Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structural basis for intermodular communication in assembly-line polyketide biosynthesis

Abstract

Assembly-line polyketide synthases (PKSs) are modular multi-enzyme systems with considerable potential for genetic reprogramming. Understanding how they selectively transport biosynthetic intermediates along a defined sequence of active sites could be harnessed to rationally alter PKS product structures. To investigate functional interactions between PKS catalytic and substrate acyl carrier protein (ACP) domains, we employed a bifunctional reagent to crosslink transient domain–domain interfaces of a prototypical assembly line, the 6-deoxyerythronolide B synthase, and resolved their structures by single-particle cryogenic electron microscopy (cryo-EM). Together with statistical per-particle image analysis of cryo-EM data, we uncovered interactions between ketosynthase (KS) and ACP domains that discriminate between intra-modular and inter-modular communication while reinforcing the relevance of conformational asymmetry during the catalytic cycle. Our findings provide a foundation for the structure-based design of hybrid PKSs comprising biosynthetic modules from different naturally occurring assembly lines.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Crosslinking a PKS module with DBA.
Fig. 2: DBA crosslinking a KS–AT core with its upstream and downstream ACP partners.
Fig. 3: Cryo-EM structure of an intermodular docking interaction during polyketide translocation.
Fig. 4: Structural analysis of crosslinked DEBS M3TE in complex with Fab 1B2 (CL-M3TE-1B2).
Fig. 5: Measuring the ACP occupancy of individual particles by statistical cryo-EM image analysis.

Similar content being viewed by others

Data availability

All atomic coordinates and cryo-EM maps have been deposited in the Protein Data Bank (PDB) under accession codes 8TJN, 8TJO, 8TPW, 8TPX, 8TJP and 8TKO and in the Electron Microscopy Data Bank under accession codes EMD-41305, EMD-41306, EMD-41495, EMD-41496, EMD-41307 and EMD-41355 (also declared in the authors’ Reporting Summary). Coordinates for model building were obtained from the PDB via accession codes 7M7F, 2JU2 and 6C9U. All materials used in this study that are not commercially available will be made available by the authors upon reasonable request. Source data are provided with this paper.

References

  1. Newman, D. J. & Cragg, G. M. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J. Nat. Prod. 83, 770–803 (2020).

    Article  CAS  PubMed  Google Scholar 

  2. Robertsen, H. L. & Musiol-Kroll, E. M. Actinomycete-derived polyketides as a source of antibiotics and lead structures for the development of new antimicrobial drugs. Antibiotics (Basel) 8, 157 (2019).

  3. Kirst, H. A. The spinosyn family of insecticides: realizing the potential of natural products research. J. Antibiot. (Tokyo) 63, 101–111 (2010).

    Article  CAS  PubMed  Google Scholar 

  4. Toopaang, W. et al. Microbial polyketides and their roles in insect virulence: from genomics to biological functions. Nat. Prod. Rep. 39, 2008–2029 (2022).

    Article  CAS  PubMed  Google Scholar 

  5. Nivina, A., Yuet, K. P., Hsu, J. & Khosla, C. Evolution and diversity of assembly-line polyketide synthases. Chem. Rev. 119, 12524–12547 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Klaus, M. & Grininger, M. Engineering strategies for rational polyketide synthase design. Nat. Prod. Rep. 35, 1070–1081 (2018).

    Article  CAS  PubMed  Google Scholar 

  7. Soohoo, A. M., Cogan, D. P., Brodsky, K. L. & Khosla, C. Structure and mechanisms of assembly-line polyketide synthases. Annu. Rev. Biochem. 3, 471–498 (2024).

    Article  Google Scholar 

  8. Dutta, S. et al. Structure of a modular polyketide synthase. Nature 510, 512–517 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Whicher, J. R. et al. Structural rearrangements of a polyketide synthase module during its catalytic cycle. Nature 510, 560–564 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Herbst, D. A. et al. The structural organization of substrate loading in iterative polyketide synthases. Nat. Chem. Biol. 14, 474–479 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wang, J. et al. Structural basis for the biosynthesis of lovastatin. Nat. Commun. 12, 867 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Cogan, D. P. et al. Mapping the catalytic conformations of an assembly-line polyketide synthase module. Science 374, 729–734 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bagde, S. R., Mathews, I. I., Fromme, J. C. & Kim, C.-Y. Modular polyketide synthase contains two reaction chambers that operate asynchronously. Science 374, 723–729 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Grininger, M. Enzymology of assembly line synthesis by modular polyketide synthases. Nat. Chem. Biol. 19, 401–415 (2023).

    Article  CAS  PubMed  Google Scholar 

  15. Kao, C. M., Pieper, R., Cane, D. E. & Khosla, C. Evidence for two catalytically independent clusters of active sites in a functional modular polyketide synthase. Biochemistry 35, 12363–12368 (1996).

    Article  CAS  PubMed  Google Scholar 

  16. Witkowski, A. et al. Dibromopropanone cross-linking of the phosphopantetheine and active-site cysteine thiols of the animal fatty acid synthase can occur both inter- and intrasubunit. Reevaluation of the side-by-side, antiparallel subunit model. J. Biol. Chem. 274, 11557–11563 (1999).

    Article  CAS  PubMed  Google Scholar 

  17. Stoops, J. K. & Wakil, S. J. Yeast fatty acid synthetase: structure–function relationship and nature of the β-ketoacyl synthetase site. Proc. Natl Acad. Sci. USA 77, 4544–4548 (1980).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Miyazawa, T., Hirsch, M., Zhang, Z. & Keatinge-Clay, A. T. An in vitro platform for engineering and harnessing modular polyketide synthases. Nat. Commun. 11, 80 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gokhale, R. S., Tsuji, S. Y., Cane, D. E. & Khosla, C. Dissecting and exploiting intermodular communication in polyketide synthases. Science 284, 482–485 (1999).

    Article  CAS  PubMed  Google Scholar 

  20. Broadhurst, R. W., Nietlispach, D., Wheatcroft, M. P., Leadlay, P. F. & Weissman, K. J. The structure of docking domains in modular polyketide synthases. Chem. Biol. 10, 723–731 (2003).

    Article  CAS  PubMed  Google Scholar 

  21. Tsuji, S. Y., Cane, D. E. & Khosla, C. Selective protein−protein interactions direct channeling of intermediates between polyketide synthase modules. Biochemistry 40, 2326–2331 (2001).

    Article  CAS  PubMed  Google Scholar 

  22. Henderson, R. et al. Outcome of the first electron microscopy validation task force meeting. Structure 20, 205–214 (2012).

    Article  CAS  PubMed  Google Scholar 

  23. Kapur, S., Chen, A. Y., Cane, D. E. & Khosla, C. Molecular recognition between ketosynthase and acyl carrier protein domains of the 6-deoxyerythronolide B synthase. Proc. Natl Acad. Sci. USA 107, 22066–22071 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kapur, S. et al. Reprogramming a module of the 6-deoxyerythronolide B synthase for iterative chain elongation. Proc. Natl Acad. Sci. USA 109, 4110–4115 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Charkoudian, L. K. et al. Probing the interactions of an acyl carrier protein domain from the 6-deoxyerythronolide B synthase. Protein Sci. 20, 1244–1255 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Squire, C. M., Goss, R. J. M., Hong, H., Leadlay, P. F. & Staunton, J. Catalytically active tetramodular 6-deoxyerythonolide B synthase fusion proteins. ChemBioChem 4, 1225–1228 (2003).

    Article  CAS  PubMed  Google Scholar 

  27. Cogan, D. P. et al. Antibody probes of module 1 of the 6-deoxyerythronolide B synthase reveal an extended conformation during ketoreduction. J. Am. Chem. Soc. 142, 14933–14939 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhao, Y., Schmid, M. F., Frydman, J. & Chiu, W. CryoEM reveals the stochastic nature of individual ATP binding events in a group II chaperonin. Nat. Commun. 12, 4754 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Tsai, S. C. et al. Crystal structure of the macrocycle-forming thioesterase domain of the erythromycin polyketide synthase: versatility from a unique substrate channel. Proc. Natl Acad. Sci. USA 98, 14808–14813 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Klaus, M. et al. Protein–protein interactions, not substrate recognition, dominate the turnover of chimeric assembly line polyketide. J. Biol. Chem. 291, 16404–16415 (2016).

  31. Whicher, J. R. et al. Cyanobacterial polyketide synthase docking domains: a tool for engineering natural product biosynthesis. Chem. Biol. 20, 1340–1351 (2013).

    Article  CAS  PubMed  Google Scholar 

  32. Zhang, L. et al. Characterization of giant modular PKSs provides insight into genetic mechanism for structural diversification of aminopolyol polyketides. Angew. Chem. Int. Ed. Engl. 56, 1740–1745 (2017).

    Article  CAS  PubMed  Google Scholar 

  33. Keatinge-Clay, A. T. Polyketide synthase modules redefined. Angew. Chem. Int. Ed. Engl. 56, 4658–4660 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sugimoto, Y. et al. Freedom and constraint in engineered noncolinear polyketide assembly lines. Chem. Biol. 22, 229–240 (2015).

    Article  CAS  PubMed  Google Scholar 

  35. Mabesoone, M. F. J. et al. Evolution-guided engineering of trans-acyltransferase polyketide synthases. Science 383, 1312–1317 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lowry, B., Li, X., Robbins, T., Cane, D. E. & Khosla, C. A turnstile mechanism for the controlled growth of biosynthetic intermediates on assembly line polyketide synthases. ACS Cent. Sci. 2, 14–20 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kim, C.-Y. et al. Reconstituting modular activity from separated domains of 6-deoxyerythronolide B synthase. Biochemistry 43, 13892–13898 (2004).

    Article  CAS  PubMed  Google Scholar 

  38. Li, X. et al. Structure–function analysis of the extended conformation of a polyketide synthase module. J. Am. Chem. Soc. 140, 6518–6521 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Scheres, S. H. W. RELION: implementation of a Bayesian approach to cryo-EM structure determination. J. Struct. Biol. 180, 519–530 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290–296 (2017).

    Article  CAS  PubMed  Google Scholar 

  41. Tang, G. et al. EMAN2: an extensible image processing suite for electron microscopy. J. Struct. Biol. 157, 38–46 (2007).

    Article  CAS  PubMed  Google Scholar 

  42. Asarnow, D., Palovcak, E. & Cheng, Y. asarnow/pyem: UCSF pyem v0.5. Zenodo https://doi.org/10.5281/zenodo.3576630 (2019).

  43. Meng, E. C. et al. UCSF ChimeraX: tools for structure building and analysis. Protein Sci. 32, e4792 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr. 66, 486–501 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Adams, P. D. et al. The Phenix software for automated determination of macromolecular structures. Methods 55, 94–106 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Afonine, P. V. et al. Real-space refinement in PHENIX for cryo-EM and crystallography. Acta Crystallogr. D Struct. Biol. 74, 531–544 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Waterhouse, A. et al. SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res. 46, gky427 (2018).

    Article  Google Scholar 

  48. Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank W. Chiu (Stanford University) for helpful discussions during the preparation of this manuscript. This study was funded by National Institutes of Health grant R35GM141799 (C.K.); National Institutes of Health grant F32GM136039 (D.P.C.); National Science Foundation Graduate Research Fellowship grant DGE-1656518 (A.M.S); and National Institutes of Health grant R01GM150905 (M.C.). Cryo-EM was performed at the Stanford-SLAC Cryo-EM Center, which is supported by the National Institutes of Health Common Fund Transformative High-Resolution Cryo-Electron Microscopy program (U24GM129541) and the Chan Zuckerberg Initiative (2021-234593).

Author information

Authors and Affiliations

Authors

Contributions

D.P.C., A.M.S., M.C. and C.K. conceived of the project aims. D.P.C. and A.M.S. collected non-cryo-EM experimental data. D.P.C. and Y.L. performed single-particle cryo-EM analysis. D.P.C. and K.L.B. refined the atomic models. M.C. performed the statistical per-particle image analysis. C.K. supervised all experiments. D.P.C. and C.K. wrote the initial manuscript, which was revised and edited by all authors.

Corresponding authors

Correspondence to Dillon P. Cogan or Chaitan Khosla.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemical Biology thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Protein sequences, Supplementary Methods, Supplementary Figs. 1–39, source data for supplementary figures, Supplementary Tables 1–11 and Supplementary References.

Reporting Summary

Source data

Source Data Fig. 1

Unprocessed gel image.

Source Data Fig. 2

Unprocessed gel images.

Source Data Fig. 4

Unprocessed gel image.

Source Data Fig. 5

Unprocessed gel image.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cogan, D.P., Soohoo, A.M., Chen, M. et al. Structural basis for intermodular communication in assembly-line polyketide biosynthesis. Nat Chem Biol (2024). https://doi.org/10.1038/s41589-024-01709-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41589-024-01709-y

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing