Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The epithelial immune microenvironment (EIME) in atopic dermatitis and psoriasis

Abstract

The skin provides both a physical barrier and an immunologic barrier to external threats. The protective machinery of the skin has evolved to provide situation-specific responses to eliminate pathogens and to provide protection against physical dangers. Dysregulation of this machinery can give rise to the initiation and propagation of inflammatory loops in the epithelial microenvironment that result in inflammatory skin diseases in susceptible people. A defective barrier and microbial dysbiosis drive an interleukin 4 (IL-4) loop that underlies atopic dermatitis, while in psoriasis, disordered keratinocyte signaling and predisposition to type 17 responses drive a pathogenic IL-17 loop. Here we discuss the pathogenesis of atopic dermatitis and psoriasis in terms of the epithelial immune microenvironment—the microbiota, keratinocytes and sensory nerves—and the resulting inflammatory loops.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Skin as a protective organ.
Fig. 2: Age distribution and sites of predilection in AD and psoriasis.
Fig. 3: Theoretical inflammatory loops at the EIME.
Fig. 4: The type 2 EIME versus the type 17 EIME.

Similar content being viewed by others

References

  1. Dainichi, T., Hanakawa, S. & Kabashima, K. Classification of inflammatory skin diseases: a proposal based on the disorders of the three-layered defense systems, barrier, innate immunity and acquired immunity. J. Dermatol. Sci. 76, 81–89 (2014).

    PubMed  Google Scholar 

  2. Bjerke, J. R. In situ characterization and counting of mononuclear cells in lesions of different clinical forms of psoriasis. Acta Derm. Venereol. 62, 93–100 (1982).

    CAS  PubMed  Google Scholar 

  3. Ellis, C. N. et al. Cyclosporine improves psoriasis in a double-blind study. J. Am. Med. Assoc. 256, 3110–3116 (1986).

    CAS  Google Scholar 

  4. Gottlieb, S. L. et al. Response of psoriasis to a lymphocyte-selective toxin (DAB389IL-2) suggests a primary immune, but not keratinocyte, pathogenic basis. Nat. Med. 1, 442–447 (1995).

    CAS  PubMed  Google Scholar 

  5. Hammar, H., Gu, S. Q., Johannesson, A., Sundkvist, K. G. & Biberfeld, P. Subpopulations of mononuclear cells in microscopic lesions of psoriatic patients. Selective accumulation of suppressor/cytotoxic T cells in epidermis during the evolution of the lesion. J. Invest. Dermatol. 83, 416–420 (1984).

    CAS  PubMed  Google Scholar 

  6. Mueller, W. & Herrmann, B. Cyclosporin A for psoriasis. N. Engl. J. Med. 301, 555 (1979).

    CAS  PubMed  Google Scholar 

  7. Faulds, D., Goa, K. L. & Benfield, P. Cyclosporin. A review of its pharmacodynamic and pharmacokinetic properties, and therapeutic use in immunoregulatory disorders. Drugs 45, 953–1040 (1993).

    CAS  PubMed  Google Scholar 

  8. Kabashima, K. New concept of the pathogenesis of atopic dermatitis: interplay among the barrier, allergy, and pruritus as a trinity. J. Dermatol. Sci. 70, 3–11 (2013).

    PubMed  Google Scholar 

  9. Eichenfield, L. F. et al. Guidelines of care for the management of atopic dermatitis: section 1. Diagnosis and assessment of atopic dermatitis. J. Am. Acad. Dermatol. 70, 338–351 (2014).

    PubMed  Google Scholar 

  10. Furue, M. et al. Prevalence of dermatological disorders in Japan: a nationwide, cross-sectional, seasonal, multicenter, hospital-based study. J. Dermatol. 38, 310–320 (2011).

    PubMed  Google Scholar 

  11. Simpson, E. L. et al. Two phase 3 trials of dupilumab versus placebo in atopic dermatitis. N. Engl. J. Med. 375, 2335–2348 (2016).

    CAS  PubMed  Google Scholar 

  12. Kim, B. S. et al. Basophils promote innate lymphoid cell responses in inflamed skin. J. Immunol. 193, 3717–3725 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Novak, N. & Bieber, T. Allergic and nonallergic forms of atopic diseases. J. Allergy Clin. Immunol. 112, 252–262 (2003).

    PubMed  Google Scholar 

  14. Horimukai, K. et al. Application of moisturizer to neonates prevents development of atopic dermatitis. J. Allergy Clin. Immunol. 134, 824–830 (2014).

    PubMed  Google Scholar 

  15. Oldhoff, J. M. et al. Anti-IL-5 recombinant humanized monoclonal antibody (mepolizumab) for the treatment of atopic dermatitis. Allergy 60, 693–696 (2005).

    CAS  PubMed  Google Scholar 

  16. Paller, A. S., Kabashima, K. & Bieber, T. Therapeutic pipeline for atopic dermatitis: End of the drought? J. Allergy Clin. Immunol. 140, 633–643 (2017).

    PubMed  Google Scholar 

  17. Guttman-Yassky, E. et al. Efficacy and safety of fezakinumab (an IL-22 monoclonal antibody) in adults with moderate-to-severe atopic dermatitis inadequately controlled by conventional treatments: A randomized, double-blind, phase 2a trial. J. Am. Acad. Dermatol. 78, 872–881 (2018).

    CAS  PubMed  Google Scholar 

  18. Perera, G. K., Di Meglio, P. & Nestle, F. O. Psoriasis. Annu. Rev. Pathol. 7, 385–422 (2012).

    CAS  PubMed  Google Scholar 

  19. Lowes, M. A., Suárez-Fariñas, M. & Krueger, J. G. Immunology of psoriasis. Annu. Rev. Immunol. 32, 227–255 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Kim, J. & Krueger, J. G. Highly effective new treatments for psoriasis target the IL-23/type 17 T cell autoimmune axis. Annu. Rev. Med. 68, 255–269 (2017).

    CAS  PubMed  Google Scholar 

  21. Lowes, M. A. et al. Increase in TNF-α and inducible nitric oxide synthase-expressing dendritic cells in psoriasis and reduction with efalizumab (anti-CD11a). Proc. Natl. Acad. Sci. USA 102, 19057–19062 (2005).

    CAS  PubMed  Google Scholar 

  22. Serbina, N. V., Salazar-Mather, T. P., Biron, C. A., Kuziel, W. A. & Pamer, E. G. TNF/iNOS-producing dendritic cells mediate innate immune defense against bacterial infection. Immunity 19, 59–70 (2003).

    CAS  PubMed  Google Scholar 

  23. Zaba, L. C. et al. Amelioration of epidermal hyperplasia by TNF inhibition is associated with reduced Th17 responses. J. Exp. Med. 204, 3183–3194 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Zaba, L. C. et al. Psoriasis is characterized by accumulation of immunostimulatory and Th1/Th17 cell-polarizing myeloid dendritic cells. J. Invest. Dermatol. 129, 79–88 (2009).

    CAS  PubMed  Google Scholar 

  25. Zaba, L. C., Krueger, J. G. & Lowes, M. A. Resident and “inflammatory” dendritic cells in human skin. J. Invest. Dermatol. 129, 302–308 (2009).

    CAS  PubMed  Google Scholar 

  26. Chiricozzi, A. et al. Integrative responses to IL-17 and TNF-α in human keratinocytes account for key inflammatory pathogenic circuits in psoriasis. J. Invest. Dermatol. 131, 677–687 (2011).

    CAS  PubMed  Google Scholar 

  27. Papp, K. A. et al. Risankizumab versus ustekinumab for moderate-to-severe plaque psoriasis. N. Engl. J. Med. 376, 1551–1560 (2017).

    CAS  PubMed  Google Scholar 

  28. Kolls, J. K. & Lindén, A. Interleukin-17 family members and inflammation. Immunity 21, 467–476 (2004).

    CAS  PubMed  Google Scholar 

  29. Griffiths, C. E. et al. Comparison of ixekizumab with etanercept or placebo in moderate-to-severe psoriasis (UNCOVER-2 and UNCOVER-3): results from two phase 3 randomised trials. Lancet 386, 541–551 (2015).

    CAS  PubMed  Google Scholar 

  30. Krueger, J. G. et al. IL-17A is essential for cell activation and inflammatory gene circuits in subjects with psoriasis. J. Allergy Clin. Immunol. 130, 145–154 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Langley, R. G. et al. Secukinumab in plaque psoriasis--results of two phase 3 trials. N. Engl. J. Med. 371, 326–338 (2014).

    PubMed  Google Scholar 

  32. Lebwohl, M. et al. Phase 3 studies comparing brodalumab with ustekinumab in psoriasis. N. Engl. J. Med. 373, 1318–1328 (2015).

    PubMed  Google Scholar 

  33. Lin, A. M. et al. Mast cells and neutrophils release IL-17 through extracellular trap formation in psoriasis. J. Immunol. 187, 490–500 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Teunissen, M. B. M. et al. Composition of innate lymphoid cell subsets in the human skin: enrichment of NCR+ ILC3 in lesional skin and blood of psoriasis patients. J. Invest. Dermatol. 134, 2351–2360 (2014).

    CAS  PubMed  Google Scholar 

  35. Villanova, F. et al. Characterization of innate lymphoid cells in human skin and blood demonstrates increase of NKp44+ ILC3 in psoriasis. J. Invest. Dermatol. 134, 984–991 (2014).

    CAS  PubMed  Google Scholar 

  36. Fujita, H. The role of IL-22 and Th22 cells in human skin diseases. J. Dermatol. Sci. 72, 3–8 (2013).

    CAS  PubMed  Google Scholar 

  37. Tsai, Y. C. & Tsai, T. F. Anti-interleukin and interleukin therapies for psoriasis: current evidence and clinical usefulness. Ther. Adv. Musculoskelet. Dis. 9, 277–294 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Shibata, S. et al. IL-27 activates Th1-mediated responses in imiquimod-induced psoriasis-like skin lesions. J. Invest. Dermatol. 133, 479–488 (2013).

    CAS  PubMed  Google Scholar 

  39. Chen, W. et al. Decreased expression of IL-27 in moderate-to-severe psoriasis and its anti-inflammation role in imiquimod-induced psoriasis-like mouse model. J. Dermatol. Sci. 85, 115–123 (2017).

    CAS  PubMed  Google Scholar 

  40. Egawa, G. & Kabashima, K. Multifactorial skin barrier deficiency and atopic dermatitis: Essential topics to prevent the atopic march. J. Allergy Clin. Immunol. 138, 350–358 (2016).

    PubMed  Google Scholar 

  41. Tsunemi, Y. et al. Interleukin-13 gene polymorphism G4257A is associated with atopic dermatitis in Japanese patients. J. Dermatol. Sci. 30, 100–107 (2002).

    CAS  PubMed  Google Scholar 

  42. Howard, T. D. et al. Identification and association of polymorphisms in the interleukin-13 gene with asthma and atopy in a Dutch population. Am. J. Respir. Cell Mol. Biol. 25, 377–384 (2001).

    CAS  PubMed  Google Scholar 

  43. Palmer, C. N. et al. Common loss-of-function variants of the epidermal barrier protein filaggrin are a major predisposing factor for atopic dermatitis. Nat. Genet. 38, 441–446 (2006).

    CAS  PubMed  Google Scholar 

  44. Palmer, C. N. et al. Filaggrin null mutations are associated with increased asthma severity in children and young adults. J. Allergy Clin. Immunol. 120, 64–68 (2007).

    CAS  PubMed  Google Scholar 

  45. Esparza-Gordillo, J. et al. A common variant on chromosome 11q13 is associated with atopic dermatitis. Nat. Genet. 41, 596–601 (2009).

    CAS  PubMed  Google Scholar 

  46. Paternoster, L. et al. Meta-analysis of genome-wide association studies identifies three new risk loci for atopic dermatitis. Nat. Genet. 44, 187–192 (2011).

    PubMed  PubMed Central  Google Scholar 

  47. Ellinghaus, D. et al. High-density genotyping study identifies four new susceptibility loci for atopic dermatitis. Nat. Genet. 45, 808–812 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Hirota, T. et al. Genome-wide association study identifies eight new susceptibility loci for atopic dermatitis in the Japanese population. Nat. Genet. 44, 1222–1226 (2012).

    CAS  PubMed  Google Scholar 

  49. Weidinger, S. et al. A genome-wide association study of atopic dermatitis identifies loci with overlapping effects on asthma and psoriasis. Hum. Mol. Genet. 22, 4841–4856 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Tamari, M. & Hirota, T. Genome-wide association studies of atopic dermatitis. J. Dermatol. 41, 213–220 (2014).

    CAS  PubMed  Google Scholar 

  51. Anbunathan, H. & Bowcock, A. M. The molecular revolution in cutaneous biology: the era of genome-wide association studies and statistical, big data, and computational topics. J. Invest. Dermatol. 137, e113–e118 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Armstrong, A. W., Harskamp, C. T. & Armstrong, E. J. Psoriasis and metabolic syndrome: a systematic review and meta-analysis of observational studies. J. Am. Acad. Dermatol. 68, 654–662 (2013).

    PubMed  Google Scholar 

  53. England, B. R., Thiele, G. M., Anderson, D. R. & Mikuls, T. R. Increased cardiovascular risk in rheumatoid arthritis: mechanisms and implications. Br. Med. J. 361, k1036 (2018).

    Google Scholar 

  54. Ha, C., Magowan, S., Accortt, N. A., Chen, J. & Stone, C. D. Risk of arterial thrombotic events in inflammatory bowel disease. Am. J. Gastroenterol. 104, 1445–1451 (2009).

    PubMed  Google Scholar 

  55. Atzeni, F. et al. Behçet’s disease and cardiovascular involvement. Lupus 14, 723–726 (2005).

    CAS  PubMed  Google Scholar 

  56. Jordan, C. T. et al. Rare and common variants in CARD14, encoding an epidermal regulator of NF-κB, in psoriasis. Am. J. Hum. Genet. 90, 796–808 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Marrakchi, S. et al. Interleukin-36-receptor antagonist deficiency and generalized pustular psoriasis. N. Engl. J. Med. 365, 620–628 (2011).

    CAS  PubMed  Google Scholar 

  58. Tsoi, L. C. et al. Enhanced meta-analysis and replication studies identify five new psoriasis susceptibility loci. Nat. Commun. 6, 7001 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Wohn, C. et al. Langerinneg conventional dendritic cells produce IL-23 to drive psoriatic plaque formation in mice. Proc. Natl. Acad. Sci. USA 110, 10723–10728 (2013).

    CAS  PubMed  Google Scholar 

  60. Nakamura, Y. et al. Staphylococcus δ-toxin induces allergic skin disease by activating mast cells. Nature 503, 397–401 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Van Dyken, S. J. et al. Chitin activates parallel immune modules that direct distinct inflammatory responses via innate lymphoid type 2 and γδ T cells. Immunity 40, 414–424 (2014).

    PubMed  PubMed Central  Google Scholar 

  62. Li, M. et al. Topical vitamin D3 and low-calcemic analogs induce thymic stromal lymphopoietin in mouse keratinocytes and trigger an atopic dermatitis. Proc. Natl. Acad. Sci. USA 103, 11736–11741 (2006).

    CAS  PubMed  Google Scholar 

  63. Nakajima, S. et al. Langerhans cells are critical in epicutaneous sensitization with protein antigen via thymic stromal lymphopoietin receptor signaling. J. Allergy Clin. Immunol. 129, 1048–1055 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Leyva-Castillo, J. M., Hener, P., Jiang, H. & Li, M. TSLP produced by keratinocytes promotes allergen sensitization through skin and thereby triggers atopic march in mice. J. Invest. Dermatol. 133, 154–163 (2013).

    CAS  PubMed  Google Scholar 

  65. Sokol, C. L., Barton, G. M., Farr, A. G. & Medzhitov, R. A mechanism for the initiation of allergen-induced T helper type 2 responses. Nat. Immunol. 9, 310–318 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Ohnmacht, C. et al. Basophils orchestrate chronic allergic dermatitis and protective immunity against helminths. Immunity 33, 364–374 (2010).

    CAS  PubMed  Google Scholar 

  67. Tang, H. et al. The T helper type 2 response to cysteine proteases requires dendritic cell-basophil cooperation via ROS-mediated signaling. Nat. Immunol. 11, 608–617 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Halim, T. Y., Krauss, R. H., Sun, A. C. & Takei, F. Lung natural helper cells are a critical source of Th2 cell-type cytokines in protease allergen-induced airway inflammation. Immunity 36, 451–463 (2012).

    CAS  PubMed  Google Scholar 

  69. Motomura, Y. et al. Basophil-derived interleukin-4 controls the function of natural helper cells, a member of ILC2s, in lung inflammation. Immunity 40, 758–771 (2014).

    CAS  PubMed  Google Scholar 

  70. Hammad, H. et al. House dust mite allergen induces asthma via Toll-like receptor 4 triggering of airway structural cells. Nat. Med. 15, 410–416 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Lambrecht, B. N. & Hammad, H. The immunology of the allergy epidemic and the hygiene hypothesis. Nat. Immunol. 18, 1076–1083 (2017).

    CAS  PubMed  Google Scholar 

  72. Nowarski, R., Jackson, R. & Flavell, R. A. The stromal intervention: regulation of immunity and inflammation at the epithelial-mesenchymal barrier. Cell 168, 362–375 (2017).

    CAS  PubMed  Google Scholar 

  73. van der Fits, L. et al. Imiquimod-induced psoriasis-like skin inflammation in mice is mediated via the IL-23/IL-17 axis. J. Immunol. 182, 5836–5845 (2009).

    PubMed  Google Scholar 

  74. Guttman-Yassky, E. et al. Major differences in inflammatory dendritic cells and their products distinguish atopic dermatitis from psoriasis. J. Allergy Clin. Immunol. 119, 1210–1217 (2007).

    CAS  PubMed  Google Scholar 

  75. Chan, J. R. et al. IL-23 stimulates epidermal hyperplasia via TNF and IL-20R2-dependent mechanisms with implications for psoriasis pathogenesis. J. Exp. Med. 203, 2577–2587 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Matsumoto, R. et al. Epithelial TRAF6 drives IL-17-mediated psoriatic inflammation. JCI Insight 3, e121175 (2018).

  77. Zhu, H. et al. RIG-I antiviral signaling drives interleukin-23 production and psoriasis-like skin disease. EMBO Mol. Med. 9, 589–604 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Yoshida, K. et al. Distinct behavior of human Langerhans cells and inflammatory dendritic epidermal cells at tight junctions in patients with atopic dermatitis. J. Allergy Clin. Immunol. 134, 856–864 (2014).

    PubMed  Google Scholar 

  79. Yoshiki, R. et al. IL-23 from Langerhans cells is required for the development of imiquimod-induced psoriasis-like dermatitis by induction of IL-17A-producing γδ T cells. J. Invest. Dermatol. 134, 1912–1921 (2014).

    CAS  PubMed  Google Scholar 

  80. Belkaid, Y. & Tamoutounour, S. The influence of skin microorganisms on cutaneous immunity. Nat. Rev. Immunol. 16, 353–366 (2016).

    CAS  PubMed  Google Scholar 

  81. Williams, M. R., Nakatsuji, T. & Gallo, R. L. Staphylococcus aureus: master manipulator of the skin. Cell Host Microbe 22, 579–581 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Lee, H. M. et al. Innate immune responses to Mycobacterium ulcerans via toll-like receptors and dectin-1 in human keratinocytes. Cell. Microbiol. 11, 678–692 (2009).

    CAS  PubMed  Google Scholar 

  83. Kashem, S. W. et al. Nociceptive sensory fibers drive interleukin-23 production from CD301b+ dermal dendritic cells and drive protective cutaneous immunity. Immunity 43, 515–526 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Grice, E. A. & Segre, J. A. The skin microbiome. Nat. Rev. Microbiol. 9, 244–253 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Kong, H. H. et al. Temporal shifts in the skin microbiome associated with disease flares and treatment in children with atopic dermatitis. Genome Res. 22, 850–859 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Byrd, A.L. et al. Staphylococcus aureus and Staphylococcus epidermidis strain diversity underlying pediatric atopic dermatitis. Sci. Transl. Med. 9, eaal4651 (2017).

    PubMed  PubMed Central  Google Scholar 

  87. Langan, E. A. et al. The role of the microbiome in psoriasis: moving from disease description to treatment selection? Br. J. Dermatol. 178, 1020–1027 (2018).

    CAS  PubMed  Google Scholar 

  88. Ruiz-Romeu, E. et al. Microbe-dependent induction of IL-9 by CLA+ T cells in psoriasis and relationship with IL-17A. J. Invest. Dermatol. 138, 580–587 (2018).

    CAS  PubMed  Google Scholar 

  89. Loesche, M. A. et al. Longitudinal study of the psoriasis-associated skin microbiome during therapy with ustekinumab in a randomized phase 3b clinical trial. J. Invest. Dermatol. 138, 1973–1981 (2018).

    CAS  PubMed  Google Scholar 

  90. Alekseyenko, A. V. et al. Community differentiation of the cutaneous microbiota in psoriasis. Microbiome 1, 31 (2013).

    PubMed  PubMed Central  Google Scholar 

  91. Gao, Z., Tseng, C. H., Strober, B. E., Pei, Z. & Blaser, M. J. Substantial alterations of the cutaneous bacterial biota in psoriatic lesions. PLoS One 3, e2719 (2008).

    PubMed  PubMed Central  Google Scholar 

  92. Amaya, M. et al. Molecular analysis of Malassezia microflora in the lesional skin of psoriasis patients. J. Dermatol. 34, 619–624 (2007).

    CAS  PubMed  Google Scholar 

  93. Takemoto, A., Cho, O., Morohoshi, Y., Sugita, T. & Muto, M. Molecular characterization of the skin fungal microbiome in patients with psoriasis. J. Dermatol. 42, 166–170 (2015).

    CAS  PubMed  Google Scholar 

  94. van den Oord, R. A. & Sheikh, A. Filaggrin gene defects and risk of developing allergic sensitisation and allergic disorders: systematic review and meta-analysis. Br. Med. J. 339, b2433 (2009).

    Google Scholar 

  95. Rodriguez, E. et al. Meta-analysis of filaggrin polymorphisms in eczema and asthma: robust risk factors in atopic disease. J. Allergy Clin. Immunol. 123, 1361–1370 (2009).

    CAS  PubMed  Google Scholar 

  96. Weidinger, S. et al. Loss-of-function variations within the filaggrin gene predispose for atopic dermatitis with allergic sensitizations. J. Allergy Clin. Immunol. 118, 214–219 (2006).

    CAS  PubMed  Google Scholar 

  97. Howell, M. D. et al. Cytokine modulation of atopic dermatitis filaggrin skin expression. J. Allergy Clin. Immunol. 120, 150–155 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Chavanas, S. et al. Mutations in SPINK5, encoding a serine protease inhibitor, cause Netherton syndrome. Nat. Genet. 25, 141–142 (2000).

    CAS  PubMed  Google Scholar 

  99. De Benedetto, A. et al. Tight junction defects in patients with atopic dermatitis. J. Allergy Clin. Immunol. 127, 773–786 (2011).

    PubMed  Google Scholar 

  100. Samuelov, L. et al. Desmoglein 1 deficiency results in severe dermatitis, multiple allergies and metabolic wasting. Nat. Genet. 45, 1244–1248 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. McAleer, M. A. et al. Severe dermatitis, multiple allergies, and metabolic wasting syndrome caused by a novel mutation in the N-terminal plakin domain of desmoplakin. J. Allergy Clin. Immunol. 136, 1268–1276 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Kubo, A., Nagao, K. & Amagai, M. Epidermal barrier dysfunction and cutaneous sensitization in atopic diseases. J. Clin. Invest. 122, 440–447 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Franzke, C. W. et al. Epidermal ADAM17 maintains the skin barrier by regulating EGFR ligand-dependent terminal keratinocyte differentiation. J. Exp. Med. 209, 1105–1119 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Murthy, A. et al. Notch activation by the metalloproteinase ADAM17 regulates myeloproliferation and atopic barrier immunity by suppressing epithelial cytokine synthesis. Immunity 36, 105–119 (2012).

    CAS  PubMed  Google Scholar 

  105. Kobayashi, T. et al. Dysbiosis and Staphylococcus aureus colonization drives inflammation in atopic dermatitis. Immunity 42, 756–766 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Tagami, H. & Yoshikuni, K. Interrelationship between water-barrier and reservoir functions of pathologic stratum corneum. Arch. Dermatol. 121, 642–645 (1985).

    CAS  PubMed  Google Scholar 

  107. Takahashi, H., Tsuji, H., Minami-Hori, M., Miyauchi, Y. & Iizuka, H. Defective barrier function accompanied by structural changes of psoriatic stratum corneum. J. Dermatol. 41, 144–148 (2014).

    PubMed  Google Scholar 

  108. Yuki, T., Tobiishi, M., Kusaka-Kikushima, A., Ota, Y. & Tokura, Y. Impaired tight junctions in atopic dermatitis skin and in a skin-equivalent model treated with interleukin-17. PLoS One 11, e0161759 (2016).

    PubMed  PubMed Central  Google Scholar 

  109. Gutowska-Owsiak, D. et al. IL-17 downregulates filaggrin and affects keratinocyte expression of genes associated with cellular adhesion. Exp. Dermatol. 21, 104–110 (2012).

    CAS  PubMed  Google Scholar 

  110. Doebel, T., Voisin, B. & Nagao, K. Langerhans cells - the macrophage in dendritic cell clothing. Trends Immunol. 38, 817–828 (2017).

    CAS  PubMed  Google Scholar 

  111. Nakajima, K. et al. Barrier abnormality due to ceramide deficiency leads to psoriasiform inflammation in a mouse model. J. Invest. Dermatol. 133, 2555–2565 (2013).

    CAS  PubMed  Google Scholar 

  112. Dumortier, A. et al. Atopic dermatitis-like disease and associated lethal myeloproliferative disorder arise from loss of Notch signaling in the murine skin. PLoS One 5, e9258 (2010).

    PubMed  PubMed Central  Google Scholar 

  113. Volpe, E. et al. Thymic stromal lymphopoietin links keratinocytes and dendritic cell-derived IL-23 in patients with psoriasis. J. Allergy Clin. Immunol. 134, 373–381 (2014).

    CAS  PubMed  Google Scholar 

  114. Li, M. et al. Induction of thymic stromal lymphopoietin expression in keratinocytes is necessary for generating an atopic dermatitis upon application of the active vitamin D3 analogue MC903 on mouse skin. J. Invest. Dermatol. 129, 498–502 (2009).

    CAS  PubMed  Google Scholar 

  115. Briot, A. et al. Par2 inactivation inhibits early production of TSLP, but not cutaneous inflammation, in Netherton syndrome adult mouse model. J. Invest. Dermatol. 130, 2736–2742 (2010).

    CAS  PubMed  Google Scholar 

  116. Hidaka, T. et al. The aryl hydrocarbon receptor AhR links atopic dermatitis and air pollution via induction of the neurotrophic factor artemin. Nat. Immunol. 18, 64–73 (2017).

    CAS  PubMed  Google Scholar 

  117. Junghans, V., Jung, T. & Neumann, C. Human keratinocytes constitutively express IL-4 receptor molecules and respond to IL-4 with an increase in B7/BB1 expression. Exp. Dermatol. 5, 316–324 (1996).

    CAS  PubMed  Google Scholar 

  118. Lambert, S., Swindell, W. R., Tsoi, L. C., Stoll, S. W. & Elder, J. T. Dual role of Act1 in keratinocyte differentiation and host defense: TRAF3IP2 silencing alters keratinocyte differentiation and inhibits IL-17 responses. J. Invest. Dermatol. 137, 1501–1511 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Ha, H. L. et al. IL-17 drives psoriatic inflammation via distinct, target cell-specific mechanisms. Proc. Natl. Acad. Sci. USA 111, E3422–E3431 (2014).

    CAS  PubMed  Google Scholar 

  120. Wu, L. et al. A novel IL-17 signaling pathway controlling keratinocyte proliferation and tumorigenesis via the TRAF4-ERK5 axis. J. Exp. Med. 212, 1571–1587 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Li, B. et al. Transcriptome analysis of psoriasis in a large case-control sample: RNA-seq provides insights into disease mechanisms. J. Invest. Dermatol. 134, 1828–1838 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Kumari, S. et al. Tumor necrosis factor receptor signaling in keratinocytes triggers interleukin-24-dependent psoriasis-like skin inflammation in mice. Immunity 39, 899–911 (2013).

    CAS  PubMed  Google Scholar 

  123. Grinberg-Bleyer, Y. et al. Cutting edge: NF-κB p65 and c-Rel control epidermal development and immune homeostasis in the skin. J. Immunol. 194, 2472–2476 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Rabeony, H. et al. IMQ-induced skin inflammation in mice is dependent on IL-1R1 and MyD88 signaling but independent of the NLRP3 inflammasome. Eur. J. Immunol. 45, 2847–2857 (2015).

    CAS  PubMed  Google Scholar 

  125. Yamamoto, K. et al. The role of group IIF-secreted phospholipase A2 in epidermal homeostasis and hyperplasia. J. Exp. Med. 212, 1901–1919 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Taylor, P. R. et al. Activation of neutrophils by autocrine IL-17A-IL-17RC interactions during fungal infection is regulated by IL-6, IL-23, RORγt and dectin-2. Nat. Immunol. 15, 143–151 (2014).

    CAS  PubMed  Google Scholar 

  127. Ganguly, D. et al. Self-RNA-antimicrobial peptide complexes activate human dendritic cells through TLR7 and TLR8. J. Exp. Med. 206, 1983–1994 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Lande, R. et al. Plasmacytoid dendritic cells sense self-DNA coupled with antimicrobial peptide. Nature 449, 564–569 (2007).

    CAS  PubMed  Google Scholar 

  129. Zhang, L. J. et al. Antimicrobial oeptide LL37 and MAVS signaling drive interferon-β production by epidermal keratinocytes during skin injury. Immunity 45, 119–130 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Oetjen, L. K. et al. Sensory neurons co-opt classical immune signaling pathways to mediate chronic itch. Cell 171, 217–228 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Wilson, S. R. et al. The epithelial cell-derived atopic dermatitis cytokine TSLP activates neurons to induce itch. Cell 155, 285–295 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Dillon, S. R. et al. Interleukin 31, a cytokine produced by activated T cells, induces dermatitis in mice. Nat. Immunol. 5, 752–760 (2004).

    CAS  PubMed  Google Scholar 

  133. Cevikbas, F. et al. A sensory neuron–expressed IL-31 receptor mediates T helper cell–dependent itch: Involvement of TRPV1 and TRPA1. J. Allergy Clin. Immunol. 133, 448–460 (2014).

    CAS  PubMed  Google Scholar 

  134. Sonkoly, E. et al. IL-31: a new link between T cells and pruritus in atopic skin inflammation. J. Allergy Clin. Immunol. 117, 411–417 (2006).

    CAS  PubMed  Google Scholar 

  135. Cornelissen, C. et al. IL-31 regulates differentiation and filaggrin expression in human organotypic skin models. J. Allergy Clin. Immunol. 129, 426–433 (2012).

    CAS  PubMed  Google Scholar 

  136. Kasraie, S., Niebuhr, M. & Werfel, T. Interleukin (IL)-31 activates signal transducer and activator of transcription (STAT)-1, STAT-5 and extracellular signal-regulated kinase 1/2 and down-regulates IL-12p40 production in activated human macrophages. Allergy 68, 739–747 (2013).

    CAS  PubMed  Google Scholar 

  137. Ruzicka, T. et al. Anti-interleukin-31 receptor A antibody for atopic dermatitis. N. Engl. J. Med. 376, 826–835 (2017).

    CAS  PubMed  Google Scholar 

  138. Cowden, J. M., Zhang, M., Dunford, P. J. & Thurmond, R. L. The histamine H4 receptor mediates inflammation and pruritus in Th2-dependent dermal inflammation. J. Invest. Dermatol. 130, 1023–1033 (2010).

    CAS  PubMed  Google Scholar 

  139. Mollanazar, N. K., Smith, P. K. & Yosipovitch, G. Mediators of chronic pruritus in atopic dermatitis: getting the itch out? Clin. Rev. Allergy Immunol. 51, 263–292 (2016).

    CAS  PubMed  Google Scholar 

  140. Kido-Nakahara, M., Furue, M., Ulzii, D. & Nakahara, T. Itch in atopic dermatitis. Immunol. Allergy Clin. North Am. 37, 113–122 (2017).

    PubMed  Google Scholar 

  141. Moriyama, S. et al. β2-adrenergic receptor-mediated negative regulation of group 2 innate lymphoid cell responses. Science 359, 1056–1061 (2018).

    CAS  PubMed  Google Scholar 

  142. Chiu, I. M. et al. Bacteria activate sensory neurons that modulate pain and inflammation. Nature 501, 52–57 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. LaMotte, R. H., Dong, X. & Ringkamp, M. Sensory neurons and circuits mediating itch. Nat. Rev. Neurosci. 15, 19–31 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Riol-Blanco, L. et al. Nociceptive sensory neurons drive interleukin-23-mediated psoriasiform skin inflammation. Nature 510, 157–161 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Joseph, T., Kurian, J., Warwick, D. J. & Friedmann, P. S. Unilateral remission of psoriasis following traumatic nerve palsy. Br. J. Dermatol. 152, 185–186 (2005).

    CAS  PubMed  Google Scholar 

  146. Zanchi, M. et al. Botulinum toxin type-A for the treatment of inverse psoriasis. J. Eur. Acad. Dermatol. Venereol. 22, 431–436 (2008).

    CAS  PubMed  Google Scholar 

  147. Nash, M. S. Known and plausible modulators of depressed immune functions following spinal cord injuries. J. Spinal Cord Med. 23, 111–120 (2000).

    CAS  PubMed  Google Scholar 

  148. Rubin-Asher, D., Zeilig, G., Klieger, M., Adunsky, A. & Weingarden, H. Dermatological findings following acute traumatic spinal cord injury. Spinal Cord 43, 175–178 (2005).

    CAS  PubMed  Google Scholar 

  149. Maruyama, K. et al. Nociceptors boost the resolution of fungal osteoinflammation via the TRP channel-CGRP-Jdp2 axis. Cell Reports 19, 2730–2742 (2017).

    CAS  PubMed  Google Scholar 

  150. Ray-Jones, H., Eyre, S., Barton, A. & Warren, R. B. One SNP at a time: moving beyond GWAS in psoriasis. J. Invest. Dermatol. 136, 567–573 (2016).

    CAS  PubMed  Google Scholar 

  151. Bissonnette, R. et al. Topical tofacitinib for atopic dermatitis: a phase IIa randomized trial. Br. J. Dermatol. 175, 902–911 (2016).

    CAS  PubMed  Google Scholar 

  152. Nakagawa, H., Nemoto, O., Igarashi, A. & Nagata, T. Efficacy and safety of topical JTE-052, a Janus kinase inhibitor, in Japanese adult patients with moderate-to-severe atopic dermatitis: a phase II, multicentre, randomized, vehicle-controlled clinical study. Br. J. Dermatol. 178, 424–432 (2018).

    CAS  PubMed  Google Scholar 

  153. Bissonnette, R. et al. Tofacitinib withdrawal and retreatment in moderate-to-severe chronic plaque psoriasis: a randomized controlled trial. Br. J. Dermatol. 172, 1395–1406 (2015).

    CAS  PubMed  Google Scholar 

  154. Bachelez, H. et al. Tofacitinib versus etanercept or placebo in moderate-to-severe chronic plaque psoriasis: a phase 3 randomised non-inferiority trial. Lancet 386, 552–561 (2015).

    CAS  PubMed  Google Scholar 

  155. Papp, K. A. et al. A randomized phase 2b trial of baricitinib, an oral Janus kinase (JAK) 1/JAK2 inhibitor, in patients with moderate-to-severe psoriasis. Br. J. Dermatol. 174, 1266–1276 (2016).

    CAS  PubMed  Google Scholar 

  156. Papp, K. et al. A phase 2a randomized, double-blind, placebo-controlled, sequential dose-escalation study to evaluate the efficacy and safety of ASP015K, a novel Janus kinase inhibitor, in patients with moderate-to-severe psoriasis. Br. J. Dermatol. 173, 767–776 (2015).

    CAS  PubMed  Google Scholar 

  157. Punwani, N. et al. Preliminary clinical activity of a topical JAK1/2 inhibitor in the treatment of psoriasis. J. Am. Acad. Dermatol. 67, 658–664 (2012).

    CAS  PubMed  Google Scholar 

  158. Schwartz, D. M. et al. JAK inhibition as a therapeutic strategy for immune and inflammatory diseases. Nat. Rev. Drug Discov. 16, 843–862 (2017).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Teruki Dainichi or Kenji Kabashima.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dainichi, T., Kitoh, A., Otsuka, A. et al. The epithelial immune microenvironment (EIME) in atopic dermatitis and psoriasis. Nat Immunol 19, 1286–1298 (2018). https://doi.org/10.1038/s41590-018-0256-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41590-018-0256-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing