Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Comment
  • Published:

Of mice, men and immunity: a case for evolutionary systems biology

Animal models have been tremendously useful to translational research, but there is a need to maximize their predictive value to human disease. This Comment proposes novel strategies that consider evolutionary history and the presence, absence or modification of molecular networks in one species that are being studied in the other.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Evolutionary systems biology.
Fig. 2: Evolutionary network modeling.
Fig. 3: Experimental and analytical factors affect the appearance of observed networks.

References

  1. Stroud, C. et al. Clin. Transl. Med. 5, 26 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Bolker, J. A. BioEssays https://doi.org/10.1002/bies.201700089 (2017).

  3. Mestas, J. & Hughes, C. C. J. Immunol. 172, 2731–2738 (2004).

    Article  CAS  PubMed  Google Scholar 

  4. Thomas, D. W., Burns, J., Audette, J., Carroll, A., Dow-Hygelund, C., Hay, M. Clinical Development Success Rates 2006–2015, https://www.bio.org/sites/default/files/Clinical%20Development%20Success%20Rates%202006-2015%20-%20BIO,%20Biomedtracker,%20Amplion%202016.pdf (2015).

  5. Abraham, C. & Cho, J. Inflamm. Bowel Dis. 15, 1090–1100 (2009).

    Article  PubMed  Google Scholar 

  6. Targan, S. R. et al. Am. J. Gastroenterol. 111, 1599–1607 (2016).

    Article  CAS  PubMed  Google Scholar 

  7. Canas, C. A. & Canas, F. Autoimmune Dis. 2012, 784315 (2012).

    PubMed  PubMed Central  Google Scholar 

  8. Beura, L. K. et al. Nature 532, 512–516 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ridaura, V. K. et al. Science 341, 1241214 (2013).

    Article  PubMed  Google Scholar 

  10. Ramos, P. S., Shedlock, A. M. & Langefeld, C. D. J. Hum. Genet. 60, 657–664 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Huang, H. et al. Genome Biol. 5, R47 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Ohta, T. Annu. Rev. Ecol. Syst. 23, 263 (1992).

    Article  Google Scholar 

  13. Kosiol, C. et al. PLoS Genet. 4, e1000144 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Singh, R. S., Jianping, X. & Kulathinal, R. J. (eds.). Rapidly Evolving Genes and Genetic Systems (Oxford University Press, Oxford, UK, 2012).

  15. Zhong, Q. et al. Mol. Syst. Biol. 5, 321 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Odom, D. T. et al. Nat. Genet. 39, 730–732 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Breschi, A., Gingeras, T. R. & Guigo, R. Nat. Rev. Genet. 18, 425–440 (2017).

    Article  CAS  PubMed  Google Scholar 

  18. Seok, J. et al. Proc. Natl. Acad. Sci. USA 110, 3507–3512 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Shay, T. et al. Proc. Natl. Acad. Sci. USA 110, 2946–2951 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Takao, K. & Miyakawa, T. Proc. Natl. Acad. Sci. USA 112, 1167–1172 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Herrero, J. et al. Database https://doi.org/10.1093/database/bav096 (2016).

  22. Gharib, W. H. & Robinson-Rechavi, M. Brief. Bioinform. 12, 436–441 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Conant, G. C. & Wolfe, K. H. Nat. Rev. Genet. 9, 938–950 (2008).

    Article  CAS  PubMed  Google Scholar 

  24. Chen, S., Krinsky, B. H. & Long, M. Nat. Rev. Genet. 14, 645–660 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Carvunis, A. R. et al. eLife 4, https://doi.org/10.7554/eLife.11615 (2015).

Download references

Acknowledgements

We thank I. Pessah, M. Nicotra, T. Benos and E. Gomez for suggestions, and the reviewers for the comments (whose wording was, in some cases, included). Supported by the US National Institutes of Health (GM 108865 for A.R.C.; and AI AI079145 for P.B.E.), The Wayne and Gladys Valley Foundation, Takeda California and the Chiba University-UC San Diego Program in Mucosal Immunology, Allergy and Vaccines. P.B.E. holds a joint appointment in the Department of Immunology, Chiba University, Chiba, Japan.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Peter B. Ernst or Anne-Ruxandra Carvunis.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Additional information

Reprints and permissions information is available at www.nature.com/reprints.

Correspondence and requests for materials should be addressed to A.-R.C.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ernst, P.B., Carvunis, AR. Of mice, men and immunity: a case for evolutionary systems biology. Nat Immunol 19, 421–425 (2018). https://doi.org/10.1038/s41590-018-0084-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41590-018-0084-4

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research