Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Sensitive fluorescent biosensor reveals differential subcellular regulation of PKC

Abstract

The protein kinase C (PKC) family of serine and threonine kinases, consisting of three distinctly regulated subfamilies, has been established as critical for various cellular functions. However, how PKC enzymes are regulated at different subcellular locations, particularly at emerging signaling hubs, is unclear. Here we present a sensitive excitation ratiometric C kinase activity reporter (ExRai-CKAR2) that enables the detection of minute changes (equivalent to 0.2% of maximum stimulation) in subcellular PKC activity. Using ExRai-CKAR2 with an enhanced diacylglycerol (DAG) biosensor, we uncover that G-protein-coupled receptor stimulation triggers sustained PKC activity at the endoplasmic reticulum and lysosomes, differentially mediated by Ca2+-sensitive conventional PKC and DAG-sensitive novel PKC, respectively. The high sensitivity of ExRai-CKAR2, targeted to either the cytosol or partitioning defective complexes, further enabled us to detect previously inaccessible endogenous atypical PKC activity in three-dimensional organoids. Taken together, ExRai-CKAR2 is a powerful tool for interrogating PKC regulation in response to physiological stimuli.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Development and characterization of ExRai-CKAR2.
Fig. 2: Subcellular targeting of ExRai-CKAR2.
Fig. 3: PKC regulation at the ER and lysosome.
Fig. 4: Lysosomal DAG is critical for lysosomal PKC activity.
Fig. 5: ExRai-CKAR2 reports endogenous aPKC activity in organoids.
Fig. 6: Targeted biosensor reports aPKC activity in lumenogenesis.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available within the main text and Supplementary Information. Data are also available from the corresponding author upon request. Source data are provided with this paper.

Code availability

Custom ImageJ macros and MATLAB code used to analyze imaging data are available on GitHub (https://github.com/jinzhanglab-ucsd/MatScopeSuite)32.

References

  1. Dowling, C. M. et al. Protein kinase CβII suppresses colorectal cancer by regulating IGF-1 mediated cell survival. Oncotarget 7, 20919–20933 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Antal, C. E. et al. Cancer-associated protein kinase C mutations reveal kinase’s role as tumor suppressor. Cell 160, 489–502 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Rask-Madsen, C. & King, G. L. Proatherosclerotic mechanisms involving protein kinase C in diabetes and insulin resistance. Arterioscler. Thromb. Vasc. Biol. 25, 487–496 (2005).

    Article  CAS  PubMed  Google Scholar 

  4. Lorden, G. et al. Enhanced activity of Alzheimer disease-associated variant of protein kinase Cα drives cognitive decline in a mouse model. Nat. Commun. 13, 7200 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Van, A. N. et al. Protein kinase C fusion proteins are paradoxically loss of function in cancer. J. Biol. Chem. 296, 100445 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Colgan, L. A. et al. PKCα integrates spatiotemporally distinct Ca2+ and autocrine BDNF signaling to facilitate synaptic plasticity. Nat. Neurosci. 21, 1027–1037 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lesley, A. C. et al. Dual regulation of spine-specific and synapse-to-nucleus signaling by PKCδ during plasticity. J. Neurosci. 43, 5432 (2023).

    Article  Google Scholar 

  8. Mochly-Rosen, D., Das, K. & Grimes, K. V. Protein kinase C, an elusive therapeutic target? Nat. Rev. Drug Discov. 11, 937–957 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Newton, A. C. Protein kinase C: perfectly balanced. Crit. Rev. Biochem. Mol. Biol. 53, 208–230 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Tobias, I. S. & Newton, A. C. Protein scaffolds control localized protein kinase Cζ activity. J. Biol. Chem. 291, 13809–13822 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gallegos, L. L., Kunkel, M. T. & Newton, A. C. Targeting protein kinase C activity reporter to discrete intracellular regions reveals spatiotemporal differences in agonist-dependent signaling. J. Biol. Chem. 281, 30947–30956 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. Enyedi, A. et al. Protein kinase C phosphorylates the ‘a’ forms of plasma membrane Ca2+ pump isoforms 2 and 3 and prevents binding of calmodulin. J. Biol. Chem. 272, 27525–27528 (1997).

    Article  CAS  PubMed  Google Scholar 

  13. Verma, A. K., Paszty, K., Filoteo, A. G., Penniston, J. T. & Enyedi, A. Protein kinase C phosphorylates plasma membrane Ca2+ pump isoform 4a at its calmodulin binding domain. J. Biol. Chem. 274, 527–531 (1999).

    Article  CAS  PubMed  Google Scholar 

  14. Blackshear, P. J. The MARCKS family of cellular protein kinase C substrates. J. Biol. Chem. 268, 1501–1504 (1993).

    Article  CAS  PubMed  Google Scholar 

  15. Kajimoto, T., Sawamura, S., Tohyama, Y., Mori, Y. & Newton, A. C. Protein kinase Cδ-specific activity reporter reveals agonist-evoked nuclear activity controlled by Src family of kinases. J. Biol. Chem. 285, 41896–41910 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sakaki, K. & Kaufman, R. J. Regulation of ER stress-induced macroautophagy by protein kinase C. Autophagy 4, 841–843 (2008).

    Article  CAS  PubMed  Google Scholar 

  17. Chen, Y. J. et al. Involvement of protein kinase C in the inhibition of lipopolysaccharide-induced nitric oxide production by thapsigargin in RAW 264.7 macrophages. Int. J. Biochem. Cell Biol. 37, 2574–2585 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. Schmitz-Peiffer, C. Deconstructing the role of PKC epsilon in glucose homeostasis. Trends Endocrinol. Metab. 31, 344–356 (2020).

    Article  CAS  PubMed  Google Scholar 

  19. Li, Y. et al. Protein kinase C controls lysosome biogenesis independently of mTORC1. Nat. Cell Biol. 18, 1065–1077 (2016).

    Article  CAS  PubMed  Google Scholar 

  20. Larocca, M. C., Ochoa, E. J., Rodriguez Garay, E. A. & Marinelli, R. A. Protein kinase C-dependent inhibition of the lysosomal degradation of endocytosed proteins in rat hepatocytes. Cell. Signal. 14, 641–647 (2002).

    Article  CAS  PubMed  Google Scholar 

  21. Horikoshi, Y. et al. Interaction between PAR-3 and the aPKC–PAR-6 complex is indispensable for apical domain development of epithelial cells. J. Cell Sci. 122, 1595–1606 (2009).

    Article  CAS  PubMed  Google Scholar 

  22. Jung, H. Y. et al. Apical–basal polarity inhibits epithelial–mesenchymal transition and tumour metastasis by PAR-complex-mediated SNAI1 degradation. Nat. Cell Biol. 21, 359–371 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Martin-Belmonte, F. et al. Cell-polarity dynamics controls the mechanism of lumen formation in epithelial morphogenesis. Curr. Biol. 18, 507–513 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hong, Y. aPKC: the kinase that phosphorylates cell polarity. F1000Res 7, 903 (2018).

    Article  Google Scholar 

  25. Kajimoto, T. et al. Activation of atypical protein kinase C by sphingosine 1-phosphate revealed by an aPKC-specific activity reporter. Sci. Signal. 12, eaat6662 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gallegos, L. L. & Newton, A. C. Genetically encoded fluorescent reporters to visualize protein kinase C activation in live cells. Methods Mol. Biol. 756, 295–310 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Antal, C. E. & Newton, A. C. Tuning the signalling output of protein kinase C. Biochem. Soc. Trans. 42, 1477–1483 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Violin, J. D., Zhang, J., Tsien, R. Y. & Newton, A. C. A genetically encoded fluorescent reporter reveals oscillatory phosphorylation by protein kinase C. J. Cell Biol. 161, 899–909 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Rutherford, C. et al. Regulation of cell survival by sphingosine-1-phosphate receptor S1P1 via reciprocal ERK-dependent suppression of Bim and PI-3-kinase/protein kinase C-mediated upregulation of Mcl-1. Cell Death Dis. 4, e927 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhang, J. F. et al. An ultrasensitive biosensor for high-resolution kinase activity imaging in awake mice. Nat. Chem. Biol. 17, 39–46 (2021).

    Article  CAS  PubMed  Google Scholar 

  31. Chen, M., Sun, T., Zhong, Y., Zhou, X. & Zhang, J. A highly sensitive fluorescent Akt biosensor reveals lysosome-selective regulation of lipid second messengers and kinase activity. ACS Cent. Sci. 7, 2009–2020 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Schmitt, D. L. et al. Spatial regulation of AMPK signaling revealed by a sensitive kinase activity reporter. Nat. Commun. 13, 3856 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Tsien, R. Y. The green fluorescent protein. Annu. Rev. Biochem. 67, 509–544 (1998).

    Article  CAS  PubMed  Google Scholar 

  34. Mehta, S. et al. Single-fluorophore biosensors for sensitive and multiplexed detection of signalling activities. Nat. Cell Biol. 20, 1215–1225 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ross, B. L. et al. Single-color, ratiometric biosensors for detecting signaling activities in live cells. eLife 7, e35458 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Ron, D. & Walter, P. Signal integration in the endoplasmic reticulum unfolded protein response. Nat. Rev. Mol. Cell Biol. 8, 519–529 (2007).

    Article  CAS  PubMed  Google Scholar 

  37. Almanza, A. et al. Endoplasmic reticulum stress signalling—from basic mechanisms to clinical applications. FEBS J. 286, 241–278 (2019).

    Article  CAS  PubMed  Google Scholar 

  38. Lawrence, R. E. & Zoncu, R. The lysosome as a cellular centre for signalling, metabolism and quality control. Nat. Cell Biol. 21, 133–142 (2019).

    Article  CAS  PubMed  Google Scholar 

  39. Karunagaran, D., Tzahar, E., Liu, N., Wen, D. & Yarden, Y. Neu differentiation factor inhibits EGF binding. A model for trans-regulation within the ErbB family of receptor tyrosine kinases. J. Biol. Chem. 270, 9982–9990 (1995).

    Article  CAS  PubMed  Google Scholar 

  40. Greenwald, E. et al. GPCR signaling measurement and drug profiling with an automated live-cell microscopy system. ACS Sens. 8, 19–27 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Keyes, J. et al. Signaling diversity enabled by Rap1-regulated plasma membrane ERK with distinct temporal dynamics. eLife 9, e57410 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Miranti, C. K., Ohno, S. & Brugge, J. S. Protein kinase c regulates integrin-induced activation of the extracellular regulated kinase pathway upstream of Shc. J. Biol. Chem. 274, 10571–10581 (1999).

    Article  CAS  PubMed  Google Scholar 

  43. Saito, N. & Shirai, Y. Protein kinase Cγ (PKCγ): function of neuron specific isotype. J. Biochem. 132, 683–687 (2002).

    Article  CAS  PubMed  Google Scholar 

  44. Hayashi, K. & Altman, A. Protein kinase Cθ (PKCθ): a key player in T cell life and death. Pharmacol. Res. 55, 537–544 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Takashima, A. et al. Protein kinase Cδ is a therapeutic target in malignant melanoma with NRAS mutation. ACS Chem. Biol. 9, 1003–1014 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Nishioka, T. et al. Rapid turnover rate of phosphoinositides at the front of migrating MDCK cells. Mol. Biol. Cell 19, 4213–4223 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Nelson, C. D. et al. Targeting of diacylglycerol degradation to M1 muscarinic receptors by β-arrestins. Science 315, 663–666 (2007).

    Article  CAS  PubMed  Google Scholar 

  48. Graybill, C., Wee, B., Atwood, S. X. & Prehoda, K. E. Partitioning-defective protein 6 (Par-6) activates atypical protein kinase C (aPKC) by pseudosubstrate displacement. J. Biol. Chem. 287, 21003–21011 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Trujillo, J. I. et al. 2-(6-Phenyl-1H-indazol-3-yl)-1H-benzo[d]imidazoles: design and synthesis of a potent and isoform selective PKC-ζ inhibitor. Bioorg. Med. Chem. Lett. 19, 908–911 (2009).

    Article  CAS  PubMed  Google Scholar 

  50. Kono, K. et al. Reconstruction of Par-dependent polarity in apolar cells reveals a dynamic process of cortical polarization. eLife 8, e45559 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Liu, Z. et al. Par complex cluster formation mediated by phase separation. Nat. Commun. 11, 2266 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Gao, Q. et al. The signalling receptor MCAM coordinates apical–basal polarity and planar cell polarity during morphogenesis. Nat. Commun. 8, 15279 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Martin-Belmonte, F. et al. PTEN-mediated apical segregation of phosphoinositides controls epithelial morphogenesis through Cdc42. Cell 128, 383–397 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Nakamoto, C. et al. A novel red fluorescence dopamine biosensor selectively detects dopamine in the presence of norepinephrine in vitro. Mol. Brain 14, 173 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Koveal, D. et al. A high-throughput multiparameter screen for accelerated development and optimization of soluble genetically encoded fluorescent biosensors. Nat. Commun. 13, 2919 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Hires, S. A., Tian, L. & Looger, L. L. Reporting neural activity with genetically encoded calcium indicators. Brain Cell Biol. 36, 69–86 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Newton, A. C. & Brognard, J. Reversing the paradigm: protein kinase C as a tumor suppressor. Trends Pharmacol. Sci. 38, 438–447 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Gökmen-Polar, Y., Murray, N. R., Velasco, M. A., Gatalica, Z. & Fields, A. P. Elevated protein kinase C βII is an early promotive event in colon carcinogenesis. Cancer Res. 61, 1375–1381 (2001).

    PubMed  Google Scholar 

  59. Domart, M.-C. et al. Acute manipulation of diacylglycerol reveals roles in nuclear envelope assembly & endoplasmic reticulum morphology. PLoS ONE 7, e51150 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Perreault, L. et al. Intracellular localization of diacylglycerols and sphingolipids influences insulin sensitivity and mitochondrial function in human skeletal muscle. JCI Insight 3, e96805 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Ma, J. S., Haydar, T. F. & Radoja, S. Protein kinase Cδ localizes to secretory lysosomes in CD8+ CTL and directly mediates TCR signals leading to granule exocytosis-mediated cytotoxicity. J. Immunol. 181, 4716–4722 (2008).

    Article  CAS  PubMed  Google Scholar 

  62. Wang, X., Zhao, H. F. & Zhang, G. J. Mechanism of cytosol phospholipase C and sphingomyelinase-induced lysosome destabilization. Biochimie 88, 913–922 (2006).

    Article  CAS  PubMed  Google Scholar 

  63. Matsuzawa, Y. & Hostetler, K. Y. Properties of phospholipase C isolated from rat liver lysosomes. J. Biol. Chem. 255, 646–652 (1980).

    Article  CAS  PubMed  Google Scholar 

  64. Carrasco, S. & Merida, I. Diacylglycerol-dependent binding recruits PKCθ and RasGRP1 C1 domains to specific subcellular localizations in living T lymphocytes. Mol. Biol. Cell 15, 2932–2942 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Kwon, Y. et al. Non-canonical β-adrenergic activation of ERK at endosomes. Nature 611, 173–179 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Dores, M. R., Grimsey, N. J., Mendez, F. & Trejo, J. ALIX regulates the ubiquitin-independent lysosomal sorting of the P2Y1 purinergic receptor via a YPX3L motif. PLoS ONE 11, e0157587 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Tanowitz, M. & von Zastrow, M. Ubiquitination-independent trafficking of G protein-coupled receptors to lysosomes. J. Biol. Chem. 277, 50219–50222 (2002).

    Article  CAS  PubMed  Google Scholar 

  68. Plouffe, B., Thomsen, A. R. B. & Irannejad, R. Emerging role of compartmentalized G protein-coupled receptor signaling in the cardiovascular field. ACS Pharm. Transl. Sci. 3, 221–236 (2020).

    Article  CAS  Google Scholar 

  69. Kim, J., Koo, B. K. & Knoblich, J. A. Human organoids: model systems for human biology and medicine. Nat. Rev. Mol. Cell Biol. 21, 571–584 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Keshara, R., Kim, Y. H. & Grapin-Botton, A. Organoid imaging: seeing development and function. Annu. Rev. Cell Dev. Biol. 38, 447–466 (2022).

    Article  CAS  PubMed  Google Scholar 

  71. Ponsioen, B. et al. Quantifying single-cell ERK dynamics in colorectal cancer organoids reveals EGFR as an amplifier of oncogenic MAPK pathway signalling. Nat. Cell Biol. 23, 377–390 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Rodriguez, J. et al. aPKC cycles between functionally distinct PAR protein assemblies to drive cell polarity. Dev. Cell 42, 400–415 e9 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Joberty, G., Petersen, C., Gao, L. & Macara, I. G. The cell-polarity protein Par6 links Par3 and atypical protein kinase C to Cdc42. Nat. Cell Biol. 2, 531–539 (2000).

    Article  CAS  PubMed  Google Scholar 

  74. Hogan, A. et al. Interaction of γ1-syntrophin with diacylglycerol kinase-ζ. Regulation of nuclear localization by PDZ interactions. J. Biol. Chem. 276, 26526–26533 (2001).

    Article  CAS  PubMed  Google Scholar 

  75. Zhang, J. Z. et al. Phase separation of a PKA regulatory subunit controls cAMP compartmentation and oncogenic signaling. Cell 182, 1531–1544 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Herbst, K. J., Allen, M. D. & Zhang, J. Luminescent kinase activity biosensors based on a versatile bimolecular switch. J. Am. Chem. Soc. 133, 5676–5679 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Debnath, J., Muthuswamy, S. K. & Brugge, J. S. Morphogenesis and oncogenesis of MCF-10A mammary epithelial acini grown in three-dimensional basement membrane cultures. Methods 30, 256–268 (2003).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank all members of the Zhang lab, especially Y. Zhong, for technical help and discussion of the paper and J. Hardy for help with artwork. We thank E. Griffis and P. Guo of the UCSD Nikon Imaging Center for assistance with confocal imaging, T. Hoang for his technical help with cloning and G. Lorden Losada from the A.C.N. lab for providing purified PKCα and technical support with in vitro characterization of ExRai-CKAR2. This work is supported by National Institutes of Health grants R35 CA197622, R01 CA262815 and RF1 MH126707 (to J.Z.), R35 GM122523 (to A.C.N.) and R01 CA236386, R01 CA174869 and R01 CA262794 (to J.Y.), as well as by a TRDRP Postdoctoral Fellowship (T32FT5342) to Q.S.

Author information

Authors and Affiliations

Authors

Contributions

Q.S., S.M., J.Y. and Jin Zhang conceptualized the project. J.-F.Z. and S.M. performed the linker screening and generated ExRai-CKAR2. Q.S. performed the in vitro characterization of ExRai-CKAR2, generated the other constructs and performed all live-cell and organoid imaging. Jing Zhang and Q.S. generated ExRai-CKAR2 and Cyto-ExRai-CKAR2 stable MDCK cell lines. Jing Zhang generated MDCK organoids. Q.S. generated HEK293T organoids. A.C.N., J.Y. and Jin Zhang supervised the project and coordinated experiments. Q.S. and Jing Zhang analyzed the data. Q.S., Jing Zhang, W.L., S.M. and Jin Zhang wrote the paper. All authors read and agreed on the final paper.

Corresponding author

Correspondence to Jin Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemical Biology thanks Jerome Fox, Chonglin Yang and the other, anonymous reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–19, Tables 1 and 2 and unprocessed western blots for Supplementary Figs.

Reporting Summary

Supplementary Data 1

Source data for all supplementary figures.

Source data

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, Q., Zhang, J., Lin, W. et al. Sensitive fluorescent biosensor reveals differential subcellular regulation of PKC. Nat Chem Biol 21, 501–511 (2025). https://doi.org/10.1038/s41589-024-01758-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41589-024-01758-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing