739–750 (2015).

    Article  CAS  Google Scholar 

  5. Grogan, J. L. & Ouyang, W. A role for Th17 cells in the regulation of tertiary lymphoid follicles. Eur. J. Immunol. 42, 2255–2262 (2012).

    Article  CAS  Google Scholar 

  6. Pikor, N. B. et al. Integration of Th17- and lymphotoxin-derived signals initiates meningeal-resident stromal cell remodeling to propagate neuroinflammation. Immunity 43, 1160–1173 (2015).

    Article  CAS  Google Scholar 

  7. Brown, F. D. & Turley, S. J. Fibroblastic reticular cells: organization and regulation of the T lymphocyte life cycle. J. Immunol. 194, 1389–1394 (2015).

    Article  CAS  Google Scholar 

  8. Rodda, L. B. et al. Single-cell RNA sequencing of lymph node stromal cells reveals niche-associated heterogeneity. Immunity 48, 1014–1028 e1016 (2018).

    Article  CAS  Google Scholar 

  9. Huang, H. Y. et al. Identification of a new subset of lymph node stromal cells involved in regulating plasma cell homeostasis. Proc. Natl Acad. Sci. USA 115, E6826–E6835 (2018).

    Article  CAS  Google Scholar 

  10. Cremasco, V. et al. B cell homeostasis and follicle confines are governed by fibroblastic reticular cells. Nat. Immunol. 15, 973–981 (2014).

    Article  CAS  Google Scholar 

  11. Chai, Q. et al. Maturation of lymph node fibroblastic reticular cells from myofibroblastic precursors is critical for antiviral immunity. Immunity 38, 1013–1024 (2013).

    Article  CAS  Google Scholar 

  12. Zeng, M. et al. Cumulative mechanisms of lymphoid tissue fibrosis and T cell depletion in HIV-1 and SIV infections. J. Clin. Invest. 121, 998–1008 (2011).

    Article  CAS  Google Scholar 

  13. Estes, J. D. et al. Antifibrotic therapy in simian immunodeficiency virus infection preserves CD4+ T-cell populations and improves immune reconstitution with antiretroviral therapy. J. Infect. Dis. 211, 744–754 (2015).

    Article  CAS  Google Scholar 

  14. Kityo, C. et al. Lymphoid tissue fibrosis is associated with impaired vaccine responses. J. Clin. Invest. 128, 2763–2773 (2018).

    Article  Google Scholar 

  15. Khan, O. et al. Regulation of T cell priming by lymphoid stroma. PLoS ONE 6, e26138 (2011).

    Article  CAS  Google Scholar 

  16. Lukacs-Kornek, V. et al. Regulated release of nitric oxide by nonhematopoietic stroma controls expansion of the activated T cell pool in lymph nodes. Nat. Immunol. 12, 1096–1104 (2011).

    Article  CAS  Google Scholar 

  17. Siegert, S. et al. Fibroblastic reticular cells from lymph nodes attenuate T cell expansion by producing nitric oxide. PLoS ONE 6, e27618 (2011).

    Article  CAS  Google Scholar 

  18. Gil-Cruz, C. et al. Fibroblastic reticular cells regulate intestinal inflammation via IL-15-mediated control of group 1 ILCs. Nat. Immunol. 17, 1388–1396 (2016).

    Article  CAS  Google Scholar 

  19. Fletcher, A. L. et al. Lymph node fibroblastic reticular cells directly present peripheral tissue antigen under steady-state and inflammatory conditions. J. Exp. Med. 207, 689–697 (2010).

    Article  CAS  Google Scholar 

  20. Dubrot, J. et al. Lymph node stromal cells acquire peptide-MHCII complexes from dendritic cells and induce antigen-specific CD4(+) T cell tolerance. J. Exp. Med. 211, 1153–1166 (2014).

    Article  CAS  Google Scholar 

  21. Cyster, J. G. Chemokines, sphingosine-1-phosphate, and cell migration in secondary lymphoid organs. Annu. Rev. Immunol. 23, 127–159 (2005).

    Article  CAS  Google Scholar 

  22. Astarita, J. L. et al. The CLEC-2-podoplanin axis controls the contractility of fibroblastic reticular cells and lymph node microarchitecture. Nat. Immunol. 16, 75–84 (2015).

    Article  CAS  Google Scholar 

  23. Chyou, S. et al. Coordinated regulation of lymph node vascular-stromal growth first by CD11c+ cells and then by T and B cells. J. Immunol. 187, 5558–5567 (2011).

    Article  CAS  Google Scholar 

  24. Yang, C. Y. et al. Trapping of naive lymphocytes triggers rapid growth and remodeling of the fibroblast network in reactive murine lymph nodes. Proc. Natl Acad. Sci. USA 111, E109–E118 (2014).

    Article  CAS  Google Scholar 

  25. Katakai, T., Hara, T., Sugai, M., Gonda, H. & Shimizu, A. Lymph node fibroblastic reticular cells construct the stromal reticulum via contact with lymphocytes. J. Exp. Med. 200, 783–795 (2004).

    Article  CAS  Google Scholar 

  26. Teesalu, T., Hinkkanen, A. E. & Vaheri, A. Coordinated induction of extracellular proteolysis systems during experimental autoimmune encephalomyelitis in mice. Am. J. Pathol. 159, 2227–2237 (2001).

    Article  CAS  Google Scholar 

  27. Han, M. H. et al. Proteomic analysis of active multiple sclerosis lesions reveals therapeutic targets. Nature 451, 1076–1081 (2008).

    Article  CAS  Google Scholar 

  28. McGeachy, M. J. et al. The interleukin 23 receptor is essential for the terminal differentiation of interleukin 17-producing effector T helper cells in vivo. Nat. Immunol. 10, 314–324 (2009).

    Article  CAS  Google Scholar 

  29. Garg, A. V. et al. MCPIP1 endoribonuclease activity negatively regulates interleukin-17-mediated signaling and inflammation. Immunity 43, 475–487 (2015).

    Article  CAS  Google Scholar 

  30. Khader, S. A., Gaffen, S. L. & Kolls, J. K. Th17 cells at the crossroads of innate and adaptive immunity against infectious diseases at the mucosa. Mucosal Immunol. 2, 403–411 (2009).

    Article  CAS  Google Scholar 

  31. Chung, J. et al. Fibroblastic niches prime T cell alloimmunity through delta-like notch ligands. J. Clin. Invest. 127, 1574–1588 (2017).

    Article  Google Scholar 

  32. Amatya, N., Garg, A. V. & Gaffen, S. L. IL-17 signaling: the yin and the yang. Trends Immunol. 38, 310–322 (2017).

    Article  CAS  Google Scholar 

  33. Coller, H. A., Sang, L. & Roberts, J. M. A new description of cellular quiescence. PLoS Biol. 4, e83 (2006).

    Article  Google Scholar 

  34. Okoshi, R. et al. Activation of AMP-activated protein kinase induces p53-dependent apoptotic cell death in response to energetic stress. J. Biol. Chem. 283, 3979–3987 (2008).

    Article  CAS  Google Scholar 

  35. Loberg, R. D., Vesely, E. & Brosius, F. C. III. Enhanced glycogen synthase kinase-3 beta activity mediates hypoxia-induced apoptosis of vascular smooth muscle cells and is prevented by glucose transport and metabolism. J. Biol. Chem. 277, 41667–41673 (2002).

    Article  CAS  Google Scholar 

  36. Yamamoto, M. et al. Regulation of Toll/IL-1-receptor-mediated gene expression by the inducible nuclear protein IκBζ. Nature 430, 218–222 (2004).

    Article  CAS  Google Scholar 

  37. Ha, H. L. et al. IL-17 drives psoriatic inflammation via distinct, target cell-specific mechanisms. Proc. Natl Acad. Sci. USA 111, E3422–E3431 (2014).

    Article  CAS  Google Scholar 

  38. Wu, L. et al. A novel IL-17 signaling pathway controlling keratinocyte proliferation and tumorigenesis via the TRAF4-ERK5 axis. J. Exp. Med. 212, 1571–1587 (2015).

    Article  CAS  Google Scholar 

  39. Wang, C. et al. IL-17 induced NOTCH1 activation in oligodendrocyte progenitor cells enhances proliferation and inflammatory gene expression. Nat. Commun. 8, 15508 (2017).

    Article  CAS  Google Scholar 

  40. Datta, S. K. et al. Mucosal adjuvant activity of cholera toxin requires Th17 cells and protects against inhalation anthrax. Proc. Natl Acad. Sci. USA 107, 10638–10643 (2010).

    Article  CAS  Google Scholar 

  41. Hsu, H. C. et al. Interleukin 17-producing T helper cells and interleukin 17 orchestrate autoreactive germinal center development in autoimmune BXD2 mice. Nat. Immunol. 9, 166–175 (2008).

    Article  CAS  Google Scholar 

  42. Mitsdoerffer, M. et al. Proinflammatory T helper type 17 cells are effective B-cell helpers. Proc. Natl Acad. Sci. USA 107, 14292–14297 (2010).

    Article  CAS  Google Scholar 

  43. Hirota, K. et al. Plasticity of Th17 cells in Peyer’s patches is responsible for the induction of T cell-dependent IgA responses. Nat. Immunol. 14, 372–379 (2013).

    Article  CAS  Google Scholar 

  44. Ding, Y. et al. IL-17RA is essential for optimal localization of follicular Th cells in the germinal center light zone to promote autoantibody-producing B cells. J. Immunol. 191, 1614–1624 (2013).

    Article  CAS  Google Scholar 

  45. Sonder, S. U. et al. IL-17-induced NF-kappaB activation via CIKS/Act1: physiologic significance and signaling mechanisms. J. Biol. Chem. 286, 12881–12890 (2011).

    Article  CAS  Google Scholar 

  46. Okuma, A. et al. Enhanced apoptosis by disruption of the STAT3-IkappaB-zeta signaling pathway in epithelial cells induces Sjogren’s syndrome-like autoimmune disease. Immunity 38, 450–460 (2013).

    Article  CAS  Google Scholar 

  47. Nogai, H. et al. IkappaB-zeta controls the constitutive NF-kappaB target gene network and survival of ABC DLBCL. Blood 122, 2242–2250 (2013).

    Article  CAS  Google Scholar 

  48. Mauro, C. et al. NF-κB controls energy homeostasis and metabolic adaptation by upregulating mitochondrial respiration. Nat. Cell. Biol. 13, 1272–1279 (2011).

    Article  CAS  Google Scholar 

  49. Johnson, R. F., Witzel, I. I. & Perkins, N. D. p53-dependent regulation of mitochondrial energy production by the RelA subunit of NF-kappaB. Cancer Res. 71, 5588–5597 (2011).

    Article  CAS  Google Scholar 

  50. Sommermann, T. G., O’Neill, K., Plas, D. R. & Cahir-McFarland, E. IKKbeta and NF-kappaB transcription govern lymphoma cell survival through AKT-induced plasma membrane trafficking of GLUT1. Cancer Res. 71, 7291–7300 (2011).

    Article  CAS  Google Scholar 

  51. Kumar, P. et al. Intestinal interleukin-17 receptor signaling mediates reciprocal control of the gut microbiota and autoimmune inflammation. Immunity 44, 659–671 (2016).

    Article  CAS  Google Scholar 

  52. Claudio, E. et al. The adaptor protein CIKS/Act1 is essential for IL-25-mediated allergic airway inflammation. J. Immunol. 182, 1617–1630 (2009).

    Article  CAS  Google Scholar 

  53. Awasthi, A. et al. Cutting edge: IL-23 receptor gfp reporter mice reveal distinct populations of IL-17-producing cells. J. Immunol. 182, 5904–5908 (2009).

    Article  CAS  Google Scholar 

  54. Jin, Z., Liang, J., Wang, J. & Kolattukudy, P. E. MCP-induced protein 1 mediates the minocycline-induced neuroprotection against cerebral ischemia/reperfusion injury in vitro and in vivo. J. Neuroinflamm. 12, 39 (2015).

    Article  Google Scholar 

  55. Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).

    Article  CAS  Google Scholar 

  56. Trapnell, C. et al. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat. Protoc. 7, 562–578 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Funding for this study was provided by the following grants: NIH Nos. AI110822 and AI128991 (to M.J.M.), No. T32-AI089443 (to I.R.), No. DK104680 (to P.S.B.), Nos. DE022550, DE023815 and AI107825 (to S.L.G.), and No. DP2AI136598 (to G.M.D); and R.K. Mellon Institute for Pediatric Research No. AACR SU2C-AACR-IRG-04-16 (to T.W.H). This research was supported in part by the University of Pittsburgh Center for Research Computing through the resources provided. We thank V. Kuchroo (Harvard University) for Il23r–/– mice, P. Kolattukudy (University of Central Florida) for Zc3h12a+/– mice, J. Kolls (Tulane University) for Il17rafl/fl mice (now available at JAX labs) and L. D’Cruz for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

S.M. and M.J.M. conceptualized and designed the study, performed analysis and wrote the manuscript. S.M., N.A., S.R., C.V.J., P.S.B., D.W. and A.M. performed experiments. N.R., I.R., N.A., A.C.P. and S.K. performed or assisted with analysis. F.D., A.B., U.S., T.W.H., G.M.D., S.L.G., P.S.B. and M.J.M. assisted with methodology, resources and analysis of experiments. T.W.H., A.P., P.S.B. and M.J.M. reviewed and edited the manuscript.

Corresponding author

Correspondence to Mandy J. McGeachy.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Majumder, S., Amatya, N., Revu, S. et al. IL-17 metabolically reprograms activated fibroblastic reticular cells for proliferation and survival. Nat Immunol 20, 534–545 (2019). https://doi.org/10.1038/s41590-019-0367-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41590-019-0367-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing