Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Regulatory T cells in autoimmune disease

Abstract

In recent years, the understanding of regulatory T cell (Treg cell) biology has expanded considerably. Key observations have challenged the traditional definition of Treg cells and have provided insight into the underlying mechanisms responsible for the development of autoimmune diseases, with new therapeutic strategies that improve disease outcome. This Review summarizes the newer concepts of Treg cell instability, Treg cell plasticity and tissue-specific Treg cells, and their relationship to autoimmunity. Those three main concepts have changed the understanding of Treg cell biology: how they interact with other immune and non-immune cells; their functions in specific tissues; and the implications of this for the pathogenesis of autoimmune diseases.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The Treg cell functional program in health and autoimmunity.

References

  1. Fontenot, J. D., Gavin, M. A. & Rudensky, A. Y. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat. Immunol. 4, 330–336 (2003).

    Article  PubMed  CAS  Google Scholar 

  2. Hori, S., Nomura, T. & Sakaguchi, S. Control of regulatory T cell development by the transcription factor Foxp3. Science 299, 1057–1061 (2003).

    Article  PubMed  CAS  Google Scholar 

  3. Khattri, R., Cox, T., Yasayko, S. A. & Ramsdell, F. An essential role for Scurfin in CD4+CD25+ T regulatory cells. Nat. Immunol. 4, 337–342 (2003).

    Article  PubMed  CAS  Google Scholar 

  4. Sakaguchi, S., Sakaguchi, N., Asano, M., Itoh, M. & Toda, M. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J. Immunol. 155, 1151–1164 (1995).

    PubMed  CAS  Google Scholar 

  5. Liu, W. et al. CD127 expression inversely correlates with FoxP3 and suppressive function of human CD4+ T reg cells. J. Exp. Med. 203, 1701–1711 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Sakaguchi, S., Miyara, M., Costantino, C. M. & Hafler, D. A. FOXP3+ regulatory T cells in the human immune system. Nat. Rev. Immunol. 10, 490–500 (2010).

    Article  PubMed  CAS  Google Scholar 

  7. Josefowicz, S. Z., Lu, L. F. & Rudensky, A. Y. Regulatory T cells: mechanisms of differentiation and function. Annu. Rev. Immunol. 30, 531–564 (2012).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  8. Kanamori, M., Nakatsukasa, H., Okada, M., Lu, Q. & Yoshimura, A. Induced regulatory T cells: their development, stability, and applications. Trends Immunol. 37, 803–811 (2016).

    Article  PubMed  CAS  Google Scholar 

  9. Ohkura, N. et al. T cell receptor stimulation-induced epigenetic changes and Foxp3 expression are independent and complementary events required for Treg cell development. Immunity 37, 785–799 (2012).

    Article  PubMed  CAS  Google Scholar 

  10. Nishizuka, Y. & Sakakura, T. Thymus and reproduction: sex-linked dysgenesia of the gonad after neonatal thymectomy in mice. Science 166, 753–755 (1969).

    Article  PubMed  CAS  Google Scholar 

  11. Penhale, W. J., Farmer, A., McKenna, R. P. & Irvine, W. J. Spontaneous thyroiditis in thymectomized and irradiated Wistar rats. Clin. Exp. Immunol. 15, 225–236 (1973).

    PubMed  PubMed Central  CAS  Google Scholar 

  12. Sakaguchi, S., Takahashi, T. & Nishizuka, Y. Study on cellular events in postthymectomy autoimmune oophoritis in mice. I. Requirement of Lyt-1 effector cells for oocytes damage after adoptive transfer. J. Exp. Med. 156, 1565–1576 (1982).

    Article  PubMed  CAS  Google Scholar 

  13. Sakaguchi, S., Fukuma, K., Kuribayashi, K. & Masuda, T. Organ-specific autoimmune diseases induced in mice by elimination of T cell subset. I. Evidence for the active participation of T cells in natural self-tolerance; deficit of a T cell subset as a possible cause of autoimmune disease. J. Exp. Med. 161, 72–87 (1985).

    Article  PubMed  CAS  Google Scholar 

  14. Baecher-Allan, C., Brown, J. A., Freeman, G. J. & Hafler, D. A. CD4+CD25high regulatory cells in human peripheral blood. J. Immunol. 167, 1245–1253 (2001).

    Article  PubMed  CAS  Google Scholar 

  15. Stephens, L. A., Mottet, C., Mason, D. & Powrie, F. Human CD4+CD25+ thymocytes and peripheral T cells have immune suppressive activity in vitro. Eur. J. Immunol. 31, 1247–1254 (2001).

    Article  PubMed  CAS  Google Scholar 

  16. Gavin, M. A. et al. Foxp3-dependent programme of regulatory T-cell differentiation. Nature 445, 771–775 (2007).

    Article  PubMed  CAS  Google Scholar 

  17. Miyara, M. et al. Human FoxP3+ regulatory T cells in systemic autoimmune diseases. Autoimmun. Rev. 10, 744–755 (2011).

    Article  PubMed  CAS  Google Scholar 

  18. Brusko, T. M., Wasserfall, C. H., Clare-Salzler, M. J., Schatz, D. A. & Atkinson, M. A. Functional defects and the influence of age on the frequency of CD4+ CD25+ T-cells in type 1 diabetes. Diabetes 54, 1407–1414 (2005).

    Article  PubMed  CAS  Google Scholar 

  19. Haseda, F., Imagawa, A., Murase-Mishiba, Y., Terasaki, J. & Hanafusa, T. CD4+ CD45RA FoxP3high activated regulatory T cells are functionally impaired and related to residual insulin-secreting capacity in patients with type 1 diabetes. Clin. Exp. Immunol. 173, 207–216 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Lindley, S. et al. Defective suppressor function in CD4+CD25+ T-cells from patients with type 1 diabetes. Diabetes 54, 92–99 (2005).

    Article  PubMed  CAS  Google Scholar 

  21. Dominguez-Villar, M., Baecher-Allan, C. M. & Hafler, D. A. Identification of T helper type 1-like, Foxp3+ regulatory T cells in human autoimmune disease. Nat. Med 17, 673–675 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Viglietta, V., Baecher-Allan, C., Weiner, H. L. & Hafler, D. A. Loss of functional suppression by CD4+CD25+ regulatory T cells in patients with multiple sclerosis. J. Exp. Med. 199, 971–979 (2004).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Bonelli, M. et al. Quantitative and qualitative deficiencies of regulatory T cells in patients with systemic lupus erythematosus (SLE). Int. Immunol. 20, 861–868 (2008).

    Article  PubMed  CAS  Google Scholar 

  24. Thiruppathi, M. et al. Functional defect in regulatory T cells in myasthenia gravis. Ann. NY Acad. Sci. 1274, 68–76 (2012).

    Article  PubMed  CAS  Google Scholar 

  25. van Roon, J. A., Hartgring, S. A., van der Wurff-Jacobs, K. M., Bijlsma, J. W. & Lafeber, F. P. Numbers of CD25+Foxp3+ T cells that lack the IL-7 receptor are increased intra-articularly and have impaired suppressive function in RA patients. Rheumatology (Oxford) 49, 2084–2089 (2010).

    Article  CAS  Google Scholar 

  26. Ohkura, N., Kitagawa, Y. & Sakaguchi, S. Development and maintenance of regulatory T cells. Immunity 38, 414–423 (2013).

    Article  PubMed  CAS  Google Scholar 

  27. Arpaia, N. et al. A Distinct function of regulatory T cells in tissue protection. Cell 162, 1078–1089 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Panduro, M., Benoist, C. & Mathis, D. Tissue Tregs. Annu. Rev. Immunol. 34, 609–633 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Brunkow, M. E. et al. Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse. Nat. Genet. 27, 68–73 (2001).

    Article  PubMed  CAS  Google Scholar 

  30. Bennett, C. L. et al. The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3. Nat. Genet. 27, 20–21 (2001).

    Article  PubMed  CAS  Google Scholar 

  31. Wildin, R. S. et al. X-linked neonatal diabetes mellitus, enteropathy and endocrinopathy syndrome is the human equivalent of mouse scurfy. Nat. Genet. 27, 18–20 (2001).

    Article  PubMed  CAS  Google Scholar 

  32. Hill, J. A. et al. Foxp3 transcription-factor-dependent and -independent regulation of the regulatory T cell transcriptional signature. Immunity 27, 786–800 (2007).

    Article  PubMed  CAS  Google Scholar 

  33. Morikawa, H. & Sakaguchi, S. Genetic and epigenetic basis of Treg cell development and function: from a FoxP3-centered view to an epigenome-defined view of natural Treg cells. Immunol. Rev. 259, 192–205 (2014).

    Article  PubMed  CAS  Google Scholar 

  34. Huehn, J. & Beyer, M. Epigenetic and transcriptional control of Foxp3+ regulatory T cells. Semin. Immunol. 27, 10–18 (2015).

    Article  PubMed  CAS  Google Scholar 

  35. Zheng, Y. et al. Role of conserved non-coding DNA elements in the Foxp3 gene in regulatory T-cell fate. Nature 463, 808–812 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Feng, Y. et al. Control of the inheritance of regulatory T cell identity by a cis element in the Foxp3 locus. Cell 158, 749–763 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Li, X., Liang, Y., LeBlanc, M., Benner, C. & Zheng, Y. Function of a Foxp3 cis-element in protecting regulatory T cell identity. Cell 158, 734–748 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Baron, U. et al. DNA demethylation in the human FOXP3 locus discriminates regulatory T cells from activated FOXP3(+) conventional T cells. Eur. J. Immunol. 37, 2378–2389 (2007).

    Article  PubMed  CAS  Google Scholar 

  39. Floess, S. et al. Epigenetic control of the foxp3 locus in regulatory T cells. PLoS Biol. 5, e38 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. van Loosdregt, J. et al. Regulation of Treg functionality by acetylation-mediated Foxp3 protein stabilization. Blood 115, 965–974 (2010).

    Article  PubMed  CAS  Google Scholar 

  41. Li, B. et al. FOXP3 interactions with histone acetyltransferase and class II histone deacetylases are required for repression. Proc. Natl Acad. Sci. USA 104, 4571–4576 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Beier, U. H., Akimova, T., Liu, Y., Wang, L. & Hancock, W. W. Histone/protein deacetylases control Foxp3 expression and the heat shock response of T-regulatory cells. Curr. Opin. Immunol. 23, 670–678 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Deng, G. et al. Pim-2 kinase influences regulatory T cell function and stability by mediating Foxp3 protein N-terminal phosphorylation. J. Biol. Chem. 290, 20211–20220 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Li, Z. et al. PIM1 kinase phosphorylates the human transcription factor FOXP3 at serine 422 to negatively regulate its activity under inflammation. J. Biol. Chem. 289, 26872–26881 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Morawski, P. A., Mehra, P., Chen, C., Bhatti, T. & Wells, A. D. Foxp3 protein stability is regulated by cyclin-dependent kinase 2. J. Biol. Chem. 288, 24494–24502 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Nie, H. et al. Phosphorylation of FOXP3 controls regulatory T cell function and is inhibited by TNF-α in rheumatoid arthritis. Nat. Med 19, 322–328 (2013).

    Article  PubMed  CAS  Google Scholar 

  47. Barbi, J., Pardoll, D. M. & Pan, F. Ubiquitin-dependent regulation of Foxp3 and Treg function. Immunol. Rev. 266, 27–45 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Chen, Z. et al. The ubiquitin ligase Stub1 negatively modulates regulatory T cell suppressive activity by promoting degradation of the transcription factor Foxp3. Immunity 39, 272–285 (2013).

    Article  PubMed  CAS  Google Scholar 

  49. Wang, L. et al. Ubiquitin-specific protease-7 inhibition impairs Tip60-dependent Foxp3+ T-regulatory cell function and promotes antitumor immunity. EBioMedicine 13, 99–112 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Song, X. et al. Structural and biological features of FOXP3 dimerization relevant to regulatory T cell function. Cell Reports 1, 665–675 (2012).

    Article  PubMed  CAS  Google Scholar 

  51. Xiao, Y. et al. Dynamic interactions between TIP60 and p300 regulate FOXP3 function through a structural switch defined by a single lysine on TIP60. Cell Rep. 7, 1471–1480 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. van Loosdregt, J. et al. Stabilization of the transcription factor Foxp3 by the deubiquitinase USP7 increases Treg-cell-suppressive capacity. Immunity 39, 259–271 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Dang, E. V. et al. Control of TH17/Treg balance by hypoxia-inducible factor 1. Cell 146, 772–784 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Rudra, D. et al. Transcription factor Foxp3 and its protein partners form a complex regulatory network. Nat. Immunol. 13, 1010–1019 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Samstein, R. M. et al. Foxp3 exploits a pre-existent enhancer landscape for regulatory T cell lineage specification. Cell 151, 153–166 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Kwon, H. K., Chen, H. M., Mathis, D. & Benoist, C. Different molecular complexes that mediate transcriptional induction and repression by FoxP3. Nat. Immunol. 18, 1238–1248 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Tao, R. et al. Deacetylase inhibition promotes the generation and function of regulatory T cells. Nat. Med. 13, 1299–1307 (2007).

    Article  PubMed  CAS  Google Scholar 

  58. Bettini, M. L. et al. Loss of epigenetic modification driven by the Foxp3 transcription factor leads to regulatory T cell insufficiency. Immunity 36, 717–730 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Zhang, Y. et al. GP96 is a GARP chaperone and controls regulatory T cell functions. J. Clin. Invest. 125, 859–869 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Bin Dhuban, K. et al. Suppression by human FOXP3+ regulatory T cells requires FOXP3-TIP60 interactions. Sci. Immunol. 2, eaai9297 (2017).

    Article  PubMed  Google Scholar 

  61. Hayatsu, N. et al. Analyses of a mutant Foxp3 allele reveal BATF as a critical transcription factor in the differentiation and accumulation of tissue regulatory T cells. Immunity 47, 268–283 e269 (2017).

    Article  PubMed  CAS  Google Scholar 

  62. Darce, J. et al. An N-terminal mutation of the Foxp3 transcription factor alleviates arthritis but exacerbates diabetes. Immunity 36, 731–741 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Wan, Y. Y. & Flavell, R. A. Regulatory T-cell functions are subverted and converted owing to attenuated Foxp3 expression. Nature 445, 766–770 (2007).

    Article  PubMed  CAS  Google Scholar 

  64. Williams, L. M. & Rudensky, A. Y. Maintenance of the Foxp3-dependent developmental program in mature regulatory T cells requires continued expression of Foxp3. Nat. Immunol. 8, 277–284 (2007).

    Article  PubMed  CAS  Google Scholar 

  65. Komatsu, N. et al. Heterogeneity of natural Foxp3+ T cells: a committed regulatory T-cell lineage and an uncommitted minor population retaining plasticity. Proc. Natl Acad. Sci. USA 106, 1903–1908 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Rubtsov, Y. P. et al. Stability of the regulatory T cell lineage in vivo. Science 329, 1667–1671 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Zhou, X. et al. Instability of the transcription factor Foxp3 leads to the generation of pathogenic memory T cells in vivo. Nat. Immunol. 10, 1000–1007 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Hoffmann, P. et al. Loss of FOXP3 expression in natural human CD4+CD25+ regulatory T cells upon repetitive in vitro stimulation. Eur. J. Immunol. 39, 1088–1097 (2009).

    Article  PubMed  CAS  Google Scholar 

  69. Koenen, H. J. et al. Human CD25highFoxp3pos regulatory T cells differentiate into IL-17-producing cells. Blood 112, 2340–2352 (2008).

    Article  PubMed  CAS  Google Scholar 

  70. Duarte, J. H., Zelenay, S., Bergman, M. L., Martins, A. C. & Demengeot, J. Natural Treg cells spontaneously differentiate into pathogenic helper cells in lymphopenic conditions. Eur. J. Immunol. 39, 948–955 (2009).

    Article  PubMed  CAS  Google Scholar 

  71. Oldenhove, G. et al. Decrease of Foxp3+ Treg cell number and acquisition of effector cell phenotype during lethal infection. Immunity 31, 772–786 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Laurence, A. et al. STAT3 transcription factor promotes instability of nTreg cells and limits generation of iTreg cells during acute murine graft-versus-host disease. Immunity 37, 209–222 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Zhang, Z. et al. Activation and functional specialization of regulatory T cells lead to the generation of Foxp3 instability. J. Immunol. 198, 2612–2625 (2017).

    Article  PubMed  CAS  Google Scholar 

  74. Bailey-Bucktrout, S. L. et al. Self-antigen-driven activation induces instability of regulatory T cells during an inflammatory autoimmune response. Immunity 39, 949–962 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Setoguchi, R., Hori, S., Takahashi, T. & Sakaguchi, S. Homeostatic maintenance of natural Foxp3+ CD25+ CD4+ regulatory T cells by interleukin (IL)-2 and induction of autoimmune disease by IL-2 neutralization. J. Exp. Med. 201, 723–735 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Tang, Q. et al. Central role of defective interleukin-2 production in the triggering of islet autoimmune destruction. Immunity 28, 687–697 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Balandina, A., Lécart, S., Dartevelle, P., Saoudi, A. & Berrih-Aknin, S. Functional defect of regulatory CD4+CD25+ T cells in the thymus of patients with autoimmune myasthenia gravis. Blood 105, 735–741 (2005).

    Article  PubMed  CAS  Google Scholar 

  78. Huan, J. et al. Decreased FOXP3 levels in multiple sclerosis patients. J. Neurosci. Res. 81, 45–52 (2005).

    Article  PubMed  CAS  Google Scholar 

  79. Long, S. A. et al. Defects in IL-2R signaling contribute to diminished maintenance of FOXP3 expression in CD4+CD25+ regulatory T-cells of type 1 diabetic subjects. Diabetes 59, 407–415 (2010).

    Article  PubMed  CAS  Google Scholar 

  80. Zhang, B., Zhang, X., Tang, F., Zhu, L. & Liu, Y. Reduction of forkhead box P3 levels in CD4+CD25high T cells in patients with new-onset systemic lupus erythematosus. Clin. Exp. Immunol. 153, 182–187 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Moes, N. et al. Reduced expression of FOXP3 and regulatory T-cell function in severe forms of early-onset autoimmune enteropathy. Gastroenterology 139, 770–778 (2010).

    Article  PubMed  CAS  Google Scholar 

  82. Kim, H. J. et al. Stable inhibitory activity of regulatory T cells requires the transcription factor Helios. Science 350, 334–339 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Nakagawa, H. et al. Instability of Helios-deficient Tregs is associated with conversion to a T-effector phenotype and enhanced antitumor immunity. Proc. Natl Acad. Sci. USA 113, 6248–6253 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Sharma, M. D. et al. An inherently bifunctional subset of Foxp3+ T helper cells is controlled by the transcription factor eos. Immunity 38, 998–1012 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Koch, M. A. et al. The transcription factor T-bet controls regulatory T cell homeostasis and function during type 1 inflammation. Nat. Immunol. 10, 595–602 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Levine, A. G. et al. Stability and function of regulatory T cells expressing the transcription factor T-bet. Nature 546, 421–425 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Zheng, Y. et al. Regulatory T-cell suppressor program co-opts transcription factor IRF4 to control TH2 responses. Nature 458, 351–356 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Chaudhry, A. et al. CD4+ regulatory T cells control TH17 responses in a Stat3-dependent manner. Science 326, 986–991 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Bovenschen, H. J. et al. Foxp3+ regulatory T cells of psoriasis patients easily differentiate into IL-17A-producing cells and are found in lesional skin. J. Invest. Dermatol. 131, 1853–1860 (2011).

    Article  PubMed  CAS  Google Scholar 

  90. Butcher, M. J. et al. Atherosclerosis-driven Treg plasticity results in formation of a dysfunctional subset of plastic IFNγ+ Th1/Tregs. Circ. Res. 119, 1190–1203 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Kitz, A. et al. AKT isoforms modulate Th1-like Treg generation and function in human autoimmune disease. EMBO Rep. 17, 1169–1183 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Kitz, A. & Dominguez-Villar, M. Molecular mechanisms underlying Th1-like Treg generation and function. Cell. Mol. Life Sci. 74, 4059–4075 (2017).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  93. McClymont, S. A. et al. Plasticity of human regulatory T cells in healthy subjects and patients with type 1 diabetes. J. Immunol. 186, 3918–3926 (2011).

    Article  PubMed  CAS  Google Scholar 

  94. Ouyang, W. et al. Novel Foxo1-dependent transcriptional programs control Treg cell function. Nature 491, 554–559 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. MacDonald, K. G. et al. Regulatory T cells produce profibrotic cytokines in the skin of patients with systemic sclerosis. J. Allergy Clin. Immunol. 135, e9 946–e949 (2015).

    Article  PubMed  CAS  Google Scholar 

  96. Noval Rivas, M. et al. Regulatory T cell reprogramming toward a Th2-cell-like lineage impairs oral tolerance and promotes food allergy. Immunity 42, 512–523 (2015).

    Article  PubMed  CAS  Google Scholar 

  97. Wei, G. et al. Global mapping of H3K4me3 and H3K27me3 reveals specificity and plasticity in lineage fate determination of differentiating CD4+ T cells. Immunity 30, 155–167 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Arterbery, A. S. et al. Production of proinflammatory cytokines by monocytes in liver-transplanted recipients with de novo autoimmune hepatitis is enhanced and induces TH1-like regulatory T cells. J. Immunol. 196, 4040–4051 (2016).

    Article  PubMed  CAS  Google Scholar 

  99. Yamada, A. et al. Impaired expansion of regulatory T cells in a neonatal thymectomy-induced autoimmune mouse model. Am. J. Pathol. 185, 2886–2897 (2015).

    Article  PubMed  CAS  Google Scholar 

  100. Huynh, A. et al. Control of PI(3) kinase in Treg cells maintains homeostasis and lineage stability. Nat. Immunol. 16, 188–196 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Shrestha, S. et al. Treg cells require the phosphatase PTEN to restrain TH1 and TFH cell responses. Nat. Immunol. 16, 178–187 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Korn, T. et al. Myelin-specific regulatory T cells accumulate in the CNS but fail to control autoimmune inflammation. Nat. Med 13, 423–431 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Tan, T. G., Mathis, D. & Benoist, C. Singular role for T-BET+CXCR3+ regulatory T cells in protection from autoimmune diabetes. Proc. Natl Acad. Sci. USA 113, 14103–14108 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Hernandez, A. L. et al. Sodium chloride inhibits the suppressive function of FOXP3+ regulatory T cells. J. Clin. Invest 125, 4212–4222 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Ayyoub, M. et al. Human memory FOXP3+ Tregs secrete IL-17 ex vivo and constitutively express the TH17 lineage-specific transcription factor RORγt. Proc. Natl Acad. Sci. USA 106, 8635–8640 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Beriou, G. et al. IL-17-producing human peripheral regulatory T cells retain suppressive function. Blood 113, 4240–4249 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Radhakrishnan, S. et al. Reprogrammed FoxP3+ T regulatory cells become IL-17+ antigen-specific autoimmune effectors in vitro and in vivo. J. Immunol. 181, 3137–3147 (2008).

    Article  PubMed  CAS  Google Scholar 

  108. Singh, K. et al. Reduced CD18 levels drive regulatory T cell conversion into Th17 cells in the CD18hypo PL/J mouse model of psoriasis. J. Immunol. 190, 2544–2553 (2013).

    Article  PubMed  CAS  Google Scholar 

  109. Komatsu, N. et al. Pathogenic conversion of Foxp3+ T cells into TH17 cells in autoimmune arthritis. Nat. Med. 20, 62–68 (2014).

    Article  PubMed  CAS  Google Scholar 

  110. Sefik, E. et al. Mucosal immunology. Individual intestinal symbionts induce a distinct population of RORγ+ regulatory T cells. Science 349, 993–997 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Yang, B. H. et al. Foxp3+ T cells expressing RORγt represent a stable regulatory T-cell effector lineage with enhanced suppressive capacity during intestinal inflammation. Mucosal Immunol 9, 444–457 (2016).

    Article  PubMed  CAS  Google Scholar 

  112. Kluger, M. A. et al. Stat3 programs Th17-specific regulatory T cells to control GN. J. Am. Soc. Nephrol. 25, 1291–1302 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Kluger, M. A. et al. Treg17 cells are programmed by Stat3 to suppress Th17 responses in systemic lupus. Kidney Int. 89, 158–166 (2016).

    Article  PubMed  CAS  Google Scholar 

  114. Kitani, A. & Xu, L. Regulatory T cells and the induction of IL-17. Mucosal Immunol 1, S43–S46 (2008).

    Article  PubMed  CAS  Google Scholar 

  115. Xu, L., Kitani, A., Fuss, I. & Strober, W. Cutting edge: regulatory T cells induce CD4+CD25Foxp3 T cells or are self-induced to become Th17 cells in the absence of exogenous TGF-β. J. Immunol. 178, 6725–6729 (2007).

    Article  PubMed  CAS  Google Scholar 

  116. Sharma, M. D. et al. Indoleamine 2,3-dioxygenase controls conversion of Foxp3+ Tregs to TH17-like cells in tumor-draining lymph nodes. Blood 113, 6102–6111 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Nyirenda, M. H. et al. TLR2 stimulation drives human naive and effector regulatory T cells into a Th17-like phenotype with reduced suppressive function. J. Immunol. 187, 2278–2290 (2011).

    Article  PubMed  CAS  Google Scholar 

  118. Smith, A. A. et al. Characterization of Th17-like Tregs during late stages of infection with B. pertussis in mice. Possible immunomodulation by type I interferon. J. Immunol. 196, 196.8 (2016).

    Article  CAS  Google Scholar 

  119. Jin, H. S., Park, Y., Elly, C. & Liu, Y. C. Itch expression by Treg cells controls Th2 inflammatory responses. J. Clin. Invest. 123, 4923–4934 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Burzyn, D. et al. A special population of regulatory T cells potentiates muscle repair. Cell 155, 1282–1295 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. Cipolletta, D. et al. PPAR-γ is a major driver of the accumulation and phenotype of adipose tissue Treg cells. Nature 486, 549–553 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Sanchez Rodriguez, R. et al. Memory regulatory T cells reside in human skin. J. Clin. Invest. 124, 1027–1036 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Feuerer, M. et al. Lean, but not obese, fat is enriched for a unique population of regulatory T cells that affect metabolic parameters. Nat. Med. 15, 930–939 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Delacher, M. et al. Genome-wide DNA-methylation landscape defines specialization of regulatory T cells in tissues. Nat. Immunol. 18, 1160–1172 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Hamaguchi, M. & Sakaguchi, S. Regulatory T cells expressing PPAR-γ control inflammation in obesity. Cell Metab. 16, 4–6 (2012).

    Article  PubMed  CAS  Google Scholar 

  126. Kasheta, M. et al. Identification and characterization of Treg-like cells in zebrafish. J. Exp. Med. 214, 3519–3530 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. Hui, S. P. et al. Zebrafish regulatory T cells mediate organ-specific regenerative programs. Dev. Cell 43, 659–672 (2017).

    Article  PubMed  CAS  Google Scholar 

  128. Ali, N. et al. Regulatory T cells in skin facilitate epithelial stem cell differentiation. Cell 169, 1119–1129 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  129. Ohnmacht, C. et al. Mucosal immunology. The microbiota regulates type 2 immunity through RORγt+ T cells. Science 349, 989–993 (2015).

    Article  PubMed  CAS  Google Scholar 

  130. Yu, X., Huang, Q. & Petersen, F. History and milestones of mouse models of autoimmune diseases. Curr. Pharm. Des. 21, 2308–2319 (2015).

    Article  PubMed  CAS  Google Scholar 

  131. Bluestone, J. A. et al. Type 1 diabetes immunotherapy using polyclonal regulatory T cells. Sci. Transl. Med. 7, 315ra189 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  132. Desreumaux, P. et al. Safety and efficacy of antigen-specific regulatory T-cell therapy for patients with refractory Crohn's disease. Gastroenterology 143, 1207–1217 (2012).

    Article  PubMed  CAS  Google Scholar 

  133. Marek-Trzonkowska, N. et al. Therapy of type 1 diabetes with CD4+CD25highCD127 regulatory T cells prolongs survival of pancreatic islets - results of one year follow-up. Clin. Immunol. 153, 23–30 (2014).

    Article  PubMed  CAS  Google Scholar 

  134. Marek-Trzonkowska, N. et al. Administration of CD4+CD25highCD127 regulatory T cells preserves β-cell function in type 1 diabetes in children. Diabetes Care 35, 1817–1820 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Dawson, N. A. J. & Levings, M. K. Antigen-specific regulatory T cells: are police CARs the answer? Transl. Res. 187, 53–58 (2017).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank members of the Hafler and Dominguez-Villar laboratories for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Margarita Dominguez-Villar or David A. Hafler.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publishers note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dominguez-Villar, M., Hafler, D.A. Regulatory T cells in autoimmune disease. Nat Immunol 19, 665–673 (2018). https://doi.org/10.1038/s41590-018-0120-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41590-018-0120-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing