Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Approaches and advances in the genetic causes of autoimmune disease and their implications

An Author Correction to this article was published on 15 April 2020

A Publisher Correction to this article was published on 07 February 2019

This article has been updated

Abstract

Genome-wide association studies are transformative in revealing the polygenetic basis of common diseases, with autoimmune diseases leading the charge. Although the field is just over 10 years old, advances in understanding the underlying mechanistic pathways of these conditions, which result from a dense multifactorial blend of genetic, developmental and environmental factors, have already been informative, including insights into therapeutic possibilities. Nevertheless, the challenge of identifying the actual causal genes and pathways and their biological effects on altering disease risk remains for many identified susceptibility regions. It is this fundamental knowledge that will underpin the revolution in patient stratification, the discovery of therapeutic targets and clinical trial design in the next 20 years. Here we outline recent advances in analytical and phenotyping approaches and the emergence of large cohorts with standardized gene-expression data and other phenotypic data that are fueling a bounty of discovery and improved understanding of human physiology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Refining complex disease associations in different cellular activation states via chromatin annotation and chromatin-conformation capture.

Similar content being viewed by others

Change history

  • 15 April 2020

    An amendment to this paper has been published and can be accessed via a link at the top of the paper.

  • 07 February 2019

    In the version of this article initially published, the bibliographic information for reference 2 was incorrect in the reference list, and reference 2 was cited incorrectly at the end of the second sentence in the second paragraph (“...were identified2.”). The correct reference 2 is as follows: “Kong, A. et al. The nature of nurture: Effects of parental genotypes. Science 359, 424–428 (2018).” The reference that should be cited at the end of the aforementioned sentence, which should be numbered ‘5’ (“...were identified5.”), is as follows: “Okada, Y. et al. Genetics of rheumatoid arthritis contributes to biology and drug discovery. Nature 506, 376–381 (2014).” All subsequent references (5–161) should be renumbered accordingly (6–162) in the list and text. Also, several of the gene symbols in Table 2 were formatted incorrectly (without commas); the correct gene symbols are as follows: column 3 row 13, RBM17, IL2RA; column 3 row 30, DEXI, CLEC16A; column 3 row 39, UBASH3A, ICOSLG; column 4 row 15, PTEN, KLLN; column 4 row 21, CLEC7A, CLEC9A; and column 5 rows 7–9, AL391559.1, ENSG00000238747, RP11-63K6.7, RP3-512E2.2. The errors have been corrected in the HTML and PDF version of the article.

References

  1. Wang, W. Y. S., Barratt, B. J., Clayton, D. G. & Todd, J. A. Genome-wide association studies: Theoretical and practical concerns. Nat. Rev. Genet. 6, 109–118 (2005).

    Article  CAS  PubMed  Google Scholar 

  2. Kong, A. et al. The nature of nurture: Effects of parental genotypes. Science 359, 424–428 (2018).

    Article  CAS  PubMed  Google Scholar 

  3. Visscher, P. M. et al. 10 years of GWAS discovery: biology, function, and translation. Am. J. Hum. Genet. 101, 5–22 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Timpson, N. J., Greenwood, C. M. T., Soranzo, N., Lawson, D. J. & Richards, J. B. Genetic architecture: The shape of the genetic contribution to human traits and disease. Nat. Rev. Genet. 19, 110–124 (2018).

    Article  CAS  PubMed  Google Scholar 

  5. Okada, Y. et al. Genetics of rheumatoid arthritis contributes to biology and drug discovery. Nature 506, 376–381 (2014).

    Article  CAS  PubMed  Google Scholar 

  6. Liu, J. Z. et al. Association analyses identify 38 susceptibility loci for inflammatory bowel disease and highlight shared genetic risk across populations. Nat. Genet. 47, 979–986 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. De Lange, K. M. et al. Genome-wide association study implicates immune activation of multiple integrin genes in inflammatory bowel disease. Nat. Genet. 49, 256–261 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Rothschild, D. et al. Environment dominates over host genetics in shaping human gut microbiota. Nature https://doi.org/10.1038/nature25973 (2018).

  9. Cooper, N.J. et al. Type 1 diabetes genome-wide association analysis with imputation identifies five new disease regions. bioRxiv https://doi.org/10.1101/120022 (2017).

  10. Onengut-Gumuscu, S. et al. Fine mapping of type 1 diabetes susceptibility loci and evidence for colocalization of causal variants with lymphoid gene enhancers. Nat. Genet. 47, 381–386 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. The Wellcome Trust Case Control Consortium. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 447, 661–678 (2007).

    Article  PubMed Central  CAS  Google Scholar 

  12. Mahajan, A. et al. Fine-mapping of an expanded set of type 2 diabetes loci to single-variant resolution using high-density imputation and islet-specific epigenome maps. bioRxiv https://doi.org/10.1101/245506 (2018).

  13. Ziegler, A. G. et al. Primary prevention of beta-cell autoimmunity and type 1 diabetes - The Global Platform for the Prevention of Autoimmune Diabetes (GPPAD) perspectives. Mol. Metab. 5, 255–262 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Thomas, N. J. et al. Frequency and phenotype of type 1 diabetes in the first six decades of life: a cross-sectional, genetically stratified survival analysis from UK Biobank. Lancet Diabetes Endocrinol. 6, 122–129 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Brorsson, C. A. et al. Genetic risk score modelling for disease progression in new-onset type 1 diabetes patients: increased genetic load of islet-expressed and cytokine-regulated candidate genes predicts poorer glycemic control. J. Diabetes Res. 2016, 9570424 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Sudlow, C. et al. UK Biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med. 12, 1–10 (2015).

    Article  Google Scholar 

  17. Tian, C. et al. Genome-wide association and HLA region fine-mapping studies identify susceptibility loci for multiple common infections. Nat. Commun. 8, 599 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Ferreira, M. A. et al. Shared genetic origin of asthma, hay fever and eczema elucidates allergic disease biology. Nat. Genet. 49, 1752–1757 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wijmenga, C. & Zhernakova, A. The importance of cohort studies in the post-GWAS era. Nat. Genet. https://doi.org/10.1038/s41588-018-0066-3 (2018).

  20. Cortes, A. et al. Bayesian analysis of genetic association across tree-structured routine healthcare data in the UK Biobank. Nat. Genet. 49, 1311–1318 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bycroft, C. et al. Genome-wide genetic data on ~ 500, 000 UK Biobank participants. bioRxiv https://doi.org/10.1101/166298 (2017).

  22. Zhou, X. & Stephens, M. Genome-wide efficient mixed model analysis for association studies. Nat. Genet. 44, 821–824 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ma, C., Blackwell, T., Boehnke, M. & Scott, L. J. Recommended joint and meta-analysis strategies for case-control association testing of single low-count variants genetic epidemiology. Genet. Epidemiol. 37, 539–550 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Rainbow, D.B. et al. A rare IL2RA haplotype identifies SNP rs61839660 as causal for autoimmunity. bioRxiv https://doi.org/10.1101/108126 (2017).

  25. Morris Andrew. Transethnic meta-analysis of genomewide association studies. Genet. Epidemiol. 35, 809–822 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kichaev, G. & Pasaniuc, B. Leveraging functional-annotation data in trans-ethnic fine-mapping studies. Am. J. Hum. Genet. 97, 260–271 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Farh, K. K.-H. et al. Genetic and epigenetic fine mapping of causal autoimmune disease variants. Nature 518, 337–343 (2015).

    Article  CAS  PubMed  Google Scholar 

  28. Wallace, C. et al. Dissection of a complex disease susceptibility region using a bayesian stochastic search approach to fine mapping. PLoS Genet. 11, e1005272 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Huang, H. et al. Fine-mapping inflammatory bowel disease loci to single-variant resolution. Nature 547, 173–178 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Chen, W. et al. Fine mapping causal variants with an approximate bayesian method using marginal test statistics. Genetics 200, 719–736 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Benner, C. et al. FINEMAP: Efficient variable selection using summary data from genome-wide association studies. Bioinformatics 32, 1493–1501 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Newcombe, P. J., Conti, D. V. & Richardson, S. JAM: a scalable Bayesian framework for joint analysis of marginal SNP effects. Genet. Epidemiol. 40, 188–201 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Benner, C. et al. Prospects of fine-mapping trait-associated genomic regions by using summary statistics from genome-wide association studies. Am. J. Hum. Genet. 101, 539–551 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Inshaw, J. R. J., Walker, N. M., Wallace, C., Bottolo, L. & Todd, J. A. The chromosome 6q22.33 region is associated with age at diagnosis of type 1 diabetes and disease risk in those diagnosed under 5 years of age. Diabetologia 61, 147–157 (2018).

    Article  CAS  PubMed  Google Scholar 

  35. Pekalski, M. L. et al. Neonatal and adult recent thymic emigrants produce IL-8 and express complement receptors CR1 and CR2. JCI Insight 2, e93739 (2017).

    Article  PubMed Central  Google Scholar 

  36. Davies, J. L. et al. Increased THEMIS first exon usage in CD4+ T-cells is associated with a genotype that is protective against multiple sclerosis. PLoS One 11, 1–11 (2016).

    Google Scholar 

  37. Ferreira, R. C. et al. Functional IL6R 358Ala allele impairs classical IL-6 receptor signaling and influences risk of diverse inflammatory diseases. PLoS Genet. 9, e1003444 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Al-Mossawi, H. et al. The autoimmune disease risk allele rs6897932 modulates monocyte IL7R surface and soluble receptor levels in a context-specific manner. bioRxiv https://doi.org/10.1101/262410 (2018).

  39. Lappalainen, T. & Greally, J. M. Associating cellular epigenetic models with human phenotypes. Nat. Rev. Genet. 18, 441–451 (2017).

    Article  CAS  PubMed  Google Scholar 

  40. Mokry, L. E. et al. Vitamin D and risk of multiple sclerosis: a Mendelian randomization study. PLoS Med. 12, 1–20 (2015).

    Article  CAS  Google Scholar 

  41. Rhead, B. et al. Mendelian randomization shows a causal effect of low vitamin D on multiple sclerosis risk. Neurol. Genet. 2, e97 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Burgess, S., Timpson, N. J., Ebrahim, S. & Smith, G. D. Mendelian randomization: Where are we now and where are we going? Int. J. Epidemiol. 44, 379–388 (2015).

    Article  PubMed  Google Scholar 

  43. Koellinger, P. D. & Harden, K. P. Using nature to understand nurture. Science 359, 657–658 (2018).

    Article  Google Scholar 

  44. Kindt, A.S.D. et al. Allele-specific methylation of type 1 diabetes susceptibility genes. J. Autoimmun. https://doi.org/10.1016/j.jaut.2017.11.008 (2017).

  45. Hemani, G., Tilling, K. & Davey Smith, G. Orienting the causal relationship between imprecisely measured traits using GWAS summary data. PLoS Genet. 13, e1007081 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Hartwig, F. P., Davies, N. M., Hemani, G. & Smith, G. D. Counterfactual causation: avoiding the downsides of a powerful, widely applicable but potentially fallible technique. Int. J. Epidemiol. 45, 1717–1726 (2016).

    Article  PubMed  Google Scholar 

  47. Inoshita, M. et al. Retraction: A significant causal association between C-reactive protein levels and schizophrenia. Sci. Rep. 8, 46947 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Feingold, E. A. et al. The ENCODE (ENCyclopedia Of DNA Elements) Project. Science 306, 636–640 (2004).

    Article  CAS  Google Scholar 

  49. Adams, D. et al. BLUEPRINT to decode the epigenetic signature written in blood. Nat. Biotechnol. 30, 224–226 (2012).

    Article  CAS  PubMed  Google Scholar 

  50. Bernstein, B. E. et al. The NIH Roadmap Epigenomics Mapping Consortium complex. Nat. Biotechnol. 28, 1045–1048 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Andersson, R. et al. An atlas of active enhancers across human cell types and tissues. Nature 507, 455–461 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Elkon, R. & Agami, R. Characterization of noncoding regulatory DNA in the human genome. Nat. Biotechnol. 35, 732–746 (2017).

    Article  CAS  PubMed  Google Scholar 

  53. Hnisz, D., Day, D. S. & Young, R. A. Insulated neighborhoods: structural and functional units of mammalian gene control. Cell 167, 1188–1200 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Degner, J. F. et al. DNase I sensitivity QTLs are a major determinant of human expression variation. Nature 482, 390 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Maurano, M. T. et al. Systematic localization of common disease-associated variation in regulatory DNA. Science 337, 1190–1195 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Hnisz, D. et al. Super-enhancers in the control of cell identity and disease. Cell 155, 934–947 (2013).

    Article  CAS  PubMed  Google Scholar 

  57. Vahedi, G. et al. Super-enhancers delineate disease-associated regulatory nodes in T cells. Nature 520, 558–562 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kichaev, G. et al. Integrating functional data to prioritize causal variants in statistical fine-mapping studies. PLoS Genet. 10, e1004722 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Pickrell, J. K. Joint analysis of functional genomic data and genome-wide association studies of 18 human traits. Am. J. Hum. Genet. 94, 559–573 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Yang, J., Fritsche, L. G., Zhou, X. & Abecasis, G. R. A scalable Bayesian method for integrating functional information in genome-wide association studies. Am. J. Hum. Genet. 101, 404–416 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Marson, A., Housley, W. J. & Hafler, D. A. Genetic basis of autoimmunity. J. Clin. Invest. 125, 2234–2241 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Kasela, S. et al. Pathogenic implications for autoimmune mechanisms derived by comparative eQTL analysis of CD4+ versus CD8+ T cells. PLoS Genet. 13, e1006643 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. De Jager, P. L. et al. ImmVar project: Insights and design considerations for future studies of ‘healthy’ immune variation. Semin. Immunol. 27, 51–57 (2015).

    Article  PubMed  CAS  Google Scholar 

  64. Todd, J. A. Evidence that UBASH3 is a causal gene for type 1 diabetes. Eur. J. Hum. Genet. https://doi.org/10.1038/s41431-018-0142-2 (2018).

  65. Ongen, H. et al. Estimating the causal tissues for complex traits and diseases. Nat. Genet. 49, 1676–1683 (2017).

    Article  CAS  PubMed  Google Scholar 

  66. Reinius, B. et al. Analysis of allelic expression patterns in clonal somatic cells by single-cell RNA-seq. Nat. Genet. 48, 1430–1435 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. van der Wijst, M.G.P., Brugge, H., de Vries, D.H. & Franke, L.H. Single-cell RNA sequencing reveals cell-type specific cis-eQTLs in peripheral blood mononuclear cells. bioRxiv https://doi.org/10.1101/177568 (2017).

  68. Sun, B.B. et al. Genomic atlas of the human plasma proteome. Nature (in the press).

  69. Keshishian, H. et al. Multiplexed, quantitative workflow for sensitive biomarker discovery in plasma yields novel candidates for early myocardial injury. Mol. Cell. Proteomics 14, 2375–2393 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Dendrou, C. A. et al. Cell-specific protein phenotypes for the autoimmune locus IL2RA using a genotype-selectable human bioresource. Nat. Genet. 41, 1011–1015 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Corbin, L. J. et al. Formalising recall by genotype as an efficient approach to detailed phenotyping and causal inference. Nat. Commun. 9, 711 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Dekker, J., Rippe, K., Dekker, M. & Kleckner, N. Capturing chromosome conformation. Science 295, 1306–1312 (2002).

    Article  CAS  PubMed  Google Scholar 

  73. Smemo, S. et al. Obesity-associated variants within FTO form long-range functional connections with IRX3. Nature 507, 371–375 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Davison, L. J. et al. Long-range DNA looping and gene expression analyses identify DEXI as an autoimmune disease candidate gene. Hum. Mol. Genet. 21, 322–333 (2012).

    Article  CAS  PubMed  Google Scholar 

  75. Lieberman-aiden, E. et al. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326, 289–294 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Rao, S. S. P. et al. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell 159, 1665–1680 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Bonev, B. et al. Multiscale 3D genome rewiring during mouse neural development. Cell 171, 557–572 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Javierre, B. M. et al. Lineage-specific genome architecture links enhancers and non-coding disease variants to target gene promoters. Cell 167, 1369–1384 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Burren, O. S. et al. Chromosome contacts in activated T cells identify autoimmune disease candidate genes. Genome Biol. 18, 165 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Hughes, J. R. et al. Analysis of hundreds of cis-regulatory landscapes at high resolution in a single, high-throughput experiment. Nat. Genet. 46, 205–212 (2014).

    Article  CAS  PubMed  Google Scholar 

  81. Davies, J. O. J. et al. Multiplexed analysis of chromosome conformation at vastly improved sensitivity. Nat. Methods 13, 74–80 (2016).

    Article  CAS  PubMed  Google Scholar 

  82. Li, G. et al. ChIA-PET tool for comprehensive chromatin interaction analysis with paired-end tag sequencing. Genome Biol. 11, 1–13 (2010).

    CAS  Google Scholar 

  83. Mumbach, M. R. et al. Enhancer connectome in primary human cells identifies target genes of disease-associated DNA elements. Nat. Genet. 49, 1602–1612 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Simeonov, D. R. et al. Discovery of stimulation-responsive immune enhancers with CRISPR activation. Nature 549, 111–115 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Alasoo, K. et al. Shared genetic effects on chromatin and gene expression indicate a role for enhancer priming in immune response. Nat. Genet. 50, 424–431 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Kumasaka, N., Knights, A. & Gaffney, D. High resolution genetic mapping of causal regulatory interactions in the human genome. bioRxiv https://doi.org/10.1101/227389 (2017).

  87. Ercolini, A. M. & Miller, S. D. The role of infections in autoimmune disease. Clin. Exp. Immunol. 155, 1–15 (2008).

    Article  CAS  Google Scholar 

  88. Matzaraki, V., Kumar, V., Wijmenga, C. & Zhernakova, A. The MHC locus and genetic susceptibility to autoimmune and infectious diseases. Genome Biol. 18, 76 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Rodriguez-calvo, T., Sabouri, S., Anquetil, F. & Von Herrath, M. G. The viral paradigm in type 1 diabetes : Who are the main suspects? Autoimmun. Rev. 15, 964–969 (2016).

    Article  CAS  PubMed  Google Scholar 

  90. Ferreira, R. C. et al. A type 1 interferon transcriptional signature precedes autoimmunity in children genetically at risk for type 1 diabetes. Diabetes 63, 2538–2550 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Beyerlein, A., Donnachie, E., Jergens, S. & Ziegler, A. Infections in early life and development of type 1 diabetes. J. Am. Med. Assoc. 315, 1899–1901 (2016).

    Article  Google Scholar 

  92. Trowsdale, J. & Knight, J. C. Major histocompatibility complex genomics and human disease. Annu. Rev. Genomics Hum. Genet. 14, 301–323 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Todd, J. A., Bell, J. I. & McDevitt, H. O. HLA-DQB gene contributes to susceptibility and resistance to insulin-dependent diabetes mellitus. Nature 327, 599–604 (1987).

    Article  Google Scholar 

  94. Howson, J. M. M., Walker, N. M., Clayton, D. & Todd, J. A. Confirmation of HLA class II independent type 1 diabetes associations in the major histocompatibility complex including HLA-B and HLA-A. Diabetes Obes. Metab. 11, 31–45 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Eriksson, N. et al. Web-based, participant-driven studies yield novel genetic associations for common traits. PLoS Genet. 6, e1000993 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Bush, W. S., Oetjens, M. T. & Crawford, D. C. Unravelling the human genome-phenome-wide association studies. Nat. Rev. Genet. 17, 129–145 (2016).

    Article  CAS  PubMed  Google Scholar 

  97. Kelly, R. J., Rouquier, S., Giorgi, D., Lennon, G. G. & Lowe, J. B. Sequence and expression of a candidate for the human secretor blood group alpha(1,2)fucosyltransferase gene (FUT2). Homozygosity for an enzyme- inactivating nonsense mutation commonly correlates with the non-secretor phenotype. J. Biol. Chem. 270, 4640–4649 (1995).

    Article  CAS  PubMed  Google Scholar 

  98. Lindesmith, L. et al. Human susceptibility and resistance to Norwalk virus infection. Nat. Med. 9, 548–553 (2003).

    Article  CAS  PubMed  Google Scholar 

  99. Boren, T., Falk, P., Roth, K., Larson, G. & Normark, S. Attachment of Helicobacter pylori to human gastric epithelium mediated by blood group antigens. Science 262, 1892–1895 (1993).

    Article  CAS  PubMed  Google Scholar 

  100. Rausch, P. et al. Colonic mucosa-associated microbiota is influenced by an interaction of Crohn disease and FUT2 (Secretor) genotype. Proc. Natl. Acad. Sci. USA 108, 19030–19035 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Wacklin, P. et al. Faecal microbiota composition in adults is associated with the FUT2 gene determining the secretor status. PLoS One 9, e94863 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Wacklin, P. et al. Secretor genotype (FUT2 gene) is strongly associated with the composition of bifidobacteria in the human intestine. PLoS One 6, e20113 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Tong, M. et al. Reprograming of gut microbiome energy metabolism by the FUT2 Crohn’s disease risk polymorphism. ISME J. 8, 2193–2206 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Jacobs, J. P. & Braun, J. Immune and genetic gardening of the intestinal microbiome. FEBS Lett. 588, 4102–4111 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Turpin, W. et al. FUT2 genotype and secretory status are not associated with fecal microbial composition and inferred function in healthy subjects. Gut Microbes https://doi.org/10.1080/19490976.2018.1445956 (2018).

  106. Smyth, D. J. et al. FUT2 nonsecretor status links type 1 diabetes susceptibility and resistance to infection. Diabetes 60, 3081–3084 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Mcgovern, D. P. B. et al. Fucosyltransferase 2 (FUT2) non-secretor status is associated with Crohn’s disease. Hum. Mol. Genet 19, 3468–3476 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Hall, A. B., Tolonen, A. C. & Xavier, R. J. Human genetic variation and the gut microbiome in disease. Nat. Rev. Genet. 18, 690–699 (2017).

    Article  CAS  PubMed  Google Scholar 

  109. Thorven, M. et al. A homozygous nonsense mutation (428G→A) in the human secretor (FUT2) gene provides resistance to symptomatic norovirus (GGII) infections. J. Virol. 79, 15351–15355 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Dodd, D. et al. A gut bacterial pathway metabolizes aromatic amino acids into nine circulating metabolites. Nature 551, 648–652 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Kamada, N., Seo, S. U., Chen, G. Y. & Núñez, G. Role of the gut microbiota in immunity and inflammatory disease. Nat. Rev. Immunol. 13, 321–335 (2013).

    Article  CAS  PubMed  Google Scholar 

  112. Mclean, J. S. Advancements toward a systems level understanding of the human oral microbiome. Front. Cell. Infect. Microbiol. 4, 98 (2014).

    PubMed  PubMed Central  Google Scholar 

  113. Köhling, H. L., Plummer, S. F., Marchesi, J. R., Davidge, K. S. & Ludgate, M. The microbiota and autoimmunity: Their role in thyroid autoimmune diseases. Clin. Immunol. 183, 63–74 (2017).

    Article  PubMed  CAS  Google Scholar 

  114. Yurkovetskiy, L. A., Pickard, J. M. & Chervonsky, A. V. Microbiota and autoimmunity: exploring new avenues. Cell Host Microbe 17, 548–552 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Brown, C. T. et al. Gut microbiome metagenomics analysis suggests a functional model for the development of autoimmunity for type 1 diabetes. PLoS One 6, 1–9 (2011).

    Google Scholar 

  116. de Goffau, M. C. et al. Fecal microbiota composition differs between children with β-cell autoimmunity and those without. Diabetes 62, 1238–1244 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Kostic, A. D. et al. The dynamics of the human infant gut microbiome in development and in progression toward type 1. Cell Host Microbe 17, 260–273 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Needell, J. C. & Zipris, D. The role of the intestinal microbiome in type 1 diabetes pathogenesis. Curr. Diab. Rep. 16, 89 (2016).

    Article  PubMed  CAS  Google Scholar 

  119. Paun, A., Yau, C. & Danska, J. S. The influence of the microbiome on type 1 diabetes. J. Immunol. 198, 590–595 (2017).

    Article  CAS  PubMed  Google Scholar 

  120. Dunne, J. L. et al. The intestinal microbiome in type 1 diabetes. Clin. Exp. Immunol. 177, 30–37 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Mullaney, J. A. et al. Type 1 diabetes susceptibility alleles are associated with distinct alterations in the gut microbiota. Microbiome 6, 35 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Lozupone, C. A., Stombaugh, J. I., Gordon, J. I., Jansson, J. K. & Knight, R. Diversity, stability and resilience of the human gut microbiota. Nature 489, 220–230 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Mosca, A., Leclerc, M. & Hugot, J. P. Gut microbiota diversity and human diseases: should we reintroduce key predators in our ecosystem? Front. Microbiol. 7, 455 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Santin, I., Dos Santos, R. S. & Eizirik, D. L. Pancreatic beta cell survival and signaling pathways: effects of type 1 diabetes-associated genetic variants. Methods Mol. Biol. 1433, 21–54 (2016).

    Article  CAS  PubMed  Google Scholar 

  125. Marroqui, L. et al. TYK2, a candidate gene for type 1 diabetes, modulates apoptosis and the innate immune response in human pancreatic β-cells. Diabetes 64, 3808–3817 (2015).

    Article  CAS  PubMed  Google Scholar 

  126. Dendrou, C. A. et al. Resolving TYK2 locus genotype-to-phenotype differences in autoimmunity. Sci. Transl. Med. 8, 363ra149 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. Dooley, J. et al. Genetic predisposition for beta cell fragility underlies type 1 and type 2 diabetes. Nat. Genet. 48, 519–527 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Nogueira, T. C. et al. GLIS3, a susceptibility gene for type 1 and type 2 diabetes, modulates pancreatic beta cell apoptosis via regulation of a splice variant of the BH3-only protein Bim. PLoS Genet. 9, e1003532 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Graham, K. L. et al. Pathogenic mechanisms in type 1 diabetes : the islet is both target and driver of disease. Rev. Diabet. Stud. 9, 148–168 (2012).

    Article  PubMed  Google Scholar 

  130. Liu, J. Z. et al. Dense fine-mapping study identifies new susceptibility loci for primary biliary cirrhosis. Nat. Genet. 44, 1137–1141 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Boettger, L. M., Handsaker, R. E., Zody, M. C. & McCarroll, S. A. Structural haplotypes and recent evolution of the human 17q21.31 region. Nat. Genet. 44, 881–885 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Bekpen, C., Tastekin, I., Siswara, P., Akdis, C. A. & Eichler, E. E. Primate segmental duplication creates novel promoters for the LRRC37 gene family within the 17q21.31 inversion polymorphism region. Genome Res. 22, 1050–1058 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Zody, M. C. et al. Evolutionary toggling of the MAPT 17q21.31 inversion region. Nat. Genet. 40, 1076–1083 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Zhang, C.-C. et al. Meta-analysis of the association between variants in MAPT and neurodegenerative diseases. Oncotarget 8, 44994–45007 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Lai, M. C. et al. Haplotype-specific MAPT exon 3 expression regulated by common intronic polymorphisms associated with Parkinsonian disorders. Mol. Neurodegener. 12, 79 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  136. Van De Bunt, M. et al. Transcript expression data from human islets links regulatory signals from genome-wide association studies for type 2 diabetes and glycemic traits to their downstream effectors. PLoS Genet. 11, e1005694 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  137. Varshney, A. et al. Genetic regulatory signatures underlying islet gene expression and type 2 diabetes. Proc. Natl. Acad. Sci. USA 114, 2301–2306 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Huising, M. O. et al. CRFR1 is expressed on pancreatic β cells, promotes β cell proliferation, and potentiates insulin secretion in a glucose-dependent manner. Proc. Natl. Acad. Sci. USA 107, 912–917 (2010).

    Article  CAS  PubMed  Google Scholar 

  139. Blaabjerg, L. et al. CRFR1 activation protects against cytokine-induced beta cell death. J. Mol. Endocrinol. 53, 417–427 (2015).

    Article  CAS  Google Scholar 

  140. Schmid, J. et al. Modulation of pancreatic islets-stress axis by hypothalamic releasing hormones and 11β-hydroxysteroid dehydrogenase. Proc. Natl. Acad. Sci. USA 108, 13722–13727 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Miklossy, J. et al. Beta amyloid and hyperphosphorylated tau deposits in the pancreas in type 2 diabetes. Neurobiol. Aging 31, 1503–1515 (2010).

    Article  CAS  PubMed  Google Scholar 

  142. Maj, M. et al. Expression of TAU in insulin-secreting cells and its interaction with the calcium-binding protein secretagogin. J. Endocrinol. 205, 25–36 (2010).

    Article  CAS  PubMed  Google Scholar 

  143. Wijesekara, N. et al. Amyloid-β and islet amyloid pathologies link Alzheimer disease and type 2 diabetes in a transgenic model. FASEB J. 31, 5409–5418 (2017).

    Article  CAS  PubMed  Google Scholar 

  144. Eberhard, D. Neuron and beta-cell evolution: Learning about neurons is learning about beta-cells. BioEssays 35, 584 (2013).

    Article  PubMed  Google Scholar 

  145. Calderari, S. et al. Molecular genetics of the transcription factor GLIS3 identifies its dual function in beta cells and neurons. Genomics 110, 98–111 (2018).

    Article  CAS  PubMed  Google Scholar 

  146. Marroqui, L. et al. Interferon-alpha mediates human beta cell HLA class I overexpression, endoplasmic reticulum stress and apoptosis, three hallmarks of early human type 1 diabetes. Diabetologia. 60, 656–667 (2017).

    Article  CAS  PubMed  Google Scholar 

  147. Perri, E. R., Thomas, C. J., Parakh, S., Spencer, D. M. & Atkin, J. D. The unfolded protein response and the role of protein disulfide isomerase in neurodegeneration. Front. Cell Dev. Biol. 3, 80 (2015).

    PubMed  Google Scholar 

  148. Nelson, M. R. et al. The support of human genetic evidence for approved drug indications. Nat. Genet. 47, 856–860 (2015).

    Article  CAS  PubMed  Google Scholar 

  149. Sanseau, P. et al. Use of genome-wide association studies for drug repositioning. Nat. Biotechnol. 30, 317–320 (2012).

    Article  CAS  PubMed  Google Scholar 

  150. Koreth, J. et al. Interleukin-2 and regulatory T cells in graft-versus-host disease. N. Engl. J. Med. 365, 2055–2066 (2017).

    Article  Google Scholar 

  151. He, J. et al. Low-dose interleukin-2 treatment selectively modulates CD4+ T cell subsets in patients with systemic lupus erythematosus. Nat. Med. 22, 991–993 (2016).

    Article  CAS  PubMed  Google Scholar 

  152. Saadoun, D. et al. Regulatory T-cell responses to low-dose interleukin-2 in HCV-induced vasculitis. N. Engl. J. Med. 365, 2067–2077 (2017).

    Article  Google Scholar 

  153. Todd, J. A. et al. Regulatory T cell responses in participants with type 1 diabetes after a single dose of interleukin-2: a non-randomised, open label, adaptive dose-finding trial. PLoS Med. 13, 27727279 (2016).

    Article  Google Scholar 

  154. Vodovotz, Y. et al. Solving immunology? Trends Immunol. 38, 116–127 (2017).

    Article  CAS  PubMed  Google Scholar 

  155. Pappalardo, J. L. & Hafler, D. A. The Human Functional Genomics Project: understanding generation of diversity. Cell 167, 894–896 (2017).

    Article  CAS  Google Scholar 

  156. Segerstolpe, A. et al. Single-cell transcriptome profiling of human pancreatic islets in health and type 2 diabetes. Cell Metab. 24, 593–607 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Ivison, S., Des Rosiers, C., Lesage, S., Rioux, J. D. & Levings, M. K. Biomarker-guided stratification of autoimmune patients for biologic therapy. Curr. Opin. Immunol. 49, 56–63 (2017).

    Article  CAS  PubMed  Google Scholar 

  158. West, N. R. et al. Oncostatin M drives intestinal inflammation and predicts response to tumor necrosis factor-neutralizing therapy in patients with inflammatory bowel disease. Nat. Med. 23, 579–589 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Flicek, P. et al. Ensembl 2014. Nucleic Acids Res. 42, D749–D755 (2014).

    Article  CAS  PubMed  Google Scholar 

  160. Huang, Q.Q., Ritchie, S.C., Brozynska, M. & Inouye, M. Power, false discovery rate and Winner’s Curse in eQTL studies. bioRxiv https://doi.org/10.1101/209171 (2017).

  161. Lotta, L. A. et al. Genetic predisposition to an impaired metabolism of the branched-chain amino acids and risk of type 2 diabetes: a Mendelian randomisation analysis. PLoS Med. 13, e1002179 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  162. Tibshirani, R. A simple method for assessing sample sizes in microarray experiments. BMC Bioinformatics 7, 106 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

We thank the JDRF (grant codes 9-2011-253 and 5-SRA-2015-130-A-N) and Wellcome (grant codes 091157 and 107212). O.S.B. is funded by Wellcome (grant code WT107881).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John A. Todd.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’ note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Inshaw, J.R.J., Cutler, A.J., Burren, O.S. et al. Approaches and advances in the genetic causes of autoimmune disease and their implications. Nat Immunol 19, 674–684 (2018). https://doi.org/10.1038/s41590-018-0129-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41590-018-0129-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing