Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

EBOLA VIRUS

Antibody-mediated protection against Ebola virus

Abstract

Recent Ebola virus disease epidemics have highlighted the need for effective vaccines and therapeutics to prevent future outbreaks. Antibodies are clearly critical for control of this deadly disease; however, the specific mechanisms of action of protective antibodies have yet to be defined. In this Perspective we discuss the antibody features that correlate with in vivo protection during infection with Ebola virus, based on the results of a systematic and comprehensive study of antibodies directed against this virus. Although neutralization activity mediated by the Fab domains of the antibody is strongly correlated with protection, recruitment of immune effector functions by the Fc domain has also emerged as a complementary, and sometimes alternative, route to protection. For a subset of antibodies, Fc-mediated clearance and killing of infected cells seems to be the main driver of protection after exposure and mirrors observations in vaccination studies. Continued analysis of antibodies that achieve protection partially or wholly through Fc-mediated functions, the precise functions required, the intersection with specificity and the importance of these functions in different animal models is needed to identify and begin to capitalize on Fc-mediated protection in vaccines and therapeutics alike.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Evaluation of early antibody treatments for their protection of NHPs.
Fig. 2: Antibody treatments approved for evaluation in outbreaks of Ebola virus in 2018.
Fig. 3: Structure, epitopes of Ebola virus GP, and antibody functions.
Fig. 4: Outliers in the VIC study.
Fig. 5: Specific glycan profiles are linked to distinct functional activity.

Similar content being viewed by others

References

  1. Carter, P. J. & Lazar, G. A. Next generation antibody drugs: pursuit of the ‘high-hanging fruit’. Nat. Rev. Drug Discov. 17, 197–223 (2018).

    CAS  PubMed  Google Scholar 

  2. Salazar, G., Zhang, N., Fu, T.-M. & An, Z. Antibody therapies for the prevention and treatment of viral infections. NPJ Vaccines 2, 19 (2017).

    PubMed  PubMed Central  Google Scholar 

  3. Lu, L. L., Suscovich, T. J., Fortune, S. M. & Alter, G. Beyond binding: antibody effector functions in infectious diseases. Nat. Rev. Immunol. 18, 46–61 (2018).

    CAS  PubMed  Google Scholar 

  4. Casadevall, A. Antibody-based therapies for emerging infectious diseases. Emerg. Infect. Dis. 2, 200–208 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Corti, D. et al. Prophylactic and postexposure efficacy of a potent human monoclonal antibody against MERS coronavirus. Proc. Natl. Acad. Sci. USA 112, 10473–10478 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Burton, D. R. & Saphire, E. O. Swift antibodies to counter emerging viruses. Proc. Natl. Acad. Sci. USA 112, 10082–10083 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Davey, R. T. Jr. et al. PREVAIL II Writing Group et al. A randomized, controlled trial of ZMapp for Ebola virus infection. N. Engl. J. Med. 375, 1448–1456 (2016).

    CAS  PubMed  Google Scholar 

  8. Sondermann, P. & Szymkowski, D. E. Harnessing Fc receptor biology in the design of therapeutic antibodies. Curr. Opin. Immunol. 40, 78–87 (2016).

    CAS  PubMed  Google Scholar 

  9. Nimmerjahn, F. Translating inhibitory Fc receptor biology into novel therapeutic approaches. J. Clin. Immunol. 36, 83–87 (2016).

    CAS  PubMed  Google Scholar 

  10. Hogarth, P. M. & Pietersz, G. A. Fc receptor-targeted therapies for the treatment of inflammation, cancer and beyond. Nat. Rev. Drug Discov. 11, 311–331 (2012).

    CAS  PubMed  Google Scholar 

  11. Howes, S. C., Koning, R. I. & Koster, A. J. Correlative microscopy for structural microbiology. Curr. Opin. Microbiol. 43, 132–138 (2018).

    CAS  PubMed  Google Scholar 

  12. Hampton, C. M. et al. Correlated fluorescence microscopy and cryo-electron tomography of virus-infected or transfected mammalian cells. Nat. Protoc. 12, 150–167 (2017).

    CAS  PubMed  Google Scholar 

  13. Kellner, C., Derer, S., Valerius, T. & Peipp, M. Boosting ADCC and CDC activity by Fc engineering and evaluation of antibody effector functions. Methods 65, 105–113 (2014).

    CAS  PubMed  Google Scholar 

  14. Bournazos, S., DiLillo, D. J. & Ravetch, J. V. The role of Fc-FcγR interactions in IgG-mediated microbial neutralization. J. Exp. Med. 212, 1361–1369 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Lewis, G. K. Role of Fc-mediated antibody function in protective immunity against HIV-1. Immunology 142, 46–57 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Treffers, L. W. et al. Genetic variation of human neutrophil Fcγ receptors and SIRPα in antibody-dependent cellular cytotoxicity towards cancer cells. Eur. J. Immunol. 48, 344–354 (2018).

    CAS  PubMed  Google Scholar 

  17. Bakema, J. E. & van Egmond, M. Fc receptor-dependent mechanisms of monoclonal antibody therapy of cancer. Curr. Top. Microbiol. Immunol. 382, 373–392 (2014).

    CAS  PubMed  Google Scholar 

  18. Ram, S. et al. Utilizing complement evasion strategies to design complement-based antibacterial immunotherapeutics: Lessons from the pathogenic Neisseriae. Immunobiology 221, 1110–1123 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Bournazos, S. et al. Broadly neutralizing anti-HIV-1 antibodies require Fc effector functions for in vivo activity. Cell 158, 1243–1253 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Almagro, J. C., Daniels-Wells, T. R., Perez-Tapia, S. M. & Penichet, M. L. Progress and challenges in the design and clinical development of antibodies for cancer therapy. Front. Immunol. 8, 1751 (2018).

    PubMed  PubMed Central  Google Scholar 

  21. Saphire, E. O. et al. Viral Hemorrhagic Fever Immunotherapeutic Consortium. Systematic analysis of monoclonal antibodies against Ebola virus GP defines features that contribute to protection. Cell 174, 938–952 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Maruyama, T. et al. Ebola virus can be effectively neutralized by antibody produced in natural human infection. J. Virol. 73, 6024–6030 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Lee, J. E. et al. Structure of the Ebola virus glycoprotein bound to an antibody from a human survivor. Nature 454, 177–182 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Parren, P. W. H. I., Geisbert, T. W., Maruyama, T., Jahrling, P. B. & Burton, D. R. Pre- and postexposure prophylaxis of Ebola virus infection in an animal model by passive transfer of a neutralizing human antibody. J. Virol. 76, 6408–6412 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Oswald, W. B. et al. Neutralizing antibody fails to impact the course of Ebola virus infection in monkeys. PLoS Pathog. 3, e9 (2007).

    PubMed  PubMed Central  Google Scholar 

  26. Dye, J. M. et al. Postexposure antibody prophylaxis protects nonhuman primates from filovirus disease. Proc. Natl. Acad. Sci. USA 109, 5034–5039 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Qiu, X. et al. Ebola GP-specific monoclonal antibodies protect mice and guinea pigs from lethal Ebola virus infection. PLoS Negl. Trop. Dis. 6, e1575 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Qiu, X. et al. Successful treatment of Ebola virus-infected cynomolgus macaques with monoclonal antibodies. Sci. Transl. Med. 4, 138ra81 (2012).

    PubMed  Google Scholar 

  29. Murin, C. D. et al. Structures of protective antibodies reveal sites of vulnerability on Ebola virus. Proc. Natl. Acad. Sci. USA 111, 17182–17187 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Audet, J. et al. Molecular characterization of the monoclonal antibodies composing ZMAb: a protective cocktail against Ebola virus. Sci. Rep. 4, 6881 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Olinger, G. G. Jr. et al. Delayed treatment of Ebola virus infection with plant-derived monoclonal antibodies provides protection in rhesus macaques. Proc. Natl. Acad. Sci. USA 109, 18030–18035 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Pettitt, J. et al. Therapeutic intervention of Ebola virus infection in rhesus macaques with the MB-003 monoclonal antibody cocktail. Sci. Transl. Med. 5, 199ra113 (2013).

    PubMed  Google Scholar 

  33. Pallesen, J. et al. Structures of Ebola virus GP and sGP in complex with therapeutic antibodies. Nat. Microbiol. 1, 16128 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Wilson, J. A. et al. Epitopes involved in antibody-mediated protection from Ebola virus. Science 287, 1664–1666 (2000).

    CAS  PubMed  Google Scholar 

  35. Davidson, E. et al. Mechanism of binding to Ebola virus glycoprotein by the ZMapp, ZMAb, and MB-003 cocktail antibodies. J. Virol. 89, 10982–10992 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Hood, C. L. et al. Biochemical and structural characterization of cathepsin L-processed Ebola virus glycoprotein: implications for viral entry and immunogenicity. J. Virol. 84, 2972–2982 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Schornberg, K. et al. Role of endosomal cathepsins in entry mediated by the Ebola virus glycoprotein. J. Virol. 80, 4174–4178 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Zeitlin, L. et al. Enhanced potency of a fucose-free monoclonal antibody being developed as an Ebola virus immunoprotectant. Proc. Natl. Acad. Sci. USA 108, 20690–20694 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Strasser, R. et al. Generation of glyco-engineered Nicotiana benthamiana for the production of monoclonal antibodies with a homogeneous human-like N-glycan structure. Plant Biotechnol. J. 6, 392–402 (2008).

    CAS  PubMed  Google Scholar 

  40. Ackerman, M. E. et al. Natural variation in Fc glycosylation of HIV-specific antibodies impacts antiviral activity. J. Clin. Invest. 123, 2183–2192 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Mahan, A. E. et al. Antigen-specific antibody glycosylation is regulated via vaccination. PLoS Pathog. 12, e1005456 (2016).

    PubMed  PubMed Central  Google Scholar 

  42. Nimmerjahn, F., Anthony, R. M. & Ravetch, J. V. Agalactosylated IgG antibodies depend on cellular Fc receptors for in vivo activity. Proc. Natl. Acad. Sci. USA 104, 8433–8437 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Arnold, J. N., Wormald, M. R., Sim, R. B., Rudd, P. M. & Dwek, R. A. The impact of glycosylation on the biological function and structure of human immunoglobulins. Annu. Rev. Immunol. 25, 21–50 (2007).

    CAS  PubMed  Google Scholar 

  44. Anthony, R. M. & Nimmerjahn, F. The role of differential IgG glycosylation in the interaction of antibodies with FcγRs in vivo. Curr. Opin. Organ Transplant. 16, 7–14 (2011).

    CAS  PubMed  Google Scholar 

  45. Jefferis, R. Glycosylation of recombinant antibody therapeutics. Biotechnol. Prog. 21, 11–16 (2005).

    CAS  PubMed  Google Scholar 

  46. Popp, O. et al. Development of a pre-glycoengineered CHO-K1 host cell line for the expression of antibodies with enhanced Fc mediated effector function. MAbs 10, 290–303 (2018).

    CAS  PubMed  Google Scholar 

  47. Jiang, X.-R. et al. Advances in the assessment and control of the effector functions of therapeutic antibodies. Nat. Rev. Drug Discov. 10, 101–111 (2011).

    CAS  PubMed  Google Scholar 

  48. Schuster, M. et al. Improved effector functions of a therapeutic monoclonal Lewis Y-specific antibody by glycoform engineering. Cancer Res. 65, 7934–7941 (2005).

    CAS  PubMed  Google Scholar 

  49. Yamane-Ohnuki, N. & Satoh, M. Production of therapeutic antibodies with controlled fucosylation. MAbs 1, 230–236 (2009).

    PubMed  PubMed Central  Google Scholar 

  50. Qiu, X. et al. Reversion of advanced Ebola virus disease in nonhuman primates with ZMapp. Nature 514, 47–53 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Corti, D. et al. Protective monotherapy against lethal Ebola virus infection by a potently neutralizing antibody. Science 351, 1339–1342 (2016).

    CAS  PubMed  Google Scholar 

  52. Pascal, K. E. et al. Development of clinical-stage human monoclonal antibodies that treat advanced Ebola virus disease in non-human primates. J. Infect. Dis. https://doi.org/10.1093/infdis/jiy285 (2018).

    Article  PubMed  Google Scholar 

  53. Saphire, E. O. et al. How to turn competitors into collaborators. Nature 541, 283–285 (2017).

    CAS  PubMed  Google Scholar 

  54. Halfmann, P. et al. Generation of biologically contained Ebola viruses. Proc. Natl. Acad. Sci. USA 105, 1129–1133 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Wong, A. C., Sandesara, R. G., Mulherkar, N., Whelan, S. P. & Chandran, K. A forward genetic strategy reveals destabilizing mutations in the Ebolavirus glycoprotein that alter its protease dependence during cell entry. J. Virol. 84, 163–175 (2010).

    CAS  PubMed  Google Scholar 

  56. Ackerman, M. E., Barouch, D. H. & Alter, G. Systems serology for evaluation of HIV vaccine trials. Immunol. Rev. 275, 262–270 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Alter, G., Malenfant, J. M. & Altfeld, M. CD107a as a functional marker for the identification of natural killer cell activity. J. Immunol. Methods 294, 15–22 (2004).

    CAS  PubMed  Google Scholar 

  58. Shedlock, D. J. et al. Antibody-mediated neutralization of Ebola virus can occur by two distinct mechanisms. Virology 401, 228–235 (2010).

    CAS  PubMed  Google Scholar 

  59. Flyak, A. I. et al. Mechanism of human antibody-mediated neutralization of Marburg virus. Cell 160, 893–903 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. King, L. B. et al. The Marburgvirus-neutralizing human monoclonal antibody MR191 targets a conserved site to block virus receptor binding. Cell Host Microbe 23, 101–109.e4 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Hashiguchi, T. et al. Structural basis for Marburg virus neutralization by a cross-reactive human antibody. Cell 160, 904–912 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Chandran, K., Sullivan, N. J., Felbor, U., Whelan, S. P. & Cunningham, J. M. Endosomal proteolysis of the Ebola virus glycoprotein is necessary for infection. Science 308, 1643–1645 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Miller, E. H. et al. Ebola virus entry requires the host-programmed recognition of an intracellular receptor. EMBO J. 31, 1947–1960 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Gong, X. et al. Structural Insights into the Niemann-Pick C1 (NPC1)-mediated cholesterol transfer and Ebola infection. Cell 165, 1467–1478 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Kaletsky, R. L., Simmons, G. & Bates, P. Proteolysis of the Ebola virus glycoproteins enhances virus binding and infectivity. J. Virol. 81, 13378–13384 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Mohan, G. S., Li, W., Ye, L., Compans, R. W. & Yang, C. Antigenic subversion: a novel mechanism of host immune evasion by Ebola virus. PLoS Pathog. 8, e1003065 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Barba-Spaeth, G. et al. Structural basis of potent Zika-dengue virus antibody cross-neutralization. Nature 536, 48–53 (2016).

    CAS  PubMed  Google Scholar 

  68. Corti, D. et al. A neutralizing antibody selected from plasma cells that binds to group 1 and group 2 influenza A hemagglutinins. Science 333, 850–856 (2011).

    CAS  PubMed  Google Scholar 

  69. Corti, D. et al. Cross-neutralization of four paramyxoviruses by a human monoclonal antibody. Nature 501, 439–443 (2013).

    CAS  PubMed  Google Scholar 

  70. de Alwis, R. et al. Identification of human neutralizing antibodies that bind to complex epitopes on dengue virions. Proc. Natl. Acad. Sci. USA 109, 7439–7444 (2012).

    PubMed  PubMed Central  Google Scholar 

  71. Huang, J. et al. Identification of a CD4-binding-site antibody to HIV that evolved near-pan neutralization breadth. Immunity 45, 1108–1121 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Burton, D. R. & Mascola, J. R. Antibody responses to envelope glycoproteins in HIV-1 infection. Nat. Immunol. 16, 571–576 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Zhou, Y. & Sullivan, N. J. Immunology and evolvement of the adenovirus prime, MVA boost Ebola virus vaccine. Curr. Opin. Immunol. 35, 131–136 (2015).

    CAS  PubMed  Google Scholar 

  74. Stanley, D. A. et al. Chimpanzee adenovirus vaccine generates acute and durable protective immunity against ebolavirus challenge. Nat. Med. 20, 1126–1129 (2014).

    CAS  PubMed  Google Scholar 

  75. Qiu, X. et al. Mucosal immunization of cynomolgus macaques with the VSVΔG/ZEBOVGP vaccine stimulates strong ebola GP-specific immune responses. PLoS One 4, e5547 (2009).

    PubMed  PubMed Central  Google Scholar 

  76. Liu, Q. et al. Antibody-dependent-cellular-cytotoxicity-inducing antibodies significantly affect the post-exposure treatment of Ebola virus infection. Sci. Rep. 7, 45552 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Cimini, E. et al. Different features of Vδ2 T and NK cells in fatal and non-fatal human Ebola infections. PLoS Negl. Trop. Dis. 11, e0005645 (2017).

    PubMed  PubMed Central  Google Scholar 

  78. Gillis, C. M. et al. Mechanisms of anaphylaxis in human low-affinity IgG receptor locus knock-in mice. J. Allergy Clin. Immunol. 139, 1253–1265.e14 (2017).

    CAS  PubMed  Google Scholar 

  79. Gillis, C., Gouel-Chéron, A., Jönsson, F. & Bruhns, P. Contribution of human FcγRs to disease with evidence from human polymorphisms and transgenic animal studies. Front. Immunol. 5, 254 (2014).

    PubMed  PubMed Central  Google Scholar 

  80. Smith, P., DiLillo, D. J., Bournazos, S., Li, F. & Ravetch, J. V. Mouse model recapitulating human Fcγ receptor structural and functional diversity. Proc. Natl. Acad. Sci. USA 109, 6181–6186 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Bournazos, S., DiLillo, D. J. & Ravetch, J. V. humanized mice to study FcγR function. Curr. Top. Microbiol. Immunol. 382, 237–248 (2014).

    CAS  PubMed  Google Scholar 

  82. Nimmerjahn, F. & Ravetch, J. V. Fcγ receptors as regulators of immune responses. Nat. Rev. Immunol. 8, 34–47 (2008).

    CAS  PubMed  Google Scholar 

  83. Sheeley, D. M., Merrill, B. M. & Taylor, L. C. Characterization of monoclonal antibody glycosylation: comparison of expression systems and identification of terminal alpha-linked galactose. Anal. Biochem. 247, 102–110 (1997).

    CAS  PubMed  Google Scholar 

  84. Hills, A. E., Patel, A., Boyd, P. & James, D. C. Metabolic control of recombinant monoclonal antibody N-glycosylation in GS-NS0 cells. Biotechnol. Bioeng. 75, 239–251 (2001).

    CAS  PubMed  Google Scholar 

  85. Baker, K. N. et al. Metabolic control of recombinant protein N-glycan processing in NS0 and CHO cells. Biotechnol. Bioeng. 73, 188–202 (2001).

    CAS  PubMed  Google Scholar 

  86. Gunn, B. M. et al. Dissecting the role of Fc and Fab mediated functions in Ebola virus specific immunity. Cell Host Microbe 24, 221–233 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Shields, R. L. et al. Lack of fucose on human IgG1 N-linked oligosaccharide improves binding to human Fcgamma RIII and antibody-dependent cellular toxicity. J. Biol. Chem. 277, 26733–26740 (2002).

    CAS  PubMed  Google Scholar 

  88. Chung, A. W. et al. Identification of antibody glycosylation structures that predict monoclonal antibody Fc-effector function. AIDS 28, 2523–2530 (2014).

    CAS  PubMed  Google Scholar 

  89. Mahan, A. E. et al. Correction: antigen-specific antibody glycosylation is regulated via vaccination. PLoS Pathog. 12, e1005694 (2016).

    PubMed  PubMed Central  Google Scholar 

  90. Sneddon, L. U., Halsey, L. G. & Bury, N. R. Considering aspects of the 3Rs principles within experimental animal biology. J. Exp. Biol. 220, 3007–3016 (2017).

    PubMed  Google Scholar 

  91. Jefferis, R. Isotype and glycoform selection for antibody therapeutics. Arch. Biochem. Biophys. 526, 159–166 (2012).

    CAS  PubMed  Google Scholar 

  92. Hessell, A. J. et al. Fc receptor but not complement binding is important in antibody protection against HIV. Nature 449, 101–104 (2007).

    CAS  PubMed  Google Scholar 

  93. Horton, H. M. et al. Antibody-mediated coengagement of FcγRIIb and B cell receptor complex suppresses humoral immunity in systemic lupus erythematosus. J. Immunol. 186, 4223–4233 (2011).

    CAS  PubMed  Google Scholar 

  94. Chu, S. Y. et al. Reduction of total IgE by targeted coengagement of IgE B-cell receptor and FcγRIIb with Fc-engineered antibody. J. Allergy Clin. Immunol. 129, 1102–1115 (2012).

    CAS  PubMed  Google Scholar 

  95. Nose, M. & Wigzell, H. Biological significance of carbohydrate chains on monoclonal antibodies. Proc. Natl. Acad. Sci. USA 80, 6632–6636 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Leatherbarrow, R. J. et al. Effector functions of a monoclonal aglycosylated mouse IgG2a: binding and activation of complement component C1 and interaction with human monocyte Fc receptor. Mol. Immunol. 22, 407–415 (1985).

    CAS  PubMed  Google Scholar 

  97. Tobinai, K., Klein, C., Oya, N. & Fingerle-Rowson, G. A review of obinutuzumab (GA101), a novel type II anti-CD20 monoclonal antibody, for the treatment of patients with B-cell malignancies. Adv. Ther. 34, 324–356 (2017).

    CAS  PubMed  Google Scholar 

  98. Beck, A. & Reichert, J. M. Marketing approval of mogamulizumab: a triumph for glyco-engineering. MAbs 4, 419–425 (2012).

    PubMed  PubMed Central  Google Scholar 

  99. Hoy, S. M. Obinutuzumab: a review of its use in patients with chronic lymphocytic leukaemia. Drugs 75, 285–296 (2015).

    CAS  PubMed  Google Scholar 

  100. Ghazi, A., Trikha, A. & Calhoun, W. J. Benralizumab–a humanized mAb to IL-5Rα with enhanced antibody-dependent cell-mediated cytotoxicity–a novel approach for the treatment of asthma. Expert Opin. Biol. Ther. 12, 113–118 (2012).

    CAS  PubMed  Google Scholar 

  101. Robak, T. GA-101, a third-generation, humanized and glyco-engineered anti-CD20 mAb for the treatment of B-cell lymphoid malignancies. Curr. Opin. Investig. Drugs 10, 588–596 (2009).

    CAS  PubMed  Google Scholar 

  102. Lazar, G. A. et al. Engineered antibody Fc variants with enhanced effector function. Proc. Natl. Acad. Sci. USA 103, 4005–4010 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Diebolder, C. A. et al. Complement is activated by IgG hexamers assembled at the cell surface. Science 343, 1260–1263 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Shields, R. L. et al. High resolution mapping of the binding site on human IgG1 for FcγRI, FcγRII, FcγRIII, and FcRn and design of IgG1 variants with improved binding to the FcγR. J. Biol. Chem. 276, 6591–6604 (2001).

    CAS  PubMed  Google Scholar 

  105. Stavenhagen, J. B. et al. Fc optimization of therapeutic antibodies enhances their ability to kill tumor cells in vitro and controls tumor expansion in vivo via low-affinity activating Fcγ receptors. Cancer Res. 67, 8882–8890 (2007).

    CAS  PubMed  Google Scholar 

  106. Richards, J. O. et al. Optimization of antibody binding to FcγRIIa enhances macrophage phagocytosis of tumor cells. Mol. Cancer Ther. 7, 2517–2527 (2008).

    CAS  PubMed  Google Scholar 

  107. Jurczak, W. et al. Phase IIa study of single-agent MOR208 in patients with relapsed or refractory B-cell non-Hodgkinas lymphoma. Blood 126, 1528 (2015).

    Google Scholar 

  108. Kellner, C. et al. The Fc-engineered CD19 antibody MOR208 (XmAb5574) induces natural killer cell-mediated lysis of acute lymphoblastic leukemia cells from pediatric and adult patients. Leukemia 27, 1595–1598 (2013).

    CAS  PubMed  Google Scholar 

  109. Zalevsky, J. et al. The impact of Fc engineering on an anti-CD19 antibody: increased Fcγ receptor affinity enhances B-cell clearing in nonhuman primates. Blood 113, 3735–3743 (2009).

    CAS  PubMed  Google Scholar 

  110. Kumar, A. et al. A phase 1 dose-escalation study of XmAb® 2513 in patients with relapsed or refractory Hodgkin lymphoma. Br. J. Haematol. 168, 902–904 (2015).

    CAS  PubMed  Google Scholar 

  111. Lee, E. M. et al. Efficacy of an Fc-modified anti-CD123 antibody (CSL362) combined with chemotherapy in xenograft models of acute myelogenous leukemia in immunodeficient mice. Haematologica 100, 914–926 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Li, G. et al. Dual functional monoclonal antibody PF-04605412 targets integrin α5β1 and elicits potent antibody-dependent cellular cytotoxicity. Cancer Res. 70, 10243–10254 (2010).

    CAS  PubMed  Google Scholar 

  113. de Jong, R. N. et al. A novel platform for the potentiation of therapeutic antibodies based on antigen-dependent formation of IgG hexamers at the cell surface. PLoS Biol. 14, e1002344 (2016).

    PubMed  PubMed Central  Google Scholar 

  114. Dall’Acqua, W. F., Kiener, P. A. & Wu, H. Properties of human IgG1s engineered for enhanced binding to the neonatal Fc receptor (FcRn). J. Biol. Chem. 281, 23514–23524 (2006).

    PubMed  Google Scholar 

  115. Borrok, M. J. et al. pH-dependent binding engineering reveals an FcRn affinity threshold that governs IgG recycling. J. Biol. Chem. 290, 4282–4290 (2015).

    CAS  PubMed  Google Scholar 

  116. Yu, X.-Q. et al. Safety, tolerability, and pharmacokinetics of MEDI4893, an investigational, extended-half-life, anti-Staphylococcus aureus Alpha-toxin human monoclonal antibody, in healthy adults. Antimicrob. Agents Chemother. 61, (2016).

  117. Gaudinski, M. R. et al. Safety and pharmacokinetics of the Fc-modified HIV-1 human monoclonal antibody VRC01LS: a Phase 1 open-label clinical trial in healthy adults. PLoS Med. 15, e1002493 (2018).

    PubMed  PubMed Central  Google Scholar 

  118. Lewis, G. K. et al. Beyond viral neutralization. AIDS Res. Hum. Retroviruses 33, 760–764 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Corey, L. et al. Immune correlates of vaccine protection against HIV-1 acquisition. Sci. Transl. Med. 7, 310rv7 (2015).

    PubMed  PubMed Central  Google Scholar 

  120. Henry Dunand, C. J. et al. Both neutralizing and non-neutralizing human H7N9 influenza vaccine-induced monoclonal antibodies confer protection. Cell Host Microbe 19, 800–813 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Bootz, A. et al. Protective capacity of neutralizing and non-neutralizing antibodies against glycoprotein B of cytomegalovirus. PLoS Pathog. 13, e1006601 (2017).

    PubMed  PubMed Central  Google Scholar 

  122. Horwitz, J. A. et al. Non-neutralizing antibodies alter the course of HIV-1 infection in vivo. Cell 170, 637–648.e10 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Lee, J. E. et al. Complex of a protective antibody with its ebola virus GP peptide epitope: unusual features of a Vλx light chain. J. Mol. Biol. 375, 202–216 (2008).

    CAS  PubMed  Google Scholar 

  124. Misasi, J. et al. Structural and molecular basis for Ebola virus neutralization by protective human antibodies. Science 351, 1343–1346 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We acknowledge U19AI107962 (a Center of Excellence in Translational Research (CETR) award from NIAID of the US National Institutes of Health), and the members of the Viral Hemorrhagic Fever Immunotherapeutic Consortium who contributed antibodies (many of which were unpublished) and analytical efforts on the project, including K.G. Andersen, A.B. Ward and D.R. Burton; R. Ahmed and C.W. Davis (Emory University); M.J. Aman (Integrated BioTherapeutics); A. Bukreyev (University of Texas Medical Branch); K. Chandran and J.R. Lai (Albert Einstein College of Medicine); J.E. Crowe, Jr. (Vanderbilt University School of Medicine); J.M. Dye (USAMRIID); B. Doranz (Integral Molecular); H. Feldmann (NIAID Rocky Mountain Lab); G. Georgiou (University of Texas); G.G. Olinger and L. Hensley (NIAID Integrated Research Facility); Y. Kawaoka (University of Wisconsin); G.P. Kobinger (Université Laval); K. Wagh and B. Korber (Los Alamos National Labs); F. Krammer (Icahn School of Medicine at Mt. Sinai); C.A. Kyratsous (Regeneron); C. Nykiforuk (Emergent Biosciences); X. Qiu (Public Health Agency of Canada); A. Sprecher (Médecins Sans Frontières); A.R. Townsend (University of Oxford); V. Volchkov (Université Lyon); L.M. Walker (Adimab); C.-I. Wang (A*STAR); L. Zeitlin (Mapp Biopharmaceutical); and the students, postdoctoral fellows, technicians and staff scientists in their labs, as well as J.V. Ravetch (Rockefeller University) for discussions. This is manuscript #29662 from Scripps Research.

Author information

Authors and Affiliations

Authors

Contributions

E.O.S., S.L.S., B.M.G. and J.C.M. prepared the figures; E.O.S., S.L.S., B.M.G. and G.A. analyzed data and drafted and edited the manuscript; B.M.G. performed the glycan clustering analysis; and E.O.S. and G.A. secured funding.

Corresponding authors

Correspondence to Erica Ollmann Saphire or Galit Alter.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saphire, E.O., Schendel, S.L., Gunn, B.M. et al. Antibody-mediated protection against Ebola virus. Nat Immunol 19, 1169–1178 (2018). https://doi.org/10.1038/s41590-018-0233-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41590-018-0233-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing