Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Complex structure and activation mechanism of arginine kinase McsB by McsA

Abstract

Protein phosphorylation is a pivotal post-translational modification modulating various cellular processes. In Gram-positive bacteria, the protein arginine kinase McsB, along with its activator McsA, has a key role in labeling misfolded and damaged proteins during stress. However, the activation mechanism of McsB by McsA remains elusive. Here we report the cryo-electron microscopy structure of a tetrameric McsA–McsB complex at 3.41 Å resolution. Biochemical analysis indicates that the homotetrameric assembly is essential for McsB’s kinase activity. The conserved C-terminal zinc finger of McsA interacts with an extended loop in McsB, optimally orienting a critical catalytic cysteine residue. In addition, McsA binding decreases the CtsR’s affinity for McsB, enhancing McsB’s kinase activity and accelerating the turnover rate of CtsR phosphorylation. Furthermore, McsA binding also increases McsB’s thermostability, ensuring its activity under heat stress. These findings elucidate the structural basis and activation mechanism of McsB in stress response.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overall structure of McsA–McsB complex.
Fig. 2: Tetramerization and in vitro arginine kinase activity of McsB.
Fig. 3: Characterization of distinct domains within McsA in the formation of a complex with McsB.
Fig. 4: An extended loop region of McsB is involved in McsA binding.
Fig. 5: McsA binding stabilized an extended loop region of McsB.
Fig. 6: Decreased CtsR binding affinity of McsB in complex with McsA, and schematic illustration of the McsB kinase catalytic cycle with or without McsA binding.

Similar content being viewed by others

Data availability

Atomic coordinates and cryo-EM maps of McsA–McsB complex structure have been deposited in the PDB with accession code 8GQD (https://www.rcsb.org/structure/8GQD) and EMDB with code EMD-34200 (https://www.ebi.ac.uk/emdb/EMD-34200). All other source data are included in the paper as source or Supplementary Data 1 and 2. PDB codes 6FH1 (https://www.rcsb.org/structure/6FH1) and 3JPZ (https://www.rcsb.org/structure/3JPZ) are obtained from the PDB database. Source data are provided with this paper.

References

  1. Ubersax, J. A. & Ferrell, J. E. Jr Mechanisms of specificity in protein phosphorylation. Nat. Rev. Mol. Cell Biol. 8, 530–541 (2007).

    Article  CAS  PubMed  Google Scholar 

  2. Newton, A. C. Regulation of the ABC kinases by phosphorylation: protein kinase C as a paradigm. Biochem. J. 370, 361–371 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Pellicena, P. & Kuriyan, J. Protein–protein interactions in the allosteric regulation of protein kinases. Curr. Opin. Struct. Biol. 16, 702–709 (2006).

    Article  CAS  PubMed  Google Scholar 

  4. Nolen, B., Taylor, S. & Ghosh, G. Regulation of protein kinases: controlling activity through activation segment conformation. Mol. Cell 15, 661–675 (2004).

    Article  CAS  PubMed  Google Scholar 

  5. Derré, I., Rapoport, G. & Msadek, T. CtsR, a novel regulator of stress and heat shock response, controls clp and molecular chaperone gene expression in Gram-positive bacteria. Mol. Microbiol. 31, 117–131 (1999).

    Article  PubMed  Google Scholar 

  6. Kirstein, J., Zühlke, D., Gerth, U., Turgay, K. & Hecker, M. A tyrosine kinase and its activator control the activity of the CtsR heat shock repressor in B. subtilis. EMBO J. 24, 3435–3445 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kirstein, J., Dougan, D. A., Gerth, U., Hecker, M. & Turgay, K. The tyrosine kinase McsB is a regulated adaptor protein for ClpCP. EMBO J. 26, 2061–2070 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Schumann, W. Regulation of bacterial heat shock stimulons. Cell Stress Chaperones 21, 959–968 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Trentini, D. B. et al. Arginine phosphorylation marks proteins for degradation by a Clp protease. Nature 539, 48–53 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Suskiewicz, M. J. et al. Structure of McsB, a protein kinase for regulated arginine phosphorylation. Nat. Chem. Biol. 15, 510–518 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hajdusits, B. et al. McsB forms a gated kinase chamber to mark aberrant bacterial proteins for degradation. eLife 10, e63505 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Elsholz, A. K. W. et al. CtsR inactivation during thiol-specific stress in low GC, Gram plus bacteria. Mol. Microbiol. 79, 772–785 (2011).

    Article  CAS  PubMed  Google Scholar 

  13. Sitthisak, S. et al. McsA and the roles of metal-binding motif in Staphylococcus aureus. FEMS Microbiol. Lett. 327, 126–133 (2012).

    Article  CAS  PubMed  Google Scholar 

  14. Yang, J. M. & Tung, C. H. Protein structure database search and evolutionary classification. Nucleic Acids Res. 34, 3646–3659 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bush, D. J. et al. The structure of lombricine kinase implications for phosphagen kinase conformational change. J. Biol. Chem. 286, 9338–9350 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yousef, M. S. et al. Induced fit in guanidino kinases—comparison of substrate-free and transition state analog structures of arginine kinase. Protein Sci. 12, 103–111 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ouyang, H. et al. Development of a stable phosphoarginine analog for producing phosphoarginine antibodies. Org. Biomol. Chem. 14, 1925–1929 (2016).

    Article  CAS  PubMed  Google Scholar 

  18. Moolenaar, G. F. et al. The C-terminal region of the UvrB protein of Escherichia coli contains an important determinant for UvrC binding to the preincision complex but not the catalytic site for 3′-incision. J. Biol. Chem. 270, 30508–30515 (1995).

    Article  CAS  PubMed  Google Scholar 

  19. Zhou, G. et al. Transition state structure of arginine kinase: implications for catalysis of bimolecular reactions. Proc. Natl Acad. Sci. USA 95, 8449–8454 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Aubol, B. E., Plocinik, R. M., McGlone, M. L. & Adams, J. A. Nucleotide release sequences in the protein kinase SRPK1 accelerate substrate phosphorylation. Biochemistry 51, 6584–6594 (2012).

    Article  CAS  PubMed  Google Scholar 

  21. Kim, Y. C., Snoberger, A., Schupp, J. & Smith, D. M. ATP binding to neighbouring subunits and intersubunit allosteric coupling underlie proteasomal ATPase function. Nat. Commun. 6, 8520 (2015).

    Article  CAS  PubMed  Google Scholar 

  22. Huang, Q. et al. Identification of a novel inhibitor of catabolite control protein A from Staphylococcus aureus. ACS Infect. Dis. 6, 347–354 (2020).

    Article  CAS  PubMed  Google Scholar 

  23. Arifuzzaman, M., Kwon, E. & Kim, D. Y. Structural insights into the regulation of protein-arginine kinase McsB by McsA. Proc. Natl Acad. Sci. USA 121, e2320312121 (2024).

    Article  CAS  PubMed  Google Scholar 

  24. Zheng, S. Q. et al. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods 14, 331–332 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Rohou, A. & Grigorieff, N. CTFFIND4: fast and accurate defocus estimation from electron micrographs. J. Struct. Biol. 192, 216–221 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Chen, M. et al. Convolutional neural networks for automated annotation of cellular cryo-electron tomograms. Nat. Methods 14, 983–985 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zivanov, J. et al. New tools for automated high-resolution cryo-EM structure determination in RELION-3. eLife 7, e42166 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290–296 (2017).

    Article  CAS  PubMed  Google Scholar 

  29. Zivanov, J., Nakane, T. & Scheres, S. H. W. A Bayesian approach to beam-induced motion correction in cryo-EM single-particle analysis. IUCrJ 6, 5–17 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Pettersen, E. F. et al. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).

    Article  CAS  PubMed  Google Scholar 

  31. Shen, T. et al. When homologous sequences meet structural decoys: accurate contact prediction by tFold in CASP14-(tFold for CASP14 contact prediction). Proteins 89, 1901–1910 (2021).

    Article  CAS  PubMed  Google Scholar 

  32. Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr. 66, 486–501 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Afonine, P. V. et al. Real-space refinement in PHENIX for cryo-EM and crystallography. Acta Crystallogr. D Struct. Biol. 74, 531–544 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Williams, C. J. et al. MolProbity: more and better reference data for improved all-atom structure validation. Protein Sci. 27, 293–315 (2018).

    Article  CAS  PubMed  Google Scholar 

  35. Soon, F. F. et al. Abscisic acid signaling: thermal stability shift assays as tool to analyze hormone perception and signal transduction. PLoS ONE 7, e47857 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Humphrey, W., Dalke, A. & Schulten, K. VMD: visual molecular dynamics. J. Mol. Graph. 14, 33–38 (1996).

    Article  CAS  PubMed  Google Scholar 

  37. Huang, J. et al. CHARMM36m: an improved force field for folded and intrinsically disordered proteins. Nat. Methods 14, 71–73 (2017).

    Article  CAS  PubMed  Google Scholar 

  38. Kim, M., Kim, E., Lee, S., Kim, J. S. & Lee, S. New method for constant-NPT molecular dynamics. J. Phys. Chem. A 123, 1689–1699 (2019).

    Article  CAS  PubMed  Google Scholar 

  39. Van Der Spoel, D. et al. GROMACS: fast, flexible, and free. J. Comput. Chem. 26, 1701–1718 (2005).

    Article  PubMed  Google Scholar 

  40. Cheung, M. Y. et al. ATP binding by the P-loop NTPase OsYchF1 (an unconventional G protein) contributes to biotic but not abiotic stress responses. Proc. Natl Acad. Sci. USA 113, 2648–2653 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to C. Fu (Xiamen University) for providing the pArg antibody. Cryo-EM data were collected on Can Cong at SKLB West China Cryo-EM Center and processed at SKLB Duyu High-Performance Computing Center of West China Hospital. This work was supported by the National Natural Science Foundation of China (22077142 and 22022706 to W.X., 22293053 and 92353301 to Z.-W.M., and 32070049 and 32222040 to Z.S.), the National Key Research and Development Program of China (2022YFA1104900 to W.X., 2022YFB3804502 to Z.-W.M. and 2022YFC2303700 to Z.S.), the Fundamental Research Funds for the Central Universities (23xkjc020 to W.X.) and the 1.3.5 Project for Disciplines Excellence of West China Hospital (ZYYC21006 to Z.S.).

Author information

Authors and Affiliations

Authors

Contributions

K.L., B.L., X.T., P.Z., G.W., S.G., W.X., Z.S. and Z.-W.M. conceived the study and designed or supervised the experiments. M.A. and B.Z. performed the MD calculation and data analysis. X.X. performed the native mass studies. X.M. performed the AUC experiments. Y.L., H.L., Y.X. and Z.Z. helped with biochemical and structural analyses. J.N. and C.W. performed the mass photometry experiments. K.L., X.T., W.X. and Z.-W.M. drafted the manuscript, and all authors read and edited the manuscript and approved the final version.

Corresponding authors

Correspondence to Wei Xia, Zhaoming Su or Zong-Wan Mao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemical Biology thanks Yixin Liu, Elena Purlyte and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–47 and Tables 1–3.

Reporting Summary

Supplementary Data 1

Statistical supporting data for Supplementary Figs. 1–4, 10, 13–20, 22–29, 31–34, 36, 37, 39–46.

Supplementary Data 2

Uncropped western blots and gels.

Source data

Source Data Fig. 1

Unprocessed western blots.

Source Data Fig. 1

Statistical source data.

Source Data Fig. 2

Unprocessed western blots.

Source Data Fig. 2

Statistical source data

Source Data Fig. 3

Unprocessed western blots.

Source Data Fig. 3

Statistical source data

Source Data Fig. 4

Unprocessed western blots.

Source Data Fig. 4

Statistical source data

Source Data Fig. 5

Statistical source data.

Source Data Fig. 6

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, K., Luo, B., Tao, X. et al. Complex structure and activation mechanism of arginine kinase McsB by McsA. Nat Chem Biol (2024). https://doi.org/10.1038/s41589-024-01720-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41589-024-01720-3

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing