Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Metabolic exhaustion in infection, cancer and autoimmunity

Abstract

It has become increasingly clear that changes in metabolism are not just consequences of T cell activation but instead are also essential drivers of that process that shape the extent and nature of differentiation and function. The process of T cell exhaustion has been linked to the outcome of chronic immune responses in multiple contexts, including chronic infection, cancer and autoimmunity. Factors that regulate the development and maintenance of exhaustion are of increasing interest as targets of therapeutic modulation. Studies have shown T cell immunometabolism to be integral to the control and development of T cell exhaustion. Early metabolic changes are responsible for the later emergence of exhaustion, do not simply reflect changes secondary to chronic activation and are modifiable. Increased understanding of this metabolic control promises to improve the ability to modulate T cell immunity to chronic antigen stimulation in multiple contexts.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Balance between effector T cells and memory T cells and the associated metabolic pathways.

Marina Corral Spence/Springer Nature.

Fig. 2: Hypoxia and effector differentiation of T cells.

Marina Corral Spence/Springer Nature.

Fig. 3: Exhaustion and metabolism of glucose and amino acids.

Marina Corral Spence/Springer Nature.

Fig. 4: Integration of TCR, inhibitory and metabolic signalling.

Marina Corral Spence/Springer Nature.

References

  1. 1.

    MacIver, N. J., Michalek, R. D. & Rathmell, J. C. Metabolic regulation of T lymphocytes. Annu. Rev. Immunol. 31, 259–283 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Chang, C. H. et al. Posttranscriptional control of T cell effector function by aerobic glycolysis. Cell 153, 1239–1251 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Vander Heiden, M. G., Cantley, L. C. & Thompson, C. B. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324, 1029–1033 (2009).

    Article  Google Scholar 

  4. 4.

    Pearce, E. L. & Pearce, E. J. Metabolic pathways in immune cell activation and quiescence. Immunity 38, 633–643 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Anastasiou, D. et al. Inhibition of pyruvate kinase M2 by reactive oxygen species contributes to cellular antioxidant responses. Science 334, 1278–1283 (2011).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Zhao, S. et al. ATP-citrate lyase controls a glucose-to-acetate metabolic switch. Cell. Rep.. 17, 1037–1052 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  7. 7.

    van der Windt, G. J. et al. Mitochondrial respiratory capacity is a critical regulator of CD8+ T cell memory development. Immunity 36, 68–78 (2012).

    Article  PubMed  Google Scholar 

  8. 8.

    Pearce, E. L. et al. Enhancing CD8 T-cell memory by modulating fatty acid metabolism. Nature 460, 103–107 (2009).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  9. 9.

    O’Sullivan, D. et al. Memory CD8+ T cells use cell-intrinsic lipolysis to support the metabolic programming necessary for development. Immunity 41, 75–88 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Buck, M. D. et al. Mitochondrial dynamics controls T cell fate through metabolic programming. Cell 166, 63–76 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  11. 11.

    van der Windt, G. J. et al. CD8 memory T cells have a bioenergetic advantage that underlies their rapid recall ability. Proc. Natl Acad. Sci. USA 110, 14336–14341 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Nomura, M. et al. Fatty acid oxidation in macrophage polarization. Nat. Immunol. 17, 216–217 (2016).

    CAS  Article  PubMed  Google Scholar 

  13. 13.

    Buck, M. D., O’Sullivan, D. & Pearce, E. L. T cell metabolism drives immunity. J. Exp. Med. 212, 1345–1360 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Araki, K. et al. mTOR regulates memory CD8 T-cell differentiation. Nature 460, 108–112 (2009).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Wherry, E. J. T cell exhaustion. Nat. Immunol. 12, 492–499 (2011).

    CAS  Article  PubMed  Google Scholar 

  16. 16.

    Pauken, K. E. & Wherry, E. J. Overcoming T cell exhaustion in infection and cancer. Trends Immunol. 36, 265–276 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  17. 17.

    McKinney, E. F. & Smith, K. G. T-cell exhaustion: understanding the interface of chronic viral and autoinflammatory diseases. Immunol. Cell. Biol. 94, 935–942 (2016).

    CAS  Article  PubMed  Google Scholar 

  18. 18.

    Bengsch, B. et al. Bioenergetic insufficiencies due to metabolic alterations regulated by the inhibitory receptor PD-1 are an early driver of CD8+ T cell exhaustion. Immunity 45, 358–373 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Scharping, N. E. et al. The Tumor microenvironment represses t cell mitochondrial biogenesis to drive intratumoral T cell metabolic insufficiency and dysfunction. Immunity 45, 701–703 (2016).

    CAS  Article  PubMed  Google Scholar 

  20. 20.

    Chang, C. H. et al. Metabolic competition in the tumor microenvironment is a driver of cancer progression. Cell 162, 1229–1241 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Wherry, E. J. et al. Molecular signature of CD8+ T cell exhaustion during chronic viral infection. Immunity 27, 670–684 (2007).

    CAS  Article  PubMed  Google Scholar 

  22. 22.

    Baitsch, L. et al. Exhaustion of tumor-specific CD8+ T cells in metastases from melanoma patients. J. Clin. Invest. 121, 2350–2360 (2011).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Gubin, M. M. et al. Checkpoint blockade cancer immunotherapy targets tumour-specific mutant antigens. Nature 515, 577–581 (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Harris, A. L. Hypoxia—a key regulatory factor in tumour growth. Nat. Rev. Cancer 2, 38–47 (2002).

    CAS  Article  PubMed  Google Scholar 

  25. 25.

    Doedens, A. L. et al. Hypoxia-inducible factors enhance the effector responses of CD8+ T cells to persistent antigen. Nat. Immunol. 14, 1173–1182 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Tyrakis, P. A. et al. S-2-hydroxyglutarate regulates CD8+ T-lymphocyte fate. Nature 540, 236–241 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Zhang, Y. et al. Enhancing CD8+ T cell fatty acid catabolism within a metabolically challenging tumor microenvironment increases the efficacy of melanoma immunotherapy. Cancer Cell. 32, 377–391 (2017).

    CAS  Article  PubMed  Google Scholar 

  28. 28.

    Sukumar, M. et al. Inhibiting glycolytic metabolism enhances CD8+ T cell memory and antitumor function. J. Clin. Invest. 123, 4479–4488 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Phan, A. T. et al. Constitutive glycolytic metabolism supports CD8+ T cell effector memory differentiation during viral infection. Immunity 45, 1024–1037 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Paley, M. A. et al. Progenitor and terminal subsets of CD8+ T cells cooperate to contain chronic viral infection. Science 338, 1220–1225 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Ho, P. C. et al. Phosphoenolpyruvate is a metabolic checkpoint of anti-tumor T cell responses. Cell 162, 1217–1228 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Schwartz, R. H. T cell anergy. Annu. Rev. Immunol. 21, 305–334 (2003).

    CAS  Article  PubMed  Google Scholar 

  33. 33.

    Geiger, R. et al. L-Arginine modulates T cell metabolism and enhances survival and anti-tumor activity. Cell 167, 829–842 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Sinclair, L. V. et al. Control of amino-acid transport by antigen receptors coordinates the metabolic reprogramming essential for T cell differentiation. Nat. Immunol. 14, 500–508 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Nakaya, M. et al. Inflammatory T cell responses rely on amino acid transporter ASCT2 facilitation of glutamine uptake and mTORC1 kinase activation. Immunity 40, 692–705 (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Wang, R. et al. The transcription factor Myc controls metabolic reprogramming upon T lymphocyte activation. Immunity 35, 871–882 (2011).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Ghoneim, H. E. et al. De novo epigenetic programs inhibit PD-1 blockade-mediated T cell rejuvenation. Cell 170, 142–157 (2017).

    CAS  Article  PubMed  Google Scholar 

  38. 38.

    Siska, P. J. et al. Mitochondrial dysregulation and glycolytic insufficiency functionally impair CD8 T cells infiltrating human renal cell carcinoma. JCI Insight 2, 93411 (2017).

    Article  PubMed  Google Scholar 

  39. 39.

    Schurich, A. et al. Distinct metabolic requirements of exhausted and functional virus-specific CD8 T cells in the same host. Cell Rep. 16, 1243–1252 (2016).

  40. 40.

    Fisicaro, P. et al. Targeting mitochondrial dysfunction can restore antiviral activity of exhausted HBV-specific CD8 T cells in chronic hepatitis B. Nat. Med.. 23, 327–336 (2017).

    CAS  Article  PubMed  Google Scholar 

  41. 41.

    Wherry, E. J. & Kurachi, M. Molecular and cellular insights into T cell exhaustion. Nat. Rev. Immunol. 15, 486–499 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Blackburn, S. D., Shin, H., Freeman, G. J. & Wherry, E. J. Selective expansion of a subset of exhausted CD8 T cells by αPD-L1 blockade. Proc. Natl Acad. Sci. USA 105, 15016–15021 (2008).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  43. 43.

    Oldstone, M. B. Anatomy of viral persistence. PLoS Pathog. 5, e1000523 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Chi, H. Regulation and function of mTOR signalling in T cell fate decisions. Nat. Rev. Immunol. 12, 325–338 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Rao, R. R., Li, Q., Odunsi, K. & Shrikant, P. A. The mTOR kinase determines effector versus memory CD8+ T cell fate by regulating the expression of transcription factors T-bet and Eomesodermin. Immunity 32, 67–78 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  46. 46.

    Rao, R. R., Li, Q., Gubbels Bupp, M. R. & Shrikant, P. A. Transcription factor Foxo1 represses T-bet-mediated effector functions and promotes memory CD8+ T cell differentiation. Immunity 36, 374–387 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  47. 47.

    Mueller, S. N. & Ahmed, R. High antigen levels are the cause of T cell exhaustion during chronic viral infection. Proc. Natl Acad. Sci. USA 106, 8623–8628 (2009).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  48. 48.

    Staron, M. M. et al. The transcription factor FoxO1 sustains expression of the inhibitory receptor PD-1 and survival of antiviral CD8+ T cells during chronic infection. Immunity 41, 802–814 (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Blackburn, S. D. et al. Coregulation of CD8+ T cell exhaustion by multiple inhibitory receptors during chronic viral infection. Nat. Immunol. 10, 29–37 (2009).

    CAS  Article  PubMed  Google Scholar 

  50. 50.

    Oestreich, K. J., Yoon, H., Ahmed, R. & Boss, J. M. NFATc1 regulates PD-1 expression upon T cell activation. J. Immunol. 181, 4832–4839 (2008).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  51. 51.

    Martinez, G. J. et al. The transcription factor NFAT promotes exhaustion of activated CD8+ T cells. Immunity 42, 265–278 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  52. 52.

    Patsoukis, N. et al. PD-1 alters T-cell metabolic reprogramming by inhibiting glycolysis and promoting lipolysis and fatty acid oxidation. Nat. Commun. 6, 6692 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  53. 53.

    Odorizzi, P. M., Pauken, K. E., Paley, M. A., Sharpe, A. & Wherry, E. J. Genetic absence of PD-1 promotes accumulation of terminally differentiated exhausted CD8+ T cells. J. Exp. Med. 212, 1125–1137 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  54. 54.

    Barber, D. L. et al. Restoring function in exhausted CD8 T cells during chronic viral infection. Nature 439, 682–687 (2006).

    CAS  Article  PubMed  Google Scholar 

  55. 55.

    McKinney, E. F. & Smith, K. G. T cell exhaustion and immune-mediated disease-the potential for therapeutic exhaustion. Curr. Opin. Immunol. 43, 74–80 (2016).

    CAS  Article  PubMed  Google Scholar 

  56. 56.

    Frauwirth, K. A. et al. The CD28 signaling pathway regulates glucose metabolism. Immunity 16, 769–777 (2002).

    CAS  Article  PubMed  Google Scholar 

  57. 57.

    Klein Geltink, R. I. et al. Mitochondrial priming by CD28. Cell 171, 385–397 (2017).

    CAS  Article  PubMed  Google Scholar 

  58. 58.

    Wieman, H. L., Wofford, J. A. & Rathmell, J. C. Cytokine stimulation promotes glucose uptake via phosphatidylinositol-3 kinase/Akt regulation of Glut1 activity and trafficking. Mol. Biol. Cell. 18, 1437–1446 (2007).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  59. 59.

    Zheng, Y., Delgoffe, G. M., Meyer, C. F., Chan, W. & Powell, J. D. Anergic T cells are metabolically anergic. J. Immunol. 183, 6095–6101 (2009).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  60. 60.

    Aubert, R. D. et al. Antigen-specific CD4 T-cell help rescues exhausted CD8 T cells during chronic viral infection. Proc. Natl Acad. Sci. USA 108, 21182–21187 (2011).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  61. 61.

    McKinney, E. F., Lee, J. C., Jayne, D. R. W., Lyons, P. A. & Smith, K. G. C. T-cell exhaustion, co-stimulation and clinical outcome in autoimmunity and infection. Nature 523, 612–616 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  62. 62.

    Pollizzi, K. N. et al. Asymmetric inheritance of mTORC1 kinase activity during division dictates CD8+ T cell differentiation. Nat. Immunol. 17, 704–711 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  63. 63.

    Pollizzi, K. N. et al. mTORC1 and mTORC2 selectively regulate CD8+ T cell differentiation. J. Clin. Invest. 125, 2090–2108 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  64. 64.

    Hedrick, S. M., Hess Michelini, R., Doedens, A. L., Goldrath, A. W. & Stone, E. L. FOXO transcription factors throughout T cell biology. Nat. Rev. Immunol. 12, 649–661 (2012).

    CAS  Article  PubMed  Google Scholar 

  65. 65.

    Ouyang, W. et al. Foxo proteins cooperatively control the differentiation of Foxp3+ regulatory T cells. Nat. Immunol. 11, 618–627 (2010).

    CAS  Article  PubMed  Google Scholar 

  66. 66.

    Ouyang, W. et al. Novel Foxo1-dependent transcriptional programs control Treg cell function. Nature 491, 554–559 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  67. 67.

    Ouyang, W., Beckett, O., Flavell, R. A. & Li, M. O. An essential role of the Forkhead-box transcription factor Foxo1 in control of T cell homeostasis and tolerance. Immunity 30, 358–371 (2009).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  68. 68.

    Kerdiles, Y. M. et al. Foxo1 links homing and survival of naive T cells by regulating L-selectin, CCR7 and interleukin 7 receptor. Nat. Immunol. 10, 176–184 (2009).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  69. 69.

    Riou, C. et al. Convergence of TCR and cytokine signaling leads to FOXO3a phosphorylation and drives the survival of CD4+ central memory T cells. J. Exp. Med. 204, 79–91 (2007).

  70. 70.

    You, H. et al. FOXO3a-dependent regulation of Puma in response to cytokine/growth factor withdrawal. J. Exp. Med. 203, 1657–1663 (2006).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  71. 71.

    Brunet, A. et al. Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 96, 857–868 (1999).

    CAS  Article  PubMed  Google Scholar 

  72. 72.

    Sullivan, J. A., Kim, E. H., Plisch, E. H., Peng, S. L. & Suresh, M. FOXO3 regulates CD8 T cell memory by T cell-intrinsic mechanisms. PLoS Pathog. 8, e1002533 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  73. 73.

    Sullivan, J. A., Kim, E. H., Plisch, E. H. & Suresh, M. FOXO3 regulates the CD8 T cell response to a chronic viral infection. J. Virol. 86, 9025–9034 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  74. 74.

    van Grevenynghe, J. et al. Transcription factor FOXO3a controls the persistence of memory CD4+ T cells during HIV infection. Nat. Med. 14, 266–274 (2008).

    Article  PubMed  Google Scholar 

  75. 75.

    Zhang, X. et al. FOXO1 is an essential regulator of pluripotency in human embryonic stem cells. Nat. Cell. Biol. 13, 1092–1099 (2011).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  76. 76.

    Hess Michelini, R., Doedens, A. L., Goldrath, A. W. & Hedrick, S. M. Differentiation of CD8 memory T cells depends on Foxo1. J. Exp. Med. 210, 1189–1200 (2013).

    Article  PubMed  Google Scholar 

  77. 77.

    Ferber, E. C. et al. FOXO3a regulates reactive oxygen metabolism by inhibiting mitochondrial gene expression. Cell Death Differ. 19, 968–979 (2012).

  78. 78.

    Zhang, W. et al. FoxO1 regulates multiple metabolic pathways in the liver: effects on gluconeogenic, glycolytic, and lipogenic gene expression. J. Biol. Chem. 281, 10105–10117 (2006).

    CAS  Article  PubMed  Google Scholar 

  79. 79.

    Greer, E. L. et al. The energy sensor AMP-activated protein kinase directly regulates the mammalian FOXO3 transcription factor. J. Biol. Chem. 282, 30107–30119 (2007).

    CAS  Article  PubMed  Google Scholar 

  80. 80.

    Wu, Z. et al. Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell 98, 115–124 (1999).

    CAS  Article  PubMed  Google Scholar 

  81. 81.

    Finck, B. N. & Kelly, D. P. PGC-1 coactivators: inducible regulators of energy metabolism in health and disease. J. Clin. Invest. 116, 615–622 (2006).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  82. 82.

    Daitoku, H., Yamagata, K., Matsuzaki, H., Hatta, M. & Fukamizu, A. Regulation of PGC-1 promoter activity by protein kinase B and the forkhead transcription factor FKHR. Diabetes 52, 642–649 (2003).

    CAS  Article  PubMed  Google Scholar 

  83. 83.

    Olmos, Y. et al. Mutual dependence of Foxo3a and PGC-1α in the induction of oxidative stress genes. J. Biol. Chem. 284, 14476–14484 (2009).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  84. 84.

    Long, S. A. et al. Partial exhaustion of CD8 T cells and clinical response to teplizumab in new-onset type 1 diabetes. Sci. Immunol. 1, eaai7793 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  85. 85.

    Freitag, J., Berod, L., Kamradt, T. & Sparwasser, T. Immunometabolism and autoimmunity. Immunol. Cell. Biol. 94, 925–934 (2016).

    CAS  Article  PubMed  Google Scholar 

  86. 86.

    Zhao, J. et al. A missense variant in NCF1 is associated with susceptibility to multiple autoimmune diseases. Nat. Genet. 49, 433–437 (2017).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  87. 87.

    Gelderman, K. A., Hultqvist, M., Holmberg, J., Olofsson, P. & Holmdahl, R. T cell surface redox levels determine T cell reactivity and arthritis susceptibility. Proc. Natl Acad. Sci. USA 103, 12831–12836 (2006).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  88. 88.

    Tkachev, V. et al. Programmed death-1 controls T cell survival by regulating oxidative metabolism. J. Immunol. 194, 5789–5800 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  89. 89.

    Lee, J.C. et al. Genome-wide association study identifies distinct genetic contributions to prognosis and susceptibility in Crohn’s disease. Nat. Genet. 49, 262–268 (2017).

  90. 90.

    Lee, J. C. et al. Human SNP links differential outcomes in inflammatory and infectious disease to a FOXO3-regulated pathway. Cell 155, 57–69 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to E. F. McKinney.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

McKinney, E.F., Smith, K.G.C. Metabolic exhaustion in infection, cancer and autoimmunity. Nat Immunol 19, 213–221 (2018). https://doi.org/10.1038/s41590-018-0045-y

Download citation

Further reading

Search

Quick links