Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Substrate interactions guide cyclase engineering and lasso peptide diversification

Abstract

Lasso peptides are a diverse class of naturally occurring, highly stable molecules kinetically trapped in a distinctive [1]rotaxane conformation. How the ATP-dependent lasso cyclase constrains a relatively unstructured substrate peptide into a low entropy product has remained a mystery owing to poor enzyme stability and activity in vitro. In this study, we combined substrate tolerance data with structural predictions, bioinformatic analysis, molecular dynamics simulations and mutational scanning to construct a model for the three-dimensional orientation of the substrate peptide in the lasso cyclase active site. Predicted peptide cyclase molecular contacts were validated by rationally engineering multiple, phylogenetically diverse lasso cyclases to accept substrates rejected by the wild-type enzymes. Finally, we demonstrate the utility of lasso cyclase engineering by robustly producing previously inaccessible variants that tightly bind to integrin αvβ8, which is a primary activator of transforming growth factor β and, thus, an important anti-cancer target.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of lasso peptide formation and loop tolerance.
Fig. 2: Substrate loop and lasso cyclase interactions.
Fig. 3: FusC R321 (helix 11) governs intolerance to basic loops.
Fig. 4: Validation of the interactions between helix 18 and core position one.

Similar content being viewed by others

Data availability

All data and methods from this study are available in this article, Extended Data Figures and Tables, Supplementary Information and Supplementary Data. The RODEO-mined dataset of lasso peptide substrate–lasso cyclase pairs is included as Source Data File 1. The asparagine synthetase crystal structure referenced is found in the Protein Data Bank under code 1CT9. National Center for Biotechnology Information accession identifiers for proteins examined in this study are listed in Supplementary Table 2 with their corresponding core peptide sequences. They are also reprinted and linked here with their name (if named): FusC: WP_104612995.1, NbsC: WP_089507158.1, SnoC AIA02568.1, XgaC: WP_006452335.1, CapC: ABC39497.1, BreC: EGF94507.1, CK31C: (IV) WP_012286030.1, PadeC: WP_006678396.1, McjC: WP_256498469.1, KleC: WP_023288231, UboC: WP_060255687.1, BurC: YP_004028968.1, AtxC: WP_013479714.1, NopC: WP_171983240.1, CsegC: YP_003593636.1, StlaC: QYB25760.1, CitC: WP_078843845.1 and HalC: WP_068689552.1, WP_167473437.1, WP_141996100.1, PWC97452.1, MCC6364916.1, WP_018083434.1, GDY30479.1, WP_035534278.1, WP_128790276.1 and OPC80860.1, TAJ26290.1. Lasso cyclase structures were predicted using AlphaFold version 2.1.2 on the High-Performance Biological Computing Biocluster Resource at the Institute for Genomic Biology at the University of Illinois Urbana-Champaign. MD simulation data are available for Figs. 2 and 3 and Extended Data Figs. 5 and 6 in the Dryad repository: https://doi.org/10.5061/dryad.fttdz092h. Other data are available from the corresponding authors upon reasonable request. Source data are provided with this paper.

Code availability

The hmmexcise.py Python script and the Python notebooks used to analyze and create images from the MD simulations are available at https://github.com/ShuklaGroup/lasso_rotaxane.git.

References

  1. Hegemann, J. D., Zimmermann, M., Xie, X. & Marahiel, M. A. Lasso peptides: an intriguing class of bacterial natural products. Acc. Chem. Res. 48, 1909–1919 (2015).

    Article  CAS  PubMed  Google Scholar 

  2. Montalbán-López, M. et al. New developments in RiPP discovery, enzymology and engineering. Nat. Prod. Rep. 38, 130–239 (2021).

    Article  PubMed  Google Scholar 

  3. Kretsch, A. M. et al. Peptidase activation by a leader peptide-bound RiPP recognition element. Biochemistry 62, 956–967 (2023).

    Article  CAS  PubMed  Google Scholar 

  4. Burkhart, B. J., Hudson, G. A., Dunbar, K. L. & Mitchell, D. A. A prevalent peptide-binding domain guides ribosomal natural product biosynthesis. Nat. Chem. Biol. 11, 564–570 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hegemann, J. D. Factors governing the thermal stability of lasso peptides. Chembiochem 21, 7–18 (2020).

    Article  CAS  PubMed  Google Scholar 

  6. Yan, K.-P. et al. Dissecting the maturation steps of the lasso peptide microcin J25 in vitro. Chembiochem 13, 1046–1052 (2012).

    Article  CAS  PubMed  Google Scholar 

  7. Zong, C., Maksimov, M. O. & Link, A. J. Construction of lasso peptide fusion proteins. ACS Chem. Biol. 11, 61–68 (2016).

    Article  CAS  PubMed  Google Scholar 

  8. Chen, M., Wang, S. & Yu, X. Cryptand-imidazolium supported total synthesis of the lasso peptide BI-32169 and its D-enantiomer. Chem. Commun. (Camb.) 55, 3323–3326 (2019).

    Article  CAS  PubMed  Google Scholar 

  9. Waliczek, M. et al. Attempting to synthesize lasso peptides using high pressure. PLoS ONE 15, e0234901 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lear, S. et al. Total chemical synthesis of lassomycin and lassomycin-amide. Org. Biomol. Chem. 14, 4534–4541 (2016).

    Article  CAS  PubMed  Google Scholar 

  11. da Hora, G. C. A. et al. Lasso peptides: exploring the folding landscape of nature’s smallest interlocked motifs. J. Am. Chem. Soc. 146, 4444–4454 (2024).

  12. Ferguson, A. L. et al. An experimental and computational investigation of spontaneous lasso formation in microcin J25. Biophys. J. 99, 3056–3065 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Assrir, N. et al. Initial molecular recognition steps of McjA precursor during microcin J25 lasso peptide maturation. Chembiochem 17, 1851–1858 (2016).

    Article  CAS  PubMed  Google Scholar 

  14. Hegemann, J. D., Zimmermann, M., Xie, X. & Marahiel, M. A. Caulosegnins I–III: a highly diverse group of lasso peptides derived from a single biosynthetic gene cluster. J. Am. Chem. Soc. 135, 210–222 (2013).

    Article  CAS  PubMed  Google Scholar 

  15. Ducasse, R. et al. Sequence determinants governing the topology and biological activity of a lasso peptide, microcin J25. Chembiochem 13, 371–380 (2012).

    Article  CAS  PubMed  Google Scholar 

  16. Si, Y., Kretsch, A. M., Daigh, L. M., Burk, M. J. & Mitchell, D. A. Cell-free biosynthesis to evaluate lasso peptide formation and enzyme–substrate tolerance. J. Am. Chem. Soc. 143, 5917–5927 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. DiCaprio, A. J., Firouzbakht, A., Hudson, G. A. & Mitchell, D. A. Enzymatic reconstitution and biosynthetic investigation of the lasso peptide fusilassin. J. Am. Chem. Soc. 141, 290–297 (2019).

    Article  CAS  PubMed  Google Scholar 

  18. Hills, E., Woodward, T. J., Fields, S. & Brandsen, B. M. Comprehensive mutational analysis of the lasso peptide klebsidin. ACS Chem. Biol. 17, 998–1010 (2022).

  19. Pavlova, O., Mukhopadhyay, J., Sineva, E., Ebright, R. H. & Severinov, K. Systematic structure–activity analysis of microcin J25. J. Biol. Chem. 283, 25589–25595 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Thokkadam, A. et al. High-throughput screen reveals the structure–activity relationship of the antimicrobial lasso peptide ubonodin. ACS Cent. Sci. 9, 540–550 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kamisetty, H., Ovchinnikov, S. & Baker, D. Assessing the utility of coevolution-based residue–residue contact predictions in a sequence- and structure-rich era. Proc. Natl Acad. Sci. USA 110, 15674–15679 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lin, Z. et al. Evolutionary-scale prediction of atomic-level protein structure with a language model. Science 379, 1123–1130 (2023).

    Article  CAS  PubMed  Google Scholar 

  24. Wu, R. et al. High-resolution de novo structure prediction from primary sequence. Preprint at bioRxiv https://doi.org/10.1101/2022.07.21.500999 (2022).

  25. Larsen, T. M. et al. Three-dimensional structure of Escherichia coli asparagine synthetase B: a short journey from substrate to product. Biochemistry 38, 16146–16157 (1999).

    Article  CAS  PubMed  Google Scholar 

  26. Tietz, J. I. et al. A new genome-mining tool redefines the lasso peptide biosynthetic landscape. Nat. Chem. Biol. 13, 470–478 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Oberg, N., Zallot, R. & Gerlt, J. A. EFI-EST, EFI-GNT, and EFI-CGFP: Enzyme Function Initiative (EFI) web resource for genomic enzymology tools. J. Mol. Biol. 435, 168018 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zallot, R., Oberg, N. & Gerlt, J. A. The EFI web resource for genomic enzymology tools: leveraging protein, genome, and metagenome databases to discover novel enzymes and metabolic pathways. Biochemistry 58, 4169–4182 (2019).

    Article  CAS  PubMed  Google Scholar 

  29. Lindorff-Larsen, K., Piana, S., Dror, R. O. & Shaw, D. E. How fast-folding proteins fold. Science 334, 517–520 (2011).

  30. Best, R. B., Hummer, G. & Eaton, W. A. Native contacts determine protein folding mechanisms in atomistic simulations. Proc. Natl Acad. Sci. USA 110, 17874–17879 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Knappe, T. A., Linne, U., Robbel, L. & Marahiel, M. A. Insights into the biosynthesis and stability of the lasso peptide capistruin. Chem. Biol. 16, 1290–1298 (2009).

    Article  CAS  PubMed  Google Scholar 

  32. Hegemann, J. D. et al. Xanthomonins I–III: a new class of lasso peptides with a seven-residue macrolactam ring. Angew. Chem. Int. Ed. 53, 2230–2234 (2014).

    Article  CAS  Google Scholar 

  33. Hegemann, J. D. et al. Rational improvement of the affinity and selectivity of integrin binding of grafted lasso. Pept. J. Med. Chem. 57, 5829–5834 (2014).

    Article  CAS  Google Scholar 

  34. Takasaka, N. et al. Integrin αvβ8–expressing tumor cells evade host immunity by regulating TGF-β activation in immune cells. JCI Insight 3, e122591 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Worthington, J. J. et al. Integrin αvβ8-mediated TGF-β activation by effector regulatory T cells is essential for suppression of T-cell-mediated inflammation. Immunity 42, 903–915 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Pan, S. J., Cheung, W. L. & Link, A. J. Engineered gene clusters for the production of the antimicrobial peptide microcin J25. Protein Expr. Purif. 71, 200–206 (2010).

    Article  CAS  PubMed  Google Scholar 

  37. Schiefelbein, K. et al. Merging flow synthesis and enzymatic maturation to expand the chemical space of lasso peptides. J. Am. Chem. Soc. 146, 17262–17269 (2024).

  38. Braffman, N. R. et al. Structural mechanism of transcription inhibition by lasso peptides microcin J25 and capistruin. Proc. Natl Acad. Sci. USA 116, 1273–1278 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Shihoya, W. et al. Structure of a lasso peptide bound ETB receptor provides insights into the mechanism of GPCR inverse agonism. Preprint at bioRxiv https://doi.org/10.1101/2023.12.30.573741 (2024).

  40. Ongpipattanakul, C. et al. Mechanism of action of ribosomally synthesized and post-translationally modified peptides. Chem. Rev. 122, 14722–14814 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hekkelman, M. L., de Vries, I., Joosten, R. P. & Perrakis, A. AlphaFill: enriching AlphaFold models with ligands and cofactors. Nat. Methods 20, 205–213 (2023).

    Article  CAS  PubMed  Google Scholar 

  42. Gerlt, J. A. et al. Enzyme Function Initiative-Enzyme Similarity Tool (EFI-EST): a web tool for generating protein sequence similarity networks. Biochim. Biophys. Acta 1854, 1019–1037 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Shannon, P. et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13, 2498–2504 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Madeira, F. et al. Search and sequence analysis tools services from EMBL-EBI in 2022. Nucleic Acids Res. 50, W276–W279 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ashkenazy, H. et al. ConSurf 2016: an improved methodology to estimate and visualize evolutionary conservation in macromolecules. Nucleic Acids Res. 44, W344–W350 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Schrödinger LLC. The PyMOL Molecular Graphics System, Version 1.8. (2015).

  47. Pettersen, E. F. et al. UCSF ChimeraX: structure visualization for researchers, educators, and developers. Protein Sci. 30, 70–82 (2021).

    Article  CAS  PubMed  Google Scholar 

  48. Tian, W., Chen, C., Lei, X., Zhao, J. & Liang, J. CASTp 3.0: computed atlas of surface topography of proteins. Nucleic Acids Res. 46, W363–W367 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Georgiou, M. A., Dommaraju, S. R., Guo, X., Mast, D. H. & Mitchell, D. A. Bioinformatic and reactivity-based discovery of linaridins. ACS Chem. Biol. 15, 2976–2985 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Higuchi, R., Krummel, B. & Saiki, R. A general method of in vitro preparation and specific mutagenesis of DNA fragments: study of protein and DNA interactions. Nucleic Acids Res. 16, 7351–7367 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Sun, Z. Z. et al. Protocols for Implementing an Escherichia coli based TX-TL cell-free expression system for synthetic biology. J. Vis. Exp. e50762 (2013).

  52. Sun, Z. Z., Yeung, E., Hayes, C. A., Noireaux, V. & Murray, R. M. Linear DNA for rapid prototyping of synthetic biological circuits in an Escherichia coli based TX-TL cell-free system. ACS Synth. Biol. 3, 387–397 (2014).

    Article  CAS  PubMed  Google Scholar 

  53. Gasteiger, E. et al. Protein identification and analysis tools on the ExPASy server. In The Proteomics Protocols Handbook (ed. Walker, J. M.) 571–607 (Humana Press, 2005).

  54. Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W. & Klein, M. L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 79, 926–935 (1983).

    Article  CAS  Google Scholar 

  55. Huang, J. et al. CHARMM36m: an improved force field for folded and intrinsically disordered proteins. Nat. Methods 14, 71–73 (2017).

    Article  CAS  PubMed  Google Scholar 

  56. Best, R. B. et al. Optimization of the additive CHARMM all-atom protein force field targeting improved sampling of the backbone φ, ψ and side-chain χ1 and χ2 dihedral angles. J. Chem. Theory Comput. 8, 3257–3273 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Jo, S., Kim, T., Iyer, V. G. & Im, W. CHARMM-GUI: a web-based graphical user interface for CHARMM. J. Comput. Chem. 29, 1859–1865 (2008).

    Article  CAS  PubMed  Google Scholar 

  58. Humphrey, W., Dalke, A. & Schulten, K. VMD: visual molecular dynamics. J. Mol. Graph. 14, 33–38 (1996).

    Article  CAS  PubMed  Google Scholar 

  59. Shirts, M. R. et al. Lessons learned from comparing molecular dynamics engines on the SAMPL5 dataset. J. Comput. Aided Mol. Des. 31, 147–161 (2017).

    Article  CAS  PubMed  Google Scholar 

  60. Vanommeslaeghe, K., Raman, E. P. & MacKerell, A. D. Jr. Automation of the CHARMM General Force Field (CGenFF) II: assignment of bonded parameters and partial atomic charges. J. Chem. Inf. Model. 52, 3155–3168 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Vanommeslaeghe, K. et al. CHARMM general force field: a force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. J. Comput. Chem. 31, 671–690 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Meza, J. C. Steepest descent. WIREs Comput. Stat. 2, 719–722 (2010).

    Article  Google Scholar 

  63. Case, D. A. et al. AMBER 2018. https://doi.org/10.13140/RG.2.2.31525.68321 (2018).

  64. Davidchack, R. L., Handel, R. & Tretyakov, M. V. Langevin thermostat for rigid body dynamics. J. Chem. Phys. 130, 234101 (2009).

    Article  PubMed  Google Scholar 

  65. Loncharich, R. J., Brooks, B. R. & Pastor, R. W. Langevin dynamics of peptides: the frictional dependence of isomerization rates of N-acetylalanyl-N′-methylamide. Biopolymers 32, 523–535 (1992).

    Article  CAS  PubMed  Google Scholar 

  66. Åqvist, J., Wennerström, P., Nervall, M., Bjelic, S. & Brandsdal, B. O. Molecular dynamics simulations of water and biomolecules with a Monte Carlo constant pressure algorithm. Chem. Phys. Lett. 384, 288–294 (2004).

    Article  Google Scholar 

  67. Braun, E. et al. Best practices for foundations in molecular simulations [article v1.0]. Living J. Comput. Mol. Sci. 1, 5957–5957 (2019).

    Article  PubMed  Google Scholar 

  68. Essmann, U. et al. A smooth particle mesh Ewald method. J. Chem. Phys. 103, 8577–8593 (1995).

    Article  CAS  Google Scholar 

  69. Hopkins, C. W., Le Grand, S., Walker, R. C. & Roitberg, A. E. Long-time-step molecular dynamics through hydrogen mass repartitioning. J. Chem. Theory Comput. 11, 1864–1874 (2015).

  70. Eastman, P. et al. OpenMM 7: rapid development of high performance algorithms for molecular dynamics. PLoS Comput. Biol. 13, e1005659 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Voelz, V. A., Pande, V. S. & Bowman, G. R. Folding@home: achievements from over 20 years of citizen science herald the exascale era. Biophys. J. 122, 2852–2863 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. McGibbon, R. T. et al. MDTraj: a modern open library for the analysis of molecular dynamics trajectories. Biophys. J. 109, 1528–1532 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Yuan, C., Chen, H. & Kihara, D. Effective inter-residue contact definitions for accurate protein fold recognition. BMC Bioinformatics 13, 292 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Hunter, J. D. Matplotlib: a 2D graphics environment. Comput. Sci. Eng. 9, 90–95 (2007).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported, in part, by grants from the National Institutes of Health (R01GM123998 to D.A.M. and R35GM142745 and R21AI167693 to D.S.). S.E.B was supported by a National Science Foundation Graduate Research Fellowship (DGE 21-46756) and the University of Illinois Urbana-Champaign Illinois Distinguished Fellowship. We thank A. Kretsch and X. Mi for helpful discussions, J. Hegemann for providing the xanthomonin expression plasmid and S. Dommaraju for customizing the HVR_excise script.

Author information

Authors and Affiliations

Authors

Contributions

D.A.M. conceived the project. D.A.M., M.J.B. and D.S. oversaw research progress. S.E.B., T.A.P. and R.W. acquired and analyzed data for the fusilassin loop panels and individual fusilassin variants. S.E.B. performed all the bioinformatics, structural prediction, FusC cyclase engineering, FusC variant substrate scope testing and XgaC engineering. S.Y. performed and analyzed the MD simulations. P.J. and J.K.B. performed the MccJ25 cyclase engineering and integrin binding studies, with help from J.G.-N., G.C.M.d.C., C.R., B.K.O. and K.A. All authors performed data analysis. S.E.B. wrote the paper, with help from S.Y., editing and guidance from D.A.M. and M.J.B. and input from all other authors.

Corresponding authors

Correspondence to Mark J. Burk or Douglas A. Mitchell.

Ethics declarations

Competing interests

M.J.B. and D.A.M. are co-founders of and own stock in Lassogen, Inc. S.E.B. and D.A.M. are inventors on a provisional patent application filed by the University of Illinois at Urbana-Champaign covering lasso cyclase engineering (US Provisional Application Ser. No. 63/673,853). M.J.B., P.A.J. and G.C.M.d.C. are inventors on a provisional patent application filed by Lassogen, Inc. for the design of lasso peptide integrin binders (US Provisional Application No. 63/612,957). The other authors declare no competing interests.

Peer review

Peer review information

Nature Chemical Biology thanks John Fetse, Sylvie Rebuffat and Jessica Swanson for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 FusA cationic residue substrate analysis.

a, MALDI-TOF-MS data of basic residues introduced into the loop of FusA via cell-free biosynthesis (CFB). The m/z values represent [M + H]+ for the cyclized lasso peptide. Endogenous proteases in the E. coli-derived lysate rapidly degrade linear peptides, so masses are typically only detected for the lasso peptide products. b, MALDI-TOF-MS time course of in vitro reconstitution reactions containing purified FusA I11R, FusB, FusC, and FusE. The [M + H]+ for the linear core peptide is indicated. The expected m/z for the lasso peptide is 2312 Da and is not detected. c, Arginine scan of the FusA core sequence. The sequence of fusilassin is provided (top) with the location of individual Arg variants denoted next to the corresponding spectrum: (black, treated with wild-type FusC; blue, treated with FusC R321G). Precursor peptide variants were generated and tested using CFB. The cyclized lasso peptide [M + H]+ mass is indicated next to the cyclized peak. The only difference in Arg tolerance is seen for positions 10–14.

Extended Data Fig. 2 Structural analysis of FusC.

a, Structure prediction comparison for FusC. Shown are the E. coli asparagine synthetase crystal structure (AsnB, PDB code: 1CT9)25 and FusC structures predicted by AlphaFold22, ESMFold23, and OmegaFold24. RMSD values (in Å) were calculated using the cealign function in PyMOL46. b, Residue conservation across the AlphaFold structure of FusC. Conservation was calculated using ConSurf45 where purple indicates highly conserved residues, green indicates highly variable residues, and yellow indicates insufficient data. ATP binding residues are shown with grey arrows and the hypervariable insertion region (labeled HVR), helix 11, and helix 18 are annotated. c, CASTp volume prediction of the FusC active site48. Sequence of FusC where blue highlighted letters indicate cavity lining residues.

Extended Data Fig. 3 Sequence similarity networks (SSNs) of lasso cyclases annotated by substrate electrostatic considerations.

The SSNs were constructed using EFI-EST27,42 on 7160 lasso cyclases identified by RODEO26 viewed at alignment score 120. The SSN is a full SSN (that is, not a repnode network) a, The SSN is colored based on the formal charge of the loop region of the cognate substrate. Loop charges were calculated only for the first 4 residues after the acceptor residue to ensure no tail residues were included in the analysis. b, Same as panel a, except the coloring indicates the formal charge of the ring region. Various NCBI accession codes used in the Extended Data Fig. 4 are provided as landmarks.

Source data

Extended Data Fig. 4 Lasso cyclase electrostatic surface analysis.

a, FusC-like cyclases and their corresponding core peptides are shown. Percent identities are in relation to FusC. b-d, Lasso cyclases corresponding to core peptides with extreme and opposite charged rings and loops. These are annotated in the SSNs in Extended Data Fig. 3. Charged residues in the ring and predicted loop are: blue (basic) and red (acidic). Loops were predicted based on the position of the most probable plug residue. Each electrostatic potential map was calculated using ChimeraX and the image depicts the backwall region of the cyclases (helix 11 in FusC). e, Alignment of FusC- and SnoC-like cyclases. FusC (WP_104612995.1), SnoC (AIA02568.1) and related cyclases are shown. Helix 11 is orange with the residues potentially contributing to loop specificity underlined and colored orange in each sequence (FusC S314 and R321). ATP-binding residues are shown in black bold. The core peptides associated with each cyclase are provided with the acceptor (red) and presumed plug (blue) indicated.

Extended Data Fig. 5 Molecular dynamics simulation snapshots and contact probability for FusA:FusC.

Snapshots from the MD simulation and contact heat plots are shown for: a, FusA with FusC; b, FusA I11R with FusC; c, FusA I11R with FusC R321G; d, FusA V13R with FusC; and e, FusA V13 with FusC R321G. The red text indicates variation from wild-type FusA/FusC. Snapshots were selected from the MD simulations based on high native contact value (Q > 0.8). The simulation data presented here can be obtained from the Dryad repository at: doi.org/10.5061/dryad.fttdz092h.

Extended Data Fig. 6 FusC R321 variant analysis.

a, MALDI-TOF-MS data for FusC wild-type, R321G, R321A, and R321D in vitro reconstitution reactions with all purified components. The cyclized lasso peptide [M + H]+ peak is orange and the mass is given. The linear core peak is blue. b, MALDI-TOF-MS analysis of CFB reactions expressing FusA variants with basic residues (Arg, Lys, His) at position 11, 12, and 13 Reactions were run with purified FusC R321G, FusB, and FusE. The [M + H]+ of the cyclized product is orange and the mass is given. c, Time course experiment comparing FusC WT and R321G with FusA. In vitro reconstitution reactions with all purified components were run, quenched with 60% MeCN (final) at the appropriate times, and analyzed with MALDI-TOF-MS. Orange: cyclized lasso peptide [M + H]+, blue: linear core peptide [M + H]+. d, Fraction of native contacts (Q) distributions. From MD simulations: orange, wild-type FusA with wild-type FusC (FusA:FusC); purple, FusA V13R with wild-type FusC (FusA V13R: FusC); blue, FusA V13R with FusC R321G (FusA V13R:FusC R321G). High probability density at a high fraction of native contacts correlates with the likelihood of successful lasso peptide formation. Bootstrapping (80% of the MD data over 200 iterations) was performed to calculate the probability density error. Data are presented as mean values ± standard deviation (SD). The simulation data presented here can be obtained from the Dryad repository at: doi.org/10.5061/dryad.fttdz092h.

Extended Data Fig. 7 Xanthomonin cyclase bioinformatic analysis and variant heterologous expression.

a, Xanthomonin biosynthetic gene cluster and precursor peptide sequences. Xanthomonin I and II have 7-residue rings, 4-residue loops, and tails that undergo proteolytic trimming during E. coli expression (portion in parentheses). b, Structural alignment of AlphaFold predicted FusC and XgaC (PyMOL cealignment). XgaC is tan while FusC is blue. The zoomed image depicts helix 11 of the superimposed structures. XgaC Lys324 and FusC Arg321 are shown as sticks. c, MALDI-TOF-MS data showing the results of the heterologous expression experiment to understand the loop-helix 11 interaction for xanthomonin II. The top two spectra are with wild-type XgaC while the bottom two spectra are with XgaC K324E. m/z 1293 is the wild-type cyclized xanthomonin II [M+Na]+ peak while m/z 1309 is the wild-type cyclized xanthomonin II [M + K]+ peak. The E8K variant is 1 Da lighter with [M+Na]+ at 1292 and [M + K]+ at 1308. d, Analysis of residue identity frequency at position 324 for cyclases from the xanthomonin II SSN group. Correlation of Lys at position 324 with Glu at position +1 is highlighted in blue. Correlation between large residues at position 324 with small +1 core peptide residues are highlighted in orange. This analysis used 224 XgaC homologs.

Extended Data Fig. 8 Microcin J25 cyclase bioinformatic analysis.

a, Structural alignment of AlphaFold predicted FusC and McjC (PyMOL cealignment). FusC is blue while McjC is tan. Zoom shows helix 11 FusC Arg321, McjC Lys252, and McjC Lys388 as sticks. b, Cartoon depiction and surface map for McjC highlighting a hole in the active site in the back wall region. The orange region contains McjC Lys252 and the lack of helix 11 creates a space large enough to peer through the predicted enzyme structure. c, Back wall regions for FusC, KleC, and UboC. FusC folds a lasso peptide with a 6-residue loop and contains a helix at the backwall (helix 11, yellow). KleC and UboC primarily display loops/coils at the back wall (yellow). These cyclases are responsible for folding lasso peptides with longer loops ( > 9 residues).

Extended Data Table 1 List of all variants tested in the loop 2×NNK panels organized by substrate and non-substrate
Extended Data Table 2 FusC variants tested in CFB against basic FusA loop variants

Supplementary information

Supplementary Information

Supplementary Methods, Supplementary Figs. 1–17, Supplementary Tables 1–6 and Supplementary Data 1–6.

Reporting Summary

Supplementary Table 7

List of oligonucleotide sequences used in this study.

Source data

Source Data Fig. 1

Data used to generate the library heatmap.

Source Data Extended Data Fig. 3

RODEO-predicted dataset of lasso peptide substrate–lasso cyclase pairs.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barrett, S.E., Yin, S., Jordan, P. et al. Substrate interactions guide cyclase engineering and lasso peptide diversification. Nat Chem Biol (2024). https://doi.org/10.1038/s41589-024-01727-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41589-024-01727-w

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing