Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Astrocytes decrease adult neurogenesis during virus-induced memory dysfunction via IL-1

Abstract

Memory impairment following West Nile virus neuroinvasive disease (WNND) is associated with loss of hippocampal synapses with lack of recovery. Adult neurogenesis and synaptogenesis are fundamental features of hippocampal repair, which suggests that viruses affect these processes. Here, in an established model of WNND-induced cognitive dysfunction, transcriptional profiling revealed alterations in the expression of genes encoding molecules that limit adult neurogenesis, including interleukin 1 (IL-1). Mice that had recovered from WNND exhibited fewer neuroblasts and increased astrogenesis without recovery of hippocampal neurogenesis at 30 d. Analysis of cytokine production in microglia and astrocytes isolated ex vivo revealed that the latter were the predominant source of IL-1. Mice deficient in the IL-1 receptor IL-1R1 and that had recovered from WNND exhibited normal neurogenesis, recovery of presynaptic termini and resistance to spatial learning defects, the last of which likewise occurred after treatment with an IL-1R1 antagonist. Thus, ‘preferential’ generation of proinflammatory astrocytes impaired the homeostasis of neuronal progenitor cells via expression of IL-1; this might underlie the long-term cognitive consequences of WNND but also provides a therapeutic target.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Transcripts of genes encoding molecules that affect neurogenesis and markers of proinflammatory astrocytes are altered in mice that had recovered from WNV infection.
Fig. 2: Fewer new neurons are born within the DG during recovery from infection with WNV-NS5-E218A.
Fig. 3: Deficits in adult neurogenesis during WNV infection.
Fig. 4: More astrocytes are born within the hippocampus during acute WNV encephalitis, and they adopt a proinflammatory phenotype and express IL-1β.
Fig. 5: Il1r1 −/− mice resist WNV-mediated alterations in neuroblast proliferation and recover synapses earlier than do wild-type mice.
Fig. 6: WNV-NS5-E218A-infected Il1r1 –/– mice are protected from virus-induced spatial learning deficits in the Barnes maze behavior task.
Fig. 7: WNV-NS5-E218A-infected mice treated with anakinra are protected from virus-induced spatial learning deficits on the Barnes maze behavior task.

Similar content being viewed by others

References

  1. Salimi, H., Cain, M. D. & Klein, R. S. Encephalitic arboviruses: emergence, clinical presentation, and neuropathogenesis. Neurotherapeutics 13, 514–534 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Lazear, H. M. & Diamond, M. S. New insights into innate immune restriction of West Nile virus infection. Curr. Opin. Virol. 11, 1–6 (2015).

    Article  CAS  PubMed  Google Scholar 

  3. Lambert, S. L., Aviles, D., Vehaskari, V. M. & Ashoor, I. F. Severe West Nile virus meningoencephalitis in a pediatric renal transplant recipient: successful recovery and long-term neuropsychological outcome. Pediatr. Transplant. 20, 836–839 (2016).

    Article  CAS  PubMed  Google Scholar 

  4. Patel, H., Sander, B. & Nelder, M. P. Long-term sequelae of West Nile virus-related illness: a systematic review. Lancet. Infect. Dis. 15, 951–959 (2015).

    Article  PubMed  Google Scholar 

  5. Shrestha, B., Zhang, B., Purtha, W. E., Klein, R. S. & Diamond, M. S. Tumor necrosis factor alpha protects against lethal West Nile virus infection by promoting trafficking of mononuclear leukocytes into the central nervous system. J. Virol. 82, 8956–8964 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lazear, H. M. et al. Interferon-λ restricts West Nile virus neuroinvasion by tightening the blood-brain barrier. Sci. Transl. Med. 7, 284ra59 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Lazear, H. M., Pinto, A. K., Vogt, M. R., Gale, M. Jr. & Diamond, M. S. Beta interferon controls West Nile virus infection and pathogenesis in mice. J. Virol. 85, 7186–7194 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Samuel, M. A. & Diamond, M. S. Alpha/beta interferon protects against lethal West Nile virus infection by restricting cellular tropism and enhancing neuronal survival. J. Virol. 79, 13350–13361 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Shrestha, B. et al. Gamma interferon plays a crucial early antiviral role in protection against West Nile virus infection. J. Virol. 80, 5338–5348 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Durrant, D. M., Robinette, M. L. & Klein, R. S. IL-1R1 is required for dendritic cell-mediated T cell reactivation within the CNS during West Nile virus encephalitis. J. Exp. Med. 210, 503–516 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ramos, H. J. et al. IL-1β signaling promotes CNS-intrinsic immune control of West Nile virus infection. PLoS. Pathog. 8, e1003039 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Guarner, J. et al. Clinicopathologic study and laboratory diagnosis of 23 cases with West Nile virus encephalomyelitis. Hum. Pathol. 35, 983–990 (2004).

    Article  PubMed  Google Scholar 

  13. Leyssen, P. et al. Acute encephalitis, a poliomyelitis-like syndrome and neurological sequelae in a hamster model for flavivirus infections. Brain. Pathol. 13, 279–290 (2003).

    Article  PubMed  Google Scholar 

  14. Vasek, M. J. et al. A complement-microglial axis drives synapse loss during virus-induced memory impairment. Nature 534, 538–543 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhang, B., Patel, J., Croyle, M., Diamond, M. S. & Klein, R. S. TNF-α-dependent regulation of CXCR3 expression modulates neuronal survival during West Nile virus encephalitis. J. Neuroimmunol. 224, 28–38 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ceccaldi, P. E., Lucas, M. & Despres, P. New insights on the neuropathology of West Nile virus. FEMS. Microbiol. Lett. 233, 1–6 (2004).

    Article  CAS  PubMed  Google Scholar 

  17. Szretter, K. J. et al. 2′-O methylation of the viral mRNA cap by West Nile virus evades ifit1-dependent and -independent mechanisms of host restriction in vivo. PLoS. Pathog. 8, e1002698 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Michailidou, I. et al. Complement C1q-C3-associated synaptic changes in multiple sclerosis hippocampus. Ann. Neurol. 77, 1007–1026 (2015).

    Article  CAS  PubMed  Google Scholar 

  19. Hong, S. et al. Complement and microglia mediate early synapse loss in Alzheimer mouse models. Science 352, 712–716 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sekar, A. et al. Schizophrenia risk from complex variation of complement component 4. Nature 530, 177–183 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Jarrard, L. E. On the role of the hippocampus in learning and memory in the rat. Behav. Neural. Biol. 60, 9–26 (1993).

    Article  CAS  PubMed  Google Scholar 

  22. Ming, G. L. & Song, H. Adult neurogenesis in the mammalian brain: significant answers and significant questions. Neuron. 70, 687–702 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Mishra, B. B., Gundra, U. M. & Teale, J. M. Expression and distribution of Toll-like receptors 11-13 in the brain during murine neurocysticercosis. J. Neuroinflammation 5, 53 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Lieberwirth, C., Pan, Y., Liu, Y., Zhang, Z. & Wang, Z. Hippocampal adult neurogenesis: Its regulation and potential role in spatial learning and memory. Brain. Res. 1644, 127–140 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Cheffer, A., Tárnok, A. & Ulrich, H. Cell cycle regulation during neurogenesis in the embryonic and adult brain. Stem. Cell. Rev. 9, 794–805 (2013).

    Article  CAS  PubMed  Google Scholar 

  26. Riazi, K. et al. Microglia-dependent alteration of glutamatergic synaptic transmission and plasticity in the hippocampus during peripheral inflammation. J. Neurosci. 35, 4942–4952 (2015).

    Article  CAS  PubMed  Google Scholar 

  27. Wu, M. D., Montgomery, S. L., Rivera-Escalera, F., Olschowka, J. A. & O’Banion, M. K. Sustained IL-1β expression impairs adult hippocampal neurogenesis independent of IL-1 signaling in nestin+ neural precursor cells. Brain. Behav. Immun. 32, 9–18 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. del Rey, A., Balschun, D., Wetzel, W., Randolf, A. & Besedovsky, H. O. A cytokine network involving brain-borne IL-1β, IL-1ra, IL-18, IL-6, and TNFα operates during long-term potentiation and learning. Brain. Behav. Immun. 33, 15–23 (2013).

    Article  PubMed  Google Scholar 

  29. Belarbi, K. & Rosi, S. Modulation of adult-born neurons in the inflamed hippocampus. Front. Cell. Neurosci. 7, 145 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Martinon, F., Burns, K. & Tschopp, J. The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-β. Mol. Cell 10, 417–426 (2002).

    Article  CAS  PubMed  Google Scholar 

  31. Ben-Menachem-Zidon, O., Ben-Menahem, Y., Ben-Hur, T. & Yirmiya, R. Intra-hippocampal transplantation of neural precursor cells with transgenic over-expression of IL-1 receptor antagonist rescues memory and neurogenesis impairments in an Alzheimer’s disease model. Neuropsychopharmacology. 39, 401–414 (2014).

    Article  CAS  PubMed  Google Scholar 

  32. Hein, A. M. et al. Sustained hippocampal IL-1β overexpression impairs contextual and spatial memory in transgenic mice. Brain. Behav. Immun. 24, 243–253 (2010).

    Article  CAS  PubMed  Google Scholar 

  33. Larson, S. J., Hartle, K. D. & Ivanco, T. L. Acute administration of interleukin-1β disrupts motor learning. Behav. Neurosci. 121, 1415–1420 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Cunningham, C. & Sanderson, D. J. Malaise in the water maze: untangling the effects of LPS and IL-1beta on learning and memory. Brain. Behav. Immun. 22, 1117–1127 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Heneka, M. T. et al. NLRP3 is activated in Alzheimer’s disease and contributes to pathology in APP/PS1 mice. Nature 493, 674–678 (2013).

    Article  CAS  PubMed  Google Scholar 

  36. Liddelow, S. A. et al. Neurotoxic reactive astrocytes are induced by activated microglia. Nature 541, 481–487 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sun, T., Vasek, M. J. & Klein, R. S. Congenitally acquired persistent lymphocytic choriomeningitis viral infection reduces neuronal progenitor pools in the adult hippocampus and subventricular zone. PLoS. ONE 9, e96442 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Chai, H. et al. Neural circuit-specialized astrocytes: transcriptomic, proteomic, morphological, and functional evidence. Neuron 95, 531–549 (2017).

    Article  CAS  PubMed  Google Scholar 

  39. Feldmann, M., Pathipati, P., Sheldon, R. A., Jiang, X. & Ferriero, D. M. Isolating astrocytes and neurons sequentially from postnatal murine brains with a magnetic cell separation technique. J. Biol. Meth. 1, 1–7 (2014).

    Article  Google Scholar 

  40. Kim, E. J., Ables, J. L., Dickel, L. K., Eisch, A. J. & Johnson, J. E. Ascl1 (Mash1) defines cells with long-term neurogenic potential in subgranular and subventricular zones in adult mouse brain. PLoS. ONE 6, e18472 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Deverman, B. E. & Patterson, P. H. Cytokines and CNS development. Neuron 64, 61–78 (2009).

    Article  CAS  PubMed  Google Scholar 

  42. Green, H. F. et al. A role for interleukin-1β in determining the lineage fate of embryonic rat hippocampal neural precursor cells. Mol. Cell. Neurosci. 49, 311–321 (2012).

    Article  CAS  PubMed  Google Scholar 

  43. Wang, X. et al. Interleukin-1beta mediates proliferation and differentiation of multipotent neural precursor cells through the activation of SAPK/JNK pathway. Mol. Cell. Neurosci. 36, 343–354 (2007).

    Article  PubMed  Google Scholar 

  44. Das, S. & Basu, A. Japanese encephalitis virus infects neural progenitor cells and decreases their proliferation. J. Neurochem. 106, 1624–1636 (2008).

    CAS  PubMed  Google Scholar 

  45. Tang, H. et al. Zika virus infects human cortical neural progenitors and attenuates their growth. Cell. Stem. Cell. 18, 587–590 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Shrestha, B., Gottlieb, D. & Diamond, M. S. Infection and injury of neurons by West Nile encephalitis virus. J. Virol. 77, 13203–13213 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Tawarayama, H., Yoshida, Y., Suto, F., Mitchell, K. J. & Fujisawa, H. Roles of semaphorin-6B and plexin-A2 in lamina-restricted projection of hippocampal mossy fibers. J. Neurosci. 30, 7049–7060 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Yue, Y. et al. Mistargeting hippocampal axons by expression of a truncated Eph receptor. Proc. Natl. Acad. Sci. USA 99, 10777–10782 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Bamji, S. X. et al. Role of β-catenin in synaptic vesicle localization and presynaptic assembly. Neuron 40, 719–731 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Yu, X. & Malenka, R. C. Beta-catenin is critical for dendritic morphogenesis. Nat. Neurosci. 6, 1169–1177 (2003).

    Article  CAS  PubMed  Google Scholar 

  51. Cunningham, E. T. Jr. et al. In situ histochemical localization of type I interleukin-1 receptor messenger RNA in the central nervous system, pituitary, and adrenal gland of the mouse. J. Neurosci. 12, 1101–1114 (1992).

    CAS  PubMed  Google Scholar 

  52. John Lin, C. C. et al. Identification of diverse astrocyte populations and their malignant analogs. Nat. Neurosci. 20, 396–405 (2017).

    Article  CAS  PubMed  Google Scholar 

  53. Peng, H. et al. HIV-1-infected and immune-activated macrophages induce astrocytic differentiation of human cortical neural progenitor cells via the STAT3 pathway. PLoS. ONE 6, e19439 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Koo, J. W. & Duman, R. S. IL-1beta is an essential mediator of the antineurogenic and anhedonic effects of stress. Proc. Natl. Acad. Sci. USA 105, 751–756 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Wu, M. D. et al. Adult murine hippocampal neurogenesis is inhibited by sustained IL-1β and not rescued by voluntary running. Brain. Behav. Immun. 26, 292–300 (2012).

    Article  CAS  PubMed  Google Scholar 

  56. Prieto, G. A. et al. Synapse-specific IL-1 receptor subunit reconfiguration augments vulnerability to IL-1β in the aged hippocampus. Proc. Natl. Acad. Sci. USA 112, E5078–E5087 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Tong, L. et al. Brain-derived neurotrophic factor-dependent synaptic plasticity is suppressed by interleukin-1β via p38 mitogen-activated protein kinase. J. Neurosci. 32, 17714–17724 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Chen, E. et al. A novel role of the STAT3 pathway in brain inflammation-induced human neural progenitor cell differentiation. Curr. Mol. Med. 13, 1474–1484 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Vallières, L., Campbell, I. L., Gage, F. H. & Sawchenko, P. E. Reduced hippocampal neurogenesis in adult transgenic mice with chronic astrocytic production of interleukin-6. J. Neurosci. 22, 486–492 (2002).

    PubMed  Google Scholar 

  60. Smith, P. L., Hagberg, H., Naylor, A. S. & Mallard, C. Neonatal peripheral immune challenge activates microglia and inhibits neurogenesis in the developing murine hippocampus. Dev. Neurosci. 36, 119–131 (2014).

    Article  CAS  PubMed  Google Scholar 

  61. Daniels, B. P. et al. Regionally distinct astrocyte interferon signaling promotes blood-brain barrier integrity and limits immunopathology during neurotropic viral infection. J. Clin. Invest. 127, 843–856 (2017).

  62. Muroyama, Y., Fujiwara, Y., Orkin, S. H. & Rowitch, D. H. Specification of astrocytes by bHLH protein SCL in a restricted region of the neural tube. Nature 438, 360–363 (2005).

    Article  CAS  PubMed  Google Scholar 

  63. Tsai, H. H. et al. Regional astrocyte allocation regulates CNS synaptogenesis and repair. Science 337, 358–362 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Farmer, W. T. et al. Neurons diversify astrocytes in the adult brain through sonic hedgehog signaling. Science 351, 849–854 (2016).

    Article  CAS  PubMed  Google Scholar 

  65. Bialas, A. R. et al. Microglia-dependent synapse loss in type I interferon-mediated lupus. Nature 546, 539–543 (2017).

    CAS  PubMed  Google Scholar 

  66. Filiano, A. J., Gadani, S. P. & Kipnis, J. How and why do T cells and their derived cytokines affect the injured and healthy brain? Nat. Rev. Neurosci. 18, 375–384 (2017).

    Article  CAS  PubMed  Google Scholar 

  67. Tay, T. L., Savage, J. C., Hui, C. W., Bisht, K. & Tremblay, M. E. Microglia across the lifespan: from origin to function in brain development, plasticity and cognition. J. Physiol. 595, 1929–1945 (2017).

    Article  CAS  Google Scholar 

  68. Goshen, I. et al. A dual role for interleukin-1 in hippocampal-dependent memory processes. Psychoneuroendocrinology 32, 1106–1115 (2007).

    Article  CAS  PubMed  Google Scholar 

  69. Hellström, N. A., Björk-Eriksson, T., Blomgren, K. & Kuhn, H. G. Differential recovery of neural stem cells in the subventricular zone and dentate gyrus after ionizing radiation. Stem Cells 27, 634–641 (2009).

    Article  PubMed  Google Scholar 

  70. Covey, M. V., Loporchio, D., Buono, K. D. & Levison, S. W. Opposite effect of inflammation on subventricular zone versus hippocampal precursors in brain injury. Ann. Neurol. 70, 616–626 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank G. Enikolopov (Cold Spring Harbor Laboratories) for Nestin-GFP mice; and M. Diamond (Washington University) for WNV-NS5-E218A. Supported by the National Institutes of Health (U19 AI083019, R01 NS052632 and HDTRA11510032 to R.S.K.), the National Institute of Arthritis and Musculoskeletal and Skin Diseases of the US National Institutes of Health (P30AR048335) and the Speed Congenics Facility of the Rheumatic Diseases Core Center (experimental support). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Contributions

C.G., M.J.V. and R.S.K. designed the experiments; C.G. and M.J.V. did most of the experiments, compiled and analyzed the data; C.G., M.J.V. and R.S.K. prepared the figures; L.L.V., T.S. and X.J. were involved in specific experiments; and C.G., M.J.V. and R.S.K. analyzed the data and wrote the manuscript.

Corresponding author

Correspondence to Robyn S. Klein.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Figure 1 Flow cytometry gating strategy.

a Following isolation and staining with Dapi and antibodies to CD45, Doublecortin, and BrdU, doublets were excluded, and the CD45-negative population was utilized for further gates. b Percentage of BrdU+ neuroblasts, through expression of the marker, DCX, was calculated and example plots shown from Hippocampus (HPC), Hippocampus from an animal which did not receive BrdU injection (HPC no BrdU), Cortex (CTX), and Subventricular Zone (SVZ).

Supplementary Figure 2 WNV permissivity of DCX+ neuroblasts in vivo.

a 5 week old mice were infected via the footpad with 100 pfu of wild type WNV(NY99) and harvested for tissue collection on day 8 post infection. Immunohistochemistry is shown for West Nile antigen and the neuroblast marker, doublecortin (DCX) within the Dentate gyrus (DG) and Subventricular Zones (SVZ). Many WNV+ neurons can be seen within the granule cell layer (GCL) of the DG and the striatum neighboring the SVZ, however only 1 out of 4 animals showed any WNV and DCX-double positive cells (shown by white arrowhead, Left), resulting in a mean % of infection of less than 1% of total DCX+ cells. Within the DG, infected DCX+ cells were always located within the GCL—indicating that they are more mature neuroblasts or immature neurons. b Immunostaining for GFP and GFAP in mock and WNV-NS5-E218A nestin-GFP reporter animals. Representative images of the dentate gyrus are shown on the left and quantification of Nestin+ transit amplifying (TA) and Nestin+GFAP+ neural stem cells (NSC) on the right. Nestin-GFP (green), GFAP (red) and DAPI (blue). ns = not significant (P > 0.05).

Supplementary Figure 3 Determination of astrocyte and microglia purity.

qRT-PCR analysis of expression of cell type specific astrocyte (GFAP), microglia (Cx3CR1, Trem2), and neuronal (RBFox3) transcripts in ex vivo isolated astrocytes (ASC2+ cells) and microglia (CD11b+ cells). *, P < 0.05 using two-way ANOVA followed by Bonferonni post test.

Supplementary Figure 4 Lack of IL-1 signaling does not affect viral control or immune cell infiltrates to the CNS.

a-c Plaque assay of CNS tissue from WNV-NS5-E218A infected wildtype (WT) and Il1r1 −/− animals at 6 d.p.i. d qPCR analysis of WNV envelope protein at 25 d.p.i. in hippocampus from WNV-NS5-E218A WT and Il1r1 −/− mice. e-l Flow cytometric analysis of stained single cell populations isolated from hippocampus of WT and Il1r1 −/− mice at 6 d.p.i. ns = not significant (P > 0.05 using two tailed student’s t test).

Supplementary Figure 5 Blood–brain barrier opening peaks at 6 d.p.i. and closes by 12 d.p.i.

a-c Relative blood brain barrier permeability of the frontal cortex, hippocampus, and cerebellum at 3, 6, 9, and 12 d.p.i. was assessed by an in vivo sodium fluorescein assay to determine optimal time for drug administration. d.p.i.: Days Post Infection.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garber, C., Vasek, M.J., Vollmer, L.L. et al. Astrocytes decrease adult neurogenesis during virus-induced memory dysfunction via IL-1. Nat Immunol 19, 151–161 (2018). https://doi.org/10.1038/s41590-017-0021-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41590-017-0021-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing