Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Degradable living plastics programmed by engineered spores

Abstract

Plastics are widely used materials that pose an ecological challenge because their wastes are difficult to degrade. Embedding enzymes and biomachinery within polymers could enable the biodegradation and disposal of plastics. However, enzymes rarely function under conditions suitable for polymer processing. Here, we report degradable living plastics by harnessing synthetic biology and polymer engineering. We engineered Bacillus subtilis spores harboring the gene circuit for the xylose-inducible secretory expression of Burkholderia cepacia lipase (BC-lipase). The spores that were resilient to stresses during material processing were mixed with poly(caprolactone) to produce living plastics in various formats. Spore incorporation did not compromise the physical properties of the materials. Spore recovery was triggered by eroding the plastic surface, after which the BC-lipase released by the germinated cells caused near-complete depolymerization of the polymer matrix. This study showcases a method for fabricating green plastics that can function when the spores are latent and decay when the spores are activated and sheds light on the development of materials for sustainability.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Design of the living plastics.
Fig. 2: The spores were resilient to environmental perturbations.
Fig. 3: Spores were engineered to secrete PCL-degrading enzymes.
Fig. 4: Fabrication of living PCL films.
Fig. 5: Fabrication of living PCL objects by fused filament fabrication.

Similar content being viewed by others

Data availability

The data processed for figure generation in this study are available within the paper and the Supplementary Information. Any additional information is available upon request. Source data are provided with this paper.

Code availability

No new code was generated for this study.

References

  1. Law, K. L. & Narayan, R. Reducing environmental plastic pollution by designing polymer materials for managed end-of-life. Nat. Rev. Mater. 7, 104–116 (2022).

    Article  CAS  Google Scholar 

  2. Stubbins, A., Law, K. L., Munoz, S. E., Bianchi, T. S. & Zhu, L. X. Plastics in the Earth system. Science 373, 51–55 (2021).

    Article  CAS  PubMed  Google Scholar 

  3. Yoshida, S. et al. A bacterium that degrades and assimilates poly(ethylene terephthalate). Science 351, 1196–1199 (2016).

    Article  CAS  PubMed  Google Scholar 

  4. Tournier, V. et al. An engineered PET depolymerase to break down and recycle plastic bottles. Nature 580, 216–219 (2020).

    Article  CAS  PubMed  Google Scholar 

  5. Huang, Q., Hiyama, M., Kabe, T., Kimura, S. & Iwata, T. Enzymatic self-biodegradation of poly(l-lactic acid) films by embedded heat-treated and immobilized proteinase K. Biomacromolecules 21, 3301–3307 (2020).

    Article  CAS  PubMed  Google Scholar 

  6. Khan, I., Nagarjuna, R., Dutta, J. R. & Ganesan, R. Enzyme-embedded degradation of poly(ε-caprolactone) using lipase-derived from probiotic Lactobacillus plantarum. ACS Omega 4, 2844–2852 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. DelRe, C. et al. Near-complete depolymerization of polyesters with nano-dispersed enzymes. Nature 592, 558–563 (2021).

    Article  CAS  PubMed  Google Scholar 

  8. DelRe, C. et al. Synergistic enzyme mixtures to realize near-complete depolymerization in biodegradable polymer/additive blends. Adv. Mater. 33, e2105707 (2021).

    Article  PubMed  Google Scholar 

  9. Panganiban, B. et al. Random heteropolymers preserve protein function in foreign environments. Science 359, 1239–1243 (2018).

    Article  CAS  PubMed  Google Scholar 

  10. Tan, I. S. & Ramamurthi, K. S. Spore formation in Bacillus subtilis. Environ. Microbiol. Rep. 6, 212–225 (2014).

    Article  CAS  PubMed  Google Scholar 

  11. Higgins, D. & Dworkin, J. Recent progress in Bacillus subtilis sporulation. FEMS Microbiol. Rev. 36, 131–148 (2012).

    Article  CAS  PubMed  Google Scholar 

  12. McKenney, P. T., Driks, A. & Eichenberger, P. The Bacillus subtilis endospore: assembly and functions of the multilayered coat. Nat. Rev. Microbiol. 11, 33–44 (2013).

    Article  CAS  PubMed  Google Scholar 

  13. González, L. M., Mukhitov, N. & Voigt, C. A. Resilient living materials built by printing bacterial spores. Nat. Chem. Biol. 16, 126–133 (2020).

    Article  PubMed  Google Scholar 

  14. Yang, M. et al. Engineering Bacillus subtilis as a versatile and stable platform for production of nanobodies. Appl. Environ. Microbiol. 86, e02938-19 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ji, M. et al. A wheat bran inducible expression system for the efficient production of α-l-arabinofuranosidase in Bacillus subtilis. Enzym. Microb. Technol. 144, 109726 (2021).

    Article  CAS  Google Scholar 

  16. Sanchez, D. A., Tonetto, G. M. & Ferreira, M. L. Burkholderia cepacia lipase: a versatile catalyst in synthesis reactions. Biotechnol. Bioeng. 115, 6–24 (2018).

    Article  CAS  PubMed  Google Scholar 

  17. Horn, S. J. et al. Costs and benefits of processivity in enzymatic degradation of recalcitrant polysaccharides. Proc. Natl Acad. Sci. USA 103, 18089–18094 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Breyer, W. A. & Matthews, B. W. Structure of Escherichia coli exonuclease I suggests how processivity is achieved. Nat. Struct. Biol. 7, 1125–1128 (2000).

    Article  CAS  PubMed  Google Scholar 

  19. Ericsson, D. J. et al. X-ray structure of Candida antarctica lipase A shows a novel lid structure and a likely mode of interfacial activation. J. Mol. Biol. 376, 109–119 (2008).

    Article  CAS  PubMed  Google Scholar 

  20. Widmann, M., Juhl, P. B. & Pleiss, J. Structural classification by the Lipase Engineering Database: a case study of Candida antarctica lipase A. BMC Genom. 11, 123 (2010).

    Article  Google Scholar 

  21. Sugihara, A., Ueshima, M., Shimada, Y., Tsunasawa, S. & Tominaga, Y. Purification and characterization of a novel thermostable lipase from Pseudomonas cepacia. J. Biochem. 112, 598–603 (1992).

    Article  CAS  PubMed  Google Scholar 

  22. Lu, H. et al. Machine learning-aided engineering of hydrolases for PET depolymerization. Nature 604, 662–667 (2022).

    Article  CAS  PubMed  Google Scholar 

  23. Sanluis-Verdes, A. et al. Wax worm saliva and the enzymes therein are the key to polyethylene degradation by Galleria mellonella. Nat. Commun. 13, 5568 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Stepankova, V. et al. Strategies for stabilization of enzymes in organic solvents. ACS Catal. 3, 2823–2836 (2013).

    Article  CAS  Google Scholar 

  25. Daniel, R. M. & Danson, M. J. Temperature and the catalytic activity of enzymes: a fresh understanding. FEBS Lett. 587, 2738–2743 (2013).

    Article  CAS  PubMed  Google Scholar 

  26. Ganesh, M., Dave, R. N., L’Amoreaux, W. & Gross, R. A. Embedded enzymatic biomaterial degradation. Macromolecules 42, 6836–6839 (2009).

    Article  CAS  Google Scholar 

  27. Beauregard, P. B., Chai, Y., Vlamakis, H., Losick, R. & Kolter, R. Bacillus subtilis biofilm induction by plant polysaccharides. Proc. Natl Acad. Sci. USA 110, E1621–E1630 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Su, Y., Liu, C., Fang, H. & Zhang, D. W. Bacillus subtilis: a universal cell factory for industry, agriculture, biomaterials and medicine. Microb. Cell Fact. 19, 173 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Dubay, M. M. et al. Quantification of motility in Bacillus subtilis at temperatures up to 84 °C using a submersible volumetric microscope and automated tracking. Front. Microbiol. 13, 836808 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Warth, A. D. Relationship between the heat resistance of spores and the optimum and maximum growth temperatures of Bacillus species. J. Bacteriol. 134, 699–705 (1978).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hecker, M., Schumann, W. & Volker, U. Heat-shock and general stress response in Bacillus subtilis. Mol. Microbiol. 19, 417–428 (1996).

    Article  CAS  PubMed  Google Scholar 

  32. Msadek, T., Kunst, F. & Rapoport, G. MecB of Bacillus subtilis, a member of the ClpC ATPase family, is a pleiotropic regulator controlling competence gene expression and growth at high temperature. Proc. Natl Acad. Sci. USA 91, 5788–5792 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Nguyen, P. Q., Courchesne, N. M. D., Duraj-Thatte, A., Praveschotinunt, P. & Joshi, N. S. Engineered living materials: prospects and challenges for using biological systems to direct the assembly of smart materials. Adv. Mater. 30, e1704847 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Molinari, S., Tesoriero, R. F. & Ajo-Franklin, C. M. Bottom-up approaches to engineered living materials: challenges and future directions. Matter 4, 3095–3120 (2021).

    Article  CAS  Google Scholar 

  35. Zhu, R. et al. Engineering functional materials through bacteria-assisted living grafting. Cell Syst. 15, 264–274 (2024).

    Article  CAS  PubMed  Google Scholar 

  36. Li, Z. et al. Aggregation-induced emission luminogen catalyzed photocontrolled reversible addition–fragmentation chain transfer polymerization in an aqueous environment. Macromolecules 55, 2904–2910 (2022).

    Article  CAS  Google Scholar 

  37. Takizawa, K., Tang, C. & Hawker, C. J. Molecularly defined caprolactone oligomers and polymers: synthesis and characterization. J. Am. Chem. Soc. 130, 1718–1726 (2008).

    Article  CAS  PubMed  Google Scholar 

  38. Fleming, G. T. & Patching, J. W. Plasmid instability in an industrial strain of Bacillus subtilis grown in chemostat culture. J. Appl. Microbiol. 13, 106–111 (1994).

    CAS  Google Scholar 

Download references

Acknowledgements

We thank B. An and J. Sun for providing the chassis strain and assisting with spore engineering. We thank P. Chen, T. Meng, J. Yi and J. Yan from the Nano and Advanced Materials Institute Limited (Hong Kong, China) for providing technical support and facilities for the single-screw extruder manufacturing experiment. We thank J. Xu for his assistance in synthesizing CL-4. We thank J. Zhang for her assistance in the experimental setup. This study was partially supported by the National Key Research and Development Program of China (2020YFA0908100 to Z.D.), the National Natural Science Foundation of China (3222047 and 32071427 to Z.D.; 32101185 to J.L.), the Guangdong Natural Science Funds for Distinguished Young Scholars (2022B1515020077 to Z.D.) and the Shenzhen Science and Technology Program (ZDSYS20220606100606013 and KQTD20180413181837372 to Z.D.). We are grateful to the Shenzhen Infrastructure for Synthetic Biology for providing instrument support and technical assistance.

Author information

Authors and Affiliations

Authors

Contributions

C.T., Lin Wang and J. Sun designed and performed the experiments, interpreted the results and revised the paper. G.C., J. Shen and Liang Wang performed the experiments. Y.H., J.L., Z.L., P.Z. and S.Z. assisted in experimental setup, revision and data interpretation. D.Q., J.G. and J.L. assisted in research design and experimental setup. Z.D. conceptualized the research, designed the experiments, interpreted the results and wrote the paper.

Corresponding author

Correspondence to Zhuojun Dai.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemical Biology thanks David Karig and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–29 and Tables 1–3.

Reporting Summary

Supplementary Data

All source data for Supplementary Figs. 2, 4, 6–8, 10, 18–20, 26 and 27.

Source data

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 5

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, C., Wang, L., Sun, J. et al. Degradable living plastics programmed by engineered spores. Nat Chem Biol (2024). https://doi.org/10.1038/s41589-024-01713-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41589-024-01713-2

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology