Abstract

Although neutrophils have been linked to the formation of the pre-metastatic niche, the mechanism of their migration to distant, uninvolved tissues has remained elusive. We report that bone marrow neutrophils from mice with early-stage cancer exhibited much more spontaneous migration than that of control neutrophils from tumor-free mice. These cells lacked immunosuppressive activity but had elevated rates of oxidative phosphorylation and glycolysis, and increased production of ATP, relative to that of control neutrophils. Their enhanced spontaneous migration was mediated by autocrine ATP signaling through purinergic receptors. In ectopic tumor models and late stages of cancer, bone marrow neutrophils demonstrated potent immunosuppressive activity. However, these cells had metabolic and migratory activity indistinguishable from that of control neutrophils. A similar pattern of migration was observed for neutrophils and polymorphonuclear myeloid-derived suppressor cells from patients with cancer. These results elucidate the dynamic changes that neutrophils undergo in cancer and demonstrate the mechanism of neutrophils’ contribution to early tumor dissemination.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Data availability

The data that support the findings of this study are available from the corresponding author upon request. Source data are available for Figs. 18. RNAseq data were deposited in the GEO data repository under accession code GSE118366.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. 1.

    Fridlender, Z. G. et al. Polarization of tumor-associated neutrophil phenotype by TGF-β: “N1” versus “N2” TAN. Cancer Cell 16, 183–194 (2009).

  2. 2.

    Eruslanov, E. B. et al. Tumor-associated neutrophils stimulate T cell responses in early-stage human lung cancer. J. Clin. Invest. 124, 5466–5480 (2014).

  3. 3.

    Veglia, F., Perego, M. & Gabrilovich, D. Myeloid-derived suppressor cells coming of age. Nat. Immunol. 19, 108–119 (2018).

  4. 4.

    Coffelt, S. B., Wellenstein, M. D. & de Visser, K. E. Neutrophils in cancer: neutral no more. Nat. Rev. Cancer 16, 431–446 (2016).

  5. 5.

    Zhou, J., Nefedova, Y., Lei, A. & Gabrilovich, D. Neutrophils and PMN-MDSC: Their biological role and interaction with stromal cells. Semin. Immunol. 35, 19–28 (2018).

  6. 6.

    Ortiz, M. L. et al. Immature myeloid cells directly contribute to skin tumor development by recruiting IL-17-producing CD4+ T cells. J. Exp. Med. 212, 351–367 (2015).

  7. 7.

    Ortiz, M. L., Lu, L., Ramachandran, I. & Gabrilovich, D. I. Myeloid-derived suppressor cells in the development of lung cancer. Cancer Immunol. Res. 2, 50–58 (2014).

  8. 8.

    Bronte, V. et al. Recommendations for myeloid-derived suppressor cell nomenclature and characterization standards. Nat. Commun. 7, 12150 (2016).

  9. 9.

    Seyfried, T. N. & Huysentruyt, L. C. On the origin of cancer metastasis. Crit. Rev. Oncog. 18, 43–73 (2013).

  10. 10.

    Achberger, S. et al. Circulating immune cell and microRNA in patients with uveal melanoma developing metastatic disease. Mol. Immunol. 58, 182–186 (2014).

  11. 11.

    Weide, B. et al. Myeloid-derived suppressor cells predict survival of patients with advanced melanoma: comparison with regulatory T cells and NY-ESO-1- or melan-A-specific T cells. Clin. Cancer Res. 20, 1601–1609 (2014).

  12. 12.

    Condamine, T., Ramachandran, I., Youn, J. I. & Gabrilovich, D. I. Regulation of tumor metastasis by myeloid-derived suppressor cells. Annu. Rev. Med. 66, 97–110 (2015).

  13. 13.

    Coffelt, S. B. et al. IL-17-producing γδ T cells and neutrophils conspire to promote breast cancer metastasis. Nature 522, 345–348 (2015).

  14. 14.

    Toh, B. et al. Mesenchymal transition and dissemination of cancer cells is driven by myeloid-derived suppressor cells infiltrating the primary tumor. PLoS Biol. 9, e1001162 (2011).

  15. 15.

    Liu, Y. et al. MicroRNA-494 is required for the accumulation and functions of tumor-expanded myeloid-derived suppressor cells via targeting of PTEN. J. Immunol. 188, 5500–5510 (2012).

  16. 16.

    Yang, L. et al. Abrogation of TGF β signaling in mammary carcinomas recruits Gr-1+CD11b+ myeloid cells that promote metastasis. Cancer Cell 13, 23–35 (2008).

  17. 17.

    Huh, S. J., Liang, S., Sharma, A., Dong, C. & Robertson, G. P. Transiently entrapped circulating tumor cells interact with neutrophils to facilitate lung metastasis development. Cancer Res. 70, 6071–6082 (2010).

  18. 18.

    Ichikawa, M., Williams, R., Wang, L., Vogl, T. & Srikrishna, G. S100A8/A9 activate key genes and pathways in colon tumor progression. Mol. Cancer Res. 9, 133–148 (2011).

  19. 19.

    Kowanetz, M. et al. Granulocyte-colony stimulating factor promotes lung metastasis through mobilization of Ly6G+Ly6C+ granulocytes. Proc. Natl. Acad. Sci. USA 107, 21248–21255 (2010).

  20. 20.

    Kolaczkowska, E. & Kubes, P. Neutrophil recruitment and function in health and inflammation. Nat. Rev. Immunol. 13, 159–175 (2013).

  21. 21.

    Mócsai, A., Walzog, B. & Lowell, C. A. Intracellular signalling during neutrophil recruitment. Cardiovasc. Res. 107, 373–385 (2015).

  22. 22.

    Kumar, V., Patel, S., Tcyganov, E. & Gabrilovich, D. I. The nature of myeloid-derived suppressor cells in the tumor microenvironment. Trends Immunol. 37, 208–220 (2016).

  23. 23.

    Brandau, S. et al. Myeloid-derived suppressor cells in the peripheral blood of cancer patients contain a subset of immature neutrophils with impaired migratory properties. J. Leukoc. Biol. 89, 311–317 (2011).

  24. 24.

    Kato, M. et al. Transgenic mouse model for skin malignant melanoma. Oncogene 17, 1885–1888 (1998).

  25. 25.

    Hingorani, S. R. et al. Trp53R172H and KrasG12D cooperate to promote chromosomal instability and widely metastatic pancreatic ductal adenocarcinoma in mice. Cancer Cell 7, 469–483 (2005).

  26. 26.

    Greenberg, N. M. et al. Prostate cancer in a transgenic mouse. Proc. Natl. Acad. Sci. USA 92, 3439–3443 (1995).

  27. 27.

    Evans, R.A. et al. Lack of immunoediting in murine pancreatic cancer reversed with neoantigen. JCI Insight 1, e88328 (2016).

  28. 28.

    Casbon, A. J. et al. Invasive breast cancer reprograms early myeloid differentiation in the bone marrow to generate immunosuppressive neutrophils. Proc. Natl. Acad. Sci. USA 112, E566–E575 (2015).

  29. 29.

    Biswas, S. K. Metabolic Reprogramming of immune cells in cancer progression. Immunity 43, 435–449 (2015).

  30. 30.

    Chen, Y. et al. ATP release guides neutrophil chemotaxis via P2Y2 and A3 receptors. Science 314, 1792–1795 (2006).

  31. 31.

    Chen, Y. et al. Purinergic signaling: a fundamental mechanism in neutrophil activation. Sci. Signal. 3, ra45 (2010).

  32. 32.

    Junger, W. G. Purinergic regulation of neutrophil chemotaxis. Cell. Mol. Life Sci. 65, 2528–2540 (2008).

  33. 33.

    Junger, W. G. Immune cell regulation by autocrine purinergic signalling. Nat. Rev. Immunol. 11, 201–212 (2011).

  34. 34.

    Lecut, C. et al. P2X1 ion channels promote neutrophil chemotaxis through Rho kinase activation. J. Immunol. 183, 2801–2809 (2009).

  35. 35.

    Hind, L. E., Vincent, W. J. & Huttenlocher, A. Leading from the back: the role of the uropod in neutrophil polarization and migration. Dev. Cell 38, 161–169 (2016).

  36. 36.

    Yang, H. W., Collins, S. R. & Meyer, T. Locally excitable Cdc42 signals steer cells during chemotaxis. Nat. Cell Biol. 18, 191–201 (2016).

  37. 37.

    Condamine, T. et al. Lectin-type oxidized LDL receptor-1 distinguishes population of human polymorphonuclear myeloid-derived suppressor cells in cancer patients. Sci. Immunol. 1, aaf8943 (2016).

  38. 38.

    Condamine, T. et al. ER stress regulates myeloid-derived suppressor cell fate through TRAIL-R-mediated apoptosis. J. Clin. Invest. 124, 2626–2639 (2014).

  39. 39.

    Tybulewicz, V. L. & Henderson, R. B. Rho family GTPases and their regulators in lymphocytes. Nat. Rev. Immunol. 9, 630–644 (2009).

  40. 40.

    Hammami, I. et al. Immunosuppressive activity enhances central carbon metabolism and bioenergetics in myeloid-derived suppressor cells in vitro models. BMC Cell Biol. 13, 18 (2012).

  41. 41.

    Hossain, F. et al. Inhibition of fatty acid oxidation modulates immunosuppressive functions of myeloid-derived suppressor cells and enhances cancer therapies. Cancer Immunol. Res. 3, 1236–1247 (2015).

  42. 42.

    Schug, Z. T. et al. Acetyl-CoA synthetase 2 promotes acetate utilization and maintains cancer cell growth under metabolic stress. Cancer Cell 27, 57–71 (2015).

  43. 43.

    Li, B. & Dewey, C. N. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics 12, 323 (2011).

  44. 44.

    Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

  45. 45.

    Othmer, H. G., Dunbar, S. R. & Alt, W. Models of dispersal in biological systems. J. Math. Biol. 26, 263–298 (1988).

  46. 46.

    Dunn, G. A. Characterising a kinesis response: time averaged measures of cell speed and directional persistence. Agents Actions Suppl. 12, 14–33 (1983).

  47. 47.

    Farrell, B. E., Daniele, R. P. & Lauffenburger, D. A. Quantitative relationships between single-cell and cell-population model parameters for chemosensory migration responses of alveolar macrophages to C5a. Cell Motil. Cytoskeleton 16, 279–293 (1990).

Download references

Acknowledgements

We thank R. Ramakrishnan (H. Lee Moffitt Cancer Center) for the luciferase expressing LL2 tumor cell line; and D. Laxminarasimha for help in animal experiments. This work was supported by the Wistar Institute Animal and Bioinformatics core facilities and by the US National Institutes of Health (P01 CA140043 and T32 CA09171). S.Y. was supported by International Program for Ph.D Candidates, Sun Yat-Sen University, China.

Author information

Author notes

    • Sima Patel

    Present address: Bristol-Myers Squibb, Lawrenceville, NJ, USA

    • George A. Dominguez

    Present address: ITUS Corporation, San Jose, CA, USA

  1. These authors contributed equally: Sima Patel, Shuyu Fu, Jerome Mastio.

Affiliations

  1. Immunology, Microenvironment, and Metastasis, Wistar Institute, Philadelphia, PA, USA

    • Sima Patel
    • , Shuyu Fu
    • , Jerome Mastio
    • , George A. Dominguez
    • , Abhilasha Purohit
    • , Andrew Kossenkov
    • , Cindy Lin
    • , Kevin Alicea-Torres
    • , Mohit Sehgal
    • , Yulia Nefedova
    • , Dario C Altieri
    •  & Dmitry I. Gabrilovich
  2. Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China

    • Shuyu Fu
    •  & Jie Zhou
  3. Sidney Kimmel Cancer Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA

    • Lucia R. Languino
  4. University of Pennsylvania School of Medicine, Philadelphia, PA, USA

    • Cynthia Clendenin
    •  & Robert H. Vonderheide
  5. Helen F Graham Cancer Center at Christiana Care Health System, Wilmington, DE, USA

    • Charles Mulligan
    • , Brian Nam
    • , Neil Hockstein
    • , Gregory Masters
    •  & Michael Guarino
  6. Molecular & Cellular Oncogenesis Programs, Wistar Institute, Philadelphia, PA, USA

    • Zachary T. Schug

Authors

  1. Search for Sima Patel in:

  2. Search for Shuyu Fu in:

  3. Search for Jerome Mastio in:

  4. Search for George A. Dominguez in:

  5. Search for Abhilasha Purohit in:

  6. Search for Andrew Kossenkov in:

  7. Search for Cindy Lin in:

  8. Search for Kevin Alicea-Torres in:

  9. Search for Mohit Sehgal in:

  10. Search for Yulia Nefedova in:

  11. Search for Jie Zhou in:

  12. Search for Lucia R. Languino in:

  13. Search for Cynthia Clendenin in:

  14. Search for Robert H. Vonderheide in:

  15. Search for Charles Mulligan in:

  16. Search for Brian Nam in:

  17. Search for Neil Hockstein in:

  18. Search for Gregory Masters in:

  19. Search for Michael Guarino in:

  20. Search for Zachary T. Schug in:

  21. Search for Dario C Altieri in:

  22. Search for Dmitry I. Gabrilovich in:

Contributions

Investigation, S.P., S.F., J.M., G.D., A.P., C.L., K.A.-T. and M.S.; formal analysis, A.K. and Z.S.; resources, Y.N., L.R.L., C.C., R.H.V., C.M., B.N., N.H., G.M. and M.G.; writing (original draft), S.P. and G.D.; writing (review and editing), J.Z., D.C.A. and D.I.G.; funding acquisition, D.C.A. and D.I.G.; conceptualization and supervision, D.I.G.

Competing interests

The authors declare no competing interests.

Corresponding author

Correspondence to Dmitry I. Gabrilovich.

Supplementary information

  1. Supplementary Information

    Supplementary Figures 1–8 and Supplementary Tables 1 and 2

  2. Reporting Summary

  3. Supplementary Video 1

    Time lapse video demonstrating spontaneous movement of neutrophils from naïve and RET TB mice. Scale bar = 50 µm

Source data

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/s41590-018-0229-5