Intravital mucosal imaging of CD8+ resident memory T cells shows tissue-autonomous recall responses that amplify secondary memory

Published online:


CD8+ T cell immunosurveillance dynamics influence the outcome of intracellular infections and cancer. Here we used two-photon intravital microscopy to visualize the responses of CD8+ resident memory T cells (TRM cells) within the reproductive tracts of live female mice. We found that mucosal TRM cells were highly motile, but paused and underwent in situ division after local antigen challenge. TRM cell reactivation triggered the recruitment of recirculating memory T cells that underwent antigen-independent TRM cell differentiation in situ. However, the proliferation of pre-existing TRM cells dominated the local mucosal recall response and contributed most substantially to the boosted secondary TRM cell population. We observed similar results in skin. Thus, TRM cells can autonomously regulate the expansion of local immunosurveillance independently of central memory or proliferation in lymphoid tissue.

  • Subscribe to Nature Immunology for full access:



Additional access options:

Already a subscriber?  Log in  now or  Register  for online access.


  1. 1.

    von Andrian, U. H. & Mackay, C. R. T-cell function and migration. Two sides of the same coin. N. Engl. J. Med. 343, 1020–1034 (2000).

  2. 2.

    Mueller, S. N., Gebhardt, T., Carbone, F. R. & Heath, W. R. Memory T cell subsets, migration patterns, and tissue residence. Annu. Rev. Immunol. 31, 137–161 (2013).

  3. 3.

    Stemberger, C. et al. Stem cell-like plasticity of naïve and distinct memory CD8+ T cell subsets. Semin. Immunol. 21, 62–68 (2009).

  4. 4.

    Wherry, E. J. et al. Lineage relationship and protective immunity of memory CD8 T cell subsets. Nat. Immunol. 4, 225–234 (2003).

  5. 5.

    Farber, D. L., Yudanin, N. A. & Restifo, N. P. Human memory T cells: generation, compartmentalization and homeostasis. Nat. Rev. Immunol. 14, 24–35 (2014).

  6. 6.

    Sallusto, F., Geginat, J. & Lanzavecchia, A. Central memory and effector memory T cell subsets: function, generation, and maintenance. Annu. Rev. Immunol. 22, 745–763 (2004).

  7. 7.

    Park, C. O. & Kupper, T. S. The emerging role of resident memory T cells in protective immunity and inflammatory disease. Nat. Med. 21, 688–697 (2015).

  8. 8.

    Mueller, S. N. & Mackay, L. K. Tissue-resident memory T cells: local specialists in immune defence. Nat. Rev. Immunol. 16, 79–89 (2016).

  9. 9.

    Mowat, A. M., McInnes, I. B. & Parrott, D. M. V. Functional properties of intra-epithelial lymphocytes from mouse small intestine. IV. Investigation of the proliferative capacity of IEL using phorbol ester and calcium ionophore. Immunology 66, 398–403 (1989).

  10. 10.

    Ebert, E. C., Roberts, A. I., Brolin, R. E. & Raska, K. Examination of the low proliferative capacity of human jejunal intraepithelial lymphocytes. Clin. Exp. Immunol. 65, 148–157 (1986).

  11. 11.

    Masopust, D., Vezys, V., Wherry, E. J., Barber, D. L. & Ahmed, R. Cutting edge: gut microenvironment promotes differentiation of a unique memory CD8 T cell population. J. Immunol. 176, 2079–2083 (2006).

  12. 12.

    Steinert, E. M. et al. Quantifying memory CD8 T cells reveals regionalization of immunosurveillance. Cell 161, 737–749 (2015).

  13. 13.

    Fernandez-Ruiz, D. et al. Liver-resident memory CD8+ T cells form a front-line defense against malaria liver-stage infection. Immunity 45, 889–902 (2016).

  14. 14.

    Wakim, L. M. et al. The molecular signature of tissue resident memory CD8 T cells isolated from the brain. J. Immunol. 189, 3462–3471 (2012).

  15. 15.

    Ariotti, S. et al. Skin-resident memory CD8+ T cells trigger a state of tissue-wide pathogen alert. Science 346, 101–105 (2014).

  16. 16.

    Schenkel, J. M. et al. Resident memory CD8 T cells trigger protective innate and adaptive immune responses. Science 346, 98–101 (2014).

  17. 17.

    Gebhardt, T. et al. Different patterns of peripheral migration by memory CD4+ and CD8+ T cells. Nature 477, 216–219 (2011).

  18. 18.

    Zaid, A. et al. Persistence of skin-resident memory T cells within an epidermal niche. Proc. Natl. Acad. Sci. USA 111, 5307–5312 (2014).

  19. 19.

    Miller, M. J., Wei, S. H., Parker, I. & Cahalan, M. D. Two-photon imaging of lymphocyte motility and antigen response in intact lymph node. Science 296, 1869–1873 (2002).

  20. 20.

    Casey, K. A. et al. Antigen-independent differentiation and maintenance of effector-like resident memory T cells in tissues. J. Immunol. 188, 4866–4875 (2012).

  21. 21.

    Schenkel, J. M., Fraser, K. A., Vezys, V. & Masopust, D. Sensing and alarm function of resident memory CD8+ T cells. Nat. Immunol. 14, 509–513 (2013).

  22. 22.

    Beura, L. K. et al. Lymphocytic choriomeningitis virus persistence promotes effector-like memory differentiation and enhances mucosal T cell distribution. J. Leukoc. Biol. 97, 217–225 (2015).

  23. 23.

    Nakanishi, Y., Lu, B., Gerard, C. & Iwasaki, A. CD8+ T lymphocyte mobilization to virus-infected tissue requires CD4+ T-cell help. Nature 462, 510–513 (2009).

  24. 24.

    Jiang, X. et al. Skin infection generates non-migratory memory CD8+ TRM cells providing global skin immunity. Nature 483, 227–231 (2012).

  25. 25.

    Sun, J. C. & Bevan, M. J. Defective CD8 T cell memory following acute infection without CD4 T cell help. Science 300, 339–342 (2003).

  26. 26.

    Shedlock, D. J. & Shen, H. Requirement for CD4 T cell help in generating functional CD8 T cell memory. Science 300, 337–339 (2003).

  27. 27.

    Hickman, H. D. et al. Anatomically restricted synergistic antiviral activities of innate and adaptive immune cells in the skin. Cell Host Microbe 13, 155–168 (2013).

  28. 28.

    Gaylo, A., Schrock, D. C., Fernandes, N. R. J. & Fowell, D. J. T cell interstitial migration: motility cues from the inflamed tissue for micro- and macro-positioning. Front. Immunol. 7, 428 (2016).

  29. 29.

    Weninger, W., Biro, M. & Jain, R. Leukocyte migration in the interstitial space of non-lymphoid organs. Nat. Rev. Immunol. 14, 232–246 (2014).

  30. 30.

    Steinbach, K. et al. Brain-resident memory T cells represent an autonomous cytotoxic barrier to viral infection. J. Exp. Med. 213, 1571–1587 (2016).

  31. 31.

    Glennie, N. D. et al. Skin-resident memory CD4+ T cells enhance protection against Leishmania major infection. J. Exp. Med. 212, 1405–1414 (2015).

  32. 32.

    Stary, G. et al. A mucosal vaccine against Chlamydia trachomatis generates two waves of protective memory T cells. Science 348, aaa8205 (2015).

  33. 33.

    Khan, T. N., Mooster, J. L., Kilgore, A. M., Osborn, J. F. & Nolz, J. C. Local antigen in nonlymphoid tissue promotes resident memory CD8+ T cell formation during viral infection. J. Exp. Med. 213, 951–966 (2016).

  34. 34.

    Mackay, L. K. et al. Long-lived epithelial immunity by tissue-resident memory T (TRM) cells in the absence of persisting local antigen presentation. Proc. Natl. Acad. Sci. USA 109, 7037–7042 (2012).

  35. 35.

    Wu, T. et al. Lung-resident memory CD8 T cells (TRM) are indispensable for optimal cross-protection against pulmonary virus infection. J. Leukoc. Biol. 95, 215–224 (2014).

  36. 36.

    Çuburu, N. et al. Intravaginal immunization with HPV vectors induces tissue-resident CD8+ T cell responses. J. Clin. Invest. 122, 4606–4620 (2012).

  37. 37.

    Kang, S. S. et al. Migration of cytotoxic lymphocytes in cell cycle permits local MHC I-dependent control of division at sites of viral infection. J. Exp. Med. 208, 747–759 (2011).

  38. 38.

    Klein, I. & Crispe, I. N. Complete differentiation of CD8+ T cells activated locally within the transplanted liver. J. Exp. Med. 203, 437–447 (2006).

  39. 39.

    Wakim, L. M., Waithman, J., van Rooijen, N., Heath, W. R. & Carbone, F. R. Dendritic cell-induced memory T cell activation in nonlymphoid tissues. Science 319, 198–202 (2008).

  40. 40.

    Posavad, C. M. et al. Enrichment of herpes simplex virus type 2 (HSV-2) reactive mucosal T cells in the human female genital tract. Mucosal Immunol. 10, 1259–1269 (2017).

  41. 41.

    Zhu, J. et al. Immune surveillance by CD8αα+ skin-resident T cells in human herpes virus infection. Nature 497, 494–497 (2013).

  42. 42.

    Clark, R. A. Resident memory T cells in human health and disease. Sci. Transl. Med. 7, 269rv1 (2015).

  43. 43.

    Anderson, K. G. et al. Intravascular staining for discrimination of vascular and tissue leukocytes. Nat. Protoc. 9, 209–222 (2014).

  44. 44.

    Thompson, E. A., Beura, L. K., Nelson, C. E., Anderson, K. G. & Vezys, V. Shortened intervals during heterologous boosting preserve memory CD8 T cell function but compromise longevity. J. Immunol. 196, 3054–3063 (2016).

  45. 45.

    Mohammed, J. et al. Stromal cells control the epithelial residence of DCs and memory T cells by regulated activation of TGF-β. Nat. Immunol. 17, 414–421 (2016).

  46. 46.

    Fife, B. T. et al. Interactions between PD-1 and PD-L1 promote tolerance by blocking the TCR-induced stop signal. Nat. Immunol. 10, 1185–1192 (2009).

Download references


We thank the members of the Masopust laboratory for helpful discussions. This work was funded by the Howard Hughes Medical Institute Faculty Scholars program (D.M.) and the US National Institutes of Health (grants R01AI111671 and R01AI084913 to D.M.; grant R21AI123600 to B.J.B.). H.D.H. was funded by the Intramural Research Program of the US National Institute of Allergy and Infectious Diseases.

Author information


  1. Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN, USA

    • Lalit K. Beura
    • , Emily A. Thompson
    • , Jason M. Schenkel
    • , Sathi Wijeyesinghe
    • , Raissa Fonseca
    • , Vaiva Vezys
    •  & David Masopust
  2. Center for Immunology, University of Minnesota, Minneapolis, MN, USA

    • Lalit K. Beura
    • , Jason S. Mitchell
    • , Emily A. Thompson
    • , Jason M. Schenkel
    • , Sathi Wijeyesinghe
    • , Raissa Fonseca
    • , Brandon J. Burbach
    • , Vaiva Vezys
    • , Brian T. Fife
    •  & David Masopust
  3. Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA

    • Jason S. Mitchell
    •  & Brandon J. Burbach
  4. Department of Dermatology, University of Minnesota, Minneapolis, MN, USA

    • Javed Mohammed
  5. Viral Immunity and Pathogenesis Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, US National Institutes of Health, Bethesda, MD, USA

    • Heather D. Hickman
  6. Department of Medicine, University of Minnesota, Minneapolis, MN, USA

    • Brian T. Fife


  1. Search for Lalit K. Beura in:

  2. Search for Jason S. Mitchell in:

  3. Search for Emily A. Thompson in:

  4. Search for Jason M. Schenkel in:

  5. Search for Javed Mohammed in:

  6. Search for Sathi Wijeyesinghe in:

  7. Search for Raissa Fonseca in:

  8. Search for Brandon J. Burbach in:

  9. Search for Heather D. Hickman in:

  10. Search for Vaiva Vezys in:

  11. Search for Brian T. Fife in:

  12. Search for David Masopust in:


L.K.B., J.S.M., E.A.T., J.M.S., J.M., S.W., R.F. and B.J.B. performed the experiments; H.D.H., V.V. and B.T.F. contributed critical reagents and experimental help; L.K.B., J.S.M. and E.A.T. analyzed intravital microscopy data; L.K.B. and D.M. wrote the manuscript; and D.M. was responsible for research supervision, coordination and strategy.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to David Masopust.

Integrated supplementary information

Supplementary information


  1. Supplementary Video 1

    Migration of CD8+ T cells in the uterine stroma at the peak of viremia

  2. Supplementary Video 2

    Migration of CD8+ T cells at the peak of effector response

  3. Supplementary Video 3

    Migration of resident memory CD8+ T cells in the FRT

  4. Supplementary Video 4

    Reduced migrational speed of TRM cells after local antigen recognition in the FRT

  5. Supplementary Video 5

    Non-antigen-specific recall failed to induce deceleration of TRM cells

  6. Supplementary Video 6

    Cognate antigen interaction is essential for arrest of TRM cell motility in the FRT

  7. Supplementary Video 7

    Examples of memory T cells undergoing division in the uterine stroma

  8. Supplementary Video 8

    TRM cells divide in situ after local reactivation