Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Persistent glucose consumption under antibiotic treatment protects bacterial community

Abstract

Antibiotics typically induce major physiological changes in bacteria. However, their effect on nutrient consumption remains unclear. Here we found that Escherichia coli communities can sustain normal levels of glucose consumption under a broad range of antibiotics. The community-living resulted in a low membrane potential in the bacteria, allowing slow antibiotic accumulation on treatment and better adaptation. Through multi-omics analysis, we identified a prevalent adaptive response characterized by the upregulation of lipid synthesis, which substantially contributes to sustained glucose consumption. The consumption was maintained by the periphery region of the community, thereby restricting glucose penetration into the community interior. The resulting spatial heterogeneity in glucose availability protected the interior from antibiotic accumulation in a membrane potential-dependent manner, ensuring rapid recovery of the community postantibiotic treatment. Our findings unveiled a community-level antibiotic response through spatial regulation of metabolism and suggested new strategies for antibiotic therapies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Glucose consumption of planktonic culture and bacterial community under antibiotic treatment.
Fig. 2: The spatial distribution of tetracycline within bacterial community.
Fig. 3: The role of membrane potential in tetracycline accumulation.
Fig. 4: Spatial multi-omics analysis of the bacterial community upon antibiotic treatment.

Similar content being viewed by others

Data availability

All relevant data are included in the article, Extended Data figures, Supplementary Data, Source data and Supplementary Information. Source data are provided with this paper.

References

  1. Lewis, K. The science of antibiotic discovery. Cell 181, 29–45 (2020).

    Article  CAS  PubMed  Google Scholar 

  2. Meylan, S. et al. Carbon sources tune antibiotic susceptibility in Pseudomonas aeruginosa via tricarboxylic acid cycle control. Cell Chem. Biol. 24, 195–206 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Peng, B. et al. Exogenous alanine and/or glucose plus kanamycin kills antibiotic-resistant bacteria. Cell Metab. 21, 249–262 (2015).

    Article  CAS  PubMed  Google Scholar 

  4. Allison, K. R., Brynildsen, M. P. & Collins, J. J. Metabolite-enabled eradication of bacterial persisters by aminoglycosides. Nature 473, 216–220 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Dai, X. et al. Reduction of translating ribosomes enables Escherichia coli to maintain elongation rates during slow growth. Nat. Microbiol. 2, 16231 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Scott, M. & Hwa, T. Shaping bacterial gene expression by physiological and proteome allocation constraints. Nat. Rev. Microbiol. 21, 327–342 (2023).

    Article  CAS  PubMed  Google Scholar 

  7. Wong, F. et al. Reactive metabolic byproducts contribute to antibiotic lethality under anaerobic conditions. Mol. Cell 82, 3499–3512 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zampieri, M. et al. High-throughput metabolomic analysis predicts mode of action of uncharacterized antimicrobial compounds. Sci. Transl. Med. 10, eaal3973 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Nonejuie, P., Burkart, M., Pogliano, K. & Pogliano, J. Bacterial cytological profiling rapidly identifies the cellular pathways targeted by antibacterial molecules. Proc. Natl Acad. Sci. USA 110, 16169–16174 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Liu, Q. et al. Tuberculosis treatment failure associated with evolution of antibiotic resilience. Science 378, 1111–1118 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sampaio, N. M. V., Blassick, C. M., Andreani, V., Lugagne, J.-B. & Dunlop, M. J. Dynamic gene expression and growth underlie cell-to-cell heterogeneity in Escherichia coli stress response. Proc. Natl Acad. Sci. USA 119, e2115032119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Akiyama, T. & Kim, M. Stochastic response of bacterial cells to antibiotics: its mechanisms and implications for population and evolutionary dynamics. Curr. Opin. Microbiol. 63, 104–108 (2021).

    Article  CAS  PubMed  Google Scholar 

  13. Alexander, H. K. & MacLean, R. C. Stochastic bacterial population dynamics restrict the establishment of antibiotic resistance from single cells. Proc. Natl Acad. Sci. USA 117, 19455–19464 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sauer, K. et al. The biofilm life cycle: expanding the conceptual model of biofilm formation. Nat. Rev. Microbiol. 20, 608–620 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Nadell, C. D., Drescher, K. & Foster, K. R. Spatial structure, cooperation and competition in biofilms. Nat. Rev. Microbiol. 14, 589–600 (2016).

    Article  CAS  PubMed  Google Scholar 

  16. Wu, F. et al. Modulation of microbial community dynamics by spatial partitioning. Nat. Chem. Biol. 18, 394–402 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Arnaouteli, S., Bamford, N. C., Stanley-Wall, N. R. & Kovács, Á. T. Bacillus subtilis biofilm formation and social interactions. Nat. Rev. Microbiol. 19, 600–614 (2021).

    Article  CAS  PubMed  Google Scholar 

  18. Bjarnsholt, T. et al. The importance of understanding the infectious microenvironment. Lancet Infect. Dis. 22, e88–e92 (2022).

    Article  CAS  PubMed  Google Scholar 

  19. Liu, J. et al. Metabolic co-dependence gives rise to collective oscillations within biofilms. Nature 523, 550–554 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Schreiber, F. et al. Phenotypic heterogeneity driven by nutrient limitation promotes growth in fluctuating environments. Nat. Microbiol. 1, 16055 (2016).

    Article  CAS  PubMed  Google Scholar 

  21. Chou, K.-T. et al. A segmentation clock patterns cellular differentiation in a bacterial biofilm. Cell 185, 145–157 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wang, T., Shen, P., He, Y., Zhang, Y. & Liu, J. Spatial transcriptome uncovers rich coordination of metabolism in E. coli K12 biofilm. Nat. Chem. Biol. 19, 940–950 (2023).

    Article  CAS  PubMed  Google Scholar 

  23. Davies, D. Understanding biofilm resistance to antibacterial agents. Nat. Rev. Drug Discov. 2, 114–122 (2003).

    Article  CAS  PubMed  Google Scholar 

  24. Yan, J. & Bassler, B. L. Surviving as a community: antibiotic tolerance and persistence in bacterial biofilms. Cell Host Microbe 26, 15–21 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ibberson, C. B., Barraza, J. P., Holmes, A. L., Cao, P. & Whiteley, M. Precise spatial structure impacts antimicrobial susceptibility of S. aureus in polymicrobial wound infections. Proc. Natl Acad. Sci. USA 119, e2212340119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Crabbé, A., Jensen, P. Ø., Bjarnsholt, T. & Coenye, T. Antimicrobial tolerance and metabolic adaptations in microbial biofilms. Trends Microbiol. 27, 850–863 (2019).

    Article  PubMed  Google Scholar 

  27. Lobritz, M. A. et al. Antibiotic efficacy is linked to bacterial cellular respiration. Proc. Natl Acad. Sci. USA 112, 8173–8180 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Pu, Y. et al. ATP-dependent dynamic protein aggregation regulates bacterial dormancy depth critical for antibiotic tolerance. Mol. Cell 73, 143–156 (2019).

    Article  CAS  PubMed  Google Scholar 

  29. Ciofu, O., Moser, C., Jensen, P. Ø. & Høiby, N. Tolerance and resistance of microbial biofilms. Nat. Rev. Microbiol. 20, 621–635 (2022).

    Article  CAS  PubMed  Google Scholar 

  30. Díaz-Pascual, F. et al. Spatial alanine metabolism determines local growth dynamics of Escherichia coli colonies. eLife 10, e70794 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Zhang, Y. et al. A microfluidic approach for quantitative study of spatial heterogeneity in bacterial biofilms. Small Sci. 2, 2200047 (2022).

    Article  CAS  Google Scholar 

  32. Stewart, P. S. & Franklin, M. J. Physiological heterogeneity in biofilms. Nat. Rev. Microbiol. 6, 199–210 (2008).

    Article  CAS  PubMed  Google Scholar 

  33. Jo, J., Price-Whelan, A. & Dietrich, L. E. P. Gradients and consequences of heterogeneity in biofilms. Nat. Rev. Microbiol. 20, 593–607 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Yoshioka, K. et al. Intracellular fate of 2-NBDG, a fluorescent probe for glucose uptake activity, in Escherichia coli cells. Biosci. Biotechnol. Biochem. 60, 1899–1901 (1996).

    Article  CAS  PubMed  Google Scholar 

  35. Dal Co, A., Ackermann, M. & van Vliet, S. Metabolic activity affects the response of single cells to a nutrient switch in structured populations. J. R. Soc. Interface 16, 20190182 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Carlotti, B., Fuoco, D. & Elisei, F. Fast and ultrafast spectroscopic investigation of tetracycline derivatives in organic and aqueous media. Phys. Chem. Chem. Phys. 12, 15580–15591 (2010).

    Article  CAS  PubMed  Google Scholar 

  37. Jin, X. et al. Sensitive bacterial Vm sensors revealed the excitability of bacterial Vm and its role in antibiotic tolerance. Proc. Natl Acad. Sci. USA 120, e2208348120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kohanski, M. A., Dwyer, D. J., Hayete, B., Lawrence, C. A. & Collins, J. J. A common mechanism of cellular death induced by bactericidal antibiotics. Cell 130, 797–810 (2007).

    Article  CAS  PubMed  Google Scholar 

  39. Wong, F. et al. Cytoplasmic condensation induced by membrane damage is associated with antibiotic lethality. Nat. Commun. 12, 2321 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Rasmussen, B. et al. Molecular basis of tetracycline action: identification of analogs whose primary target is not the bacterial ribosome. Antimicrob. Agents Chemother. 35, 2306–2311 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kohanski, M. A., Dwyer, D. J., Wierzbowski, J., Cottarel, G. & Collins, J. J. Mistranslation of membrane proteins and two-component system activation trigger antibiotic-mediated cell death. Cell 135, 679–690 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Bryan, L. E. & Kwan, S. Roles of ribosomal binding, membrane potential, and electron transport in bacterial uptake of streptomycin and gentamicin. Antimicrob. Agents Chemother. 23, 835–845 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Argast, M. & Beck, C. F. Tetracycline uptake by susceptible Escherichia coli cells. Arch. Microbiol. 141, 260–265 (1985).

    Article  CAS  PubMed  Google Scholar 

  44. Dobson, P. D. & Kell, D. B. Carrier-mediated cellular uptake of pharmaceutical drugs: an exception or the rule? Nat. Rev. Drug Discov. 7, 205–220 (2008).

    Article  CAS  PubMed  Google Scholar 

  45. Schmidt, A. et al. The quantitative and condition-dependent Escherichia coli proteome. Nat. Biotechnol. 34, 104–110 (2016).

    Article  CAS  PubMed  Google Scholar 

  46. Zhang, Y.-M. & Rock, C. O. Membrane lipid homeostasis in bacteria. Nat. Rev. Microbiol. 6, 222–233 (2008).

    Article  PubMed  Google Scholar 

  47. Tsay, J. T., Oh, W., Larson, T. J., Jackowski, S. & Rock, C. O. Isolation and characterization of the β-ketoacyl-acyl carrier protein synthase III gene (fabH) from Escherichia coli K-12. J. Biol. Chem. 267, 6807–6814 (1992).

    Article  CAS  PubMed  Google Scholar 

  48. Yao, Z., Davis, R. M., Kishony, R., Kahne, D. & Ruiz, N. Regulation of cell size in response to nutrient availability by fatty acid biosynthesis in Escherichia coli. Proc. Natl Acad. Sci. USA 109, E2561–E2568 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Yang, C.-Y. et al. Encoding membrane-potential-based memory within a microbial community. Cell Syst. 10, 417–423 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Rupel, K. et al. Blue laser light inhibits biofilm formation in vitro and in vivo by inducing oxidative stress. npj Biofilms Microbiomes 5, 29 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Chalabaev, S. et al. Biofilms formed by Gram-negative bacteria undergo increased lipid a palmitoylation, enhancing in vivo survival. mBio 5, e01116-14 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Erental, A., Sharon, I. & Engelberg-Kulka, H. Two programmed cell death systems in Escherichia coli: an apoptotic-like death is inhibited by the mazEF-mediated death pathway. PLoS Biol. 10, e1001281 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Xu, J.-Y. et al. Integrative proteomic characterization of human lung adenocarcinoma. Cell 182, 245–261 (2020).

    Article  CAS  PubMed  Google Scholar 

  54. Cappelletti, V. et al. Dynamic 3D proteomes reveal protein functional alterations at high resolution in situ. Cell 184, 545–559 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Piazza, I. et al. A map of protein–metabolite interactions reveals principles of chemical communication. Cell 172, 358–372 (2018).

    Article  CAS  PubMed  Google Scholar 

  56. Tatusov, R. L. et al. The COG database: an updated version includes eukaryotes. BMC Bioinformatics 4, 41 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Galperin, M. Y., Makarova, K. S., Wolf, Y. I. & Koonin, E. V. Expanded microbial genome coverage and improved protein family annotation in the COG database. Nucleic Acids Res. 43, D261–D269 (2015).

    Article  CAS  PubMed  Google Scholar 

  58. Reichl, B. et al. Evaluation and optimization of common lipid extraction methods in cerebrospinal fluid samples. J. Chromatogr. B 1153, 122271 (2020).

    Article  CAS  Google Scholar 

  59. Lennen, R. M. & Pfleger, B. F. Modulating membrane composition alters free fatty acid tolerance in Escherichia coli. PLoS ONE 8, e54031 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Guder, J. C., Schramm, T., Sander, T. & Link, H. Time-optimized isotope ratio LC–MS/MS for high-throughput quantification of primary metabolites. Anal. Chem. 89, 1624–1631 (2017).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank S. Hu and Z. Wang for assistance in data analysis, the Protein Chemistry and Proteomics Facility at Tsinghua University for assistance with proteomics assays and the Tsinghua University Center of Pharmaceutical Technology for assistance with metabolomics assays. J.L. was supported by the National Key R&D Program of China (2023YFC2306300), the National Natural Science Foundation of China (32170099), the Tsinghua University Dushi Program (20221080020 and 20231080040) and the Tsinghua–Peking Center for Life Sciences. Y.Z. was supported by the National Nature Science Foundation of China (21908129), Chinese Postdoctoral Science Foundation (2018M631481) and the Tsinghua–Peking Center for Life Sciences.

Author information

Authors and Affiliations

Authors

Contributions

J.L. conceived the project. Y.Z., Y.C. and Q.W. performed the experiments for the initial submission. Y.C. performed the experiments for the revision. X.J. and F.B. contributed to the measurement of membrane potential. Y.Z., Y.C. and J.L. designed the research, analyzed the data and wrote the paper draft. Y.C. and J.L. analyzed the data and revised the paper to its final form.

Corresponding authors

Correspondence to Yuzhen Zhang or Jintao Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemical Biology thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Bacterial response to antibiotics.

a, Growth curves of planktonic culture under various antibiotic treatments (initiated at time zero). Data are presented as mean values +/− SD, 3 biological replicates. b, Colony-forming units (CFU) of planktonic culture under various antibiotic treatments (initiated at time zero). Two biological replicates. c, Snapshots of the microfluidic chamber. To visualize the flow of the growth medium, we switched from the regular medium to a medium containing the fluorescent dye rhodamine B (0.1 mg ml−1). The arrow denotes the direction of flow, and the dashed line denotes the edge of the community. Scale bar, 500 μm. d, Snapshots of the region surrounding the community. Scale bar, 200 μm. The fluorescence front swept across the field of view (2,400 μm in width) in 5.6 s, implying a flow rate of ~430 μm s−1. Results in c and d are representative of at least 3 biological replicates.

Source data

Extended Data Fig. 2 Snapshots of the bacterial community following antibiotic treatment.

a, Control; b, tetracycline; c, kanamycin; d, ciprofloxacin; e, ceftazidime; f, trimethoprim; g, chloramphenicol; h, rifampicin. i,j, Polymyxin B, 100 μg ml−1. Images are composites of phase contrast and fluorescence. Red and green represent propidium iodide (PI) and 2-NBDG fluorescence, respectively. All snapshots are displayed with the same contrast settings. The images are representative of at least 3 biological replicates. Scale bars, 100 μm. k, Kymograph of 2-NBDG fluorescence within the community in response to polymyxin B treatment. ln, Snapshots of DCFH-DA fluorescence following 20 h of treatment with ciprofloxacin, kanamycin, and ceftazidime. Scale bar, 100 μm. o, Depth of the 2-NBDG ring, membrane potential transition, and antibiotic transition within the community, under three different glucose concentrations: 1× (22 mM), 0.5×, and 2×. Two biological replicates.

Source data

Extended Data Fig. 3 Distinct responses of community and planktonic bacteria.

a,b, Temporal changes in PtetR-mCherry fluorescence at the community periphery (a) and in planktonic bacteria (b). aTc, 1 μg ml−1 anhydrotetracycline. a is representative of >3 biological replicates. c,d, Temporal changes in DiBAC4(5) fluorescence at the community periphery (c) and in planktonic bacteria (d). For the planktonic data, each curve represents a single bacterium.

Source data

Extended Data Fig. 4 Impact of CCCP on tetracycline accumulation and glucose consumption within the community.

a, Kymograph of ViBac2 signal within the community. b, Temporal changes in ViBac2 signal at the community periphery. c, Kymograph of tetracycline fluorescence within the community. d, Temporal changes in tetracycline fluorescence at the community periphery. e, Kymograph of 2-NBDG fluorescence within the community. These data are representative of >3 biological replicates.

Source data

Extended Data Fig. 5 Metabolites secreted by the community, with or without tetracycline treatment (20 h).

We collected the waste medium flown out of the microfluidic chamber, and measured the metabolites in the waste medium using HPLC–MS. Normalized to the protein concentration of each community sample in the microfluidic chip. Two biological replicates each. n.s., not significant. Error bars indicate s.d. Statistical significance was determined by two-sided Student’s t-tests. ns, not significant.

Source data

Extended Data Fig. 6 Effect of 2-NBDG on planktonic bacteria.

a, Clusters of orthologous genes (COGs) analysis. Proteins detected in our proteomic experiment were grouped according to their COG categories, and then the percentage of protein mass in each category was calculated. Average of 2 biological replicates. b, Differential expression analysis of the COG categories shown in a. P-values were calculated using two-sided Student’s t-tests. c, Fold changes in the levels of proteins related to central carbon metabolism induced by 2-NBDG. The results indicate no significant effect. d, Growth curves of planktonic bacteria with or without 2-NBDG. Data are presented as mean values +/− SD, 3 biological replicates. The results indicate that 2-NBDG did not significantly affect bacterial growth. This lack of effect can be attributed to the low 2-NBDG concentration in our experiments (33 μM), which is substantially lower than the glucose concentration (22 mM). Additionally, the uptake of 2-NBDG by the bacteria is competitively inhibited by glucose (Supplementary Note). UDP-GlcNAc, uridine diphosphate N-acetylglucosamine; PEP, phosphoenolpyruvic acid; Ac-CoA, acetyl coenzyme A; OAA, oxaloacetic acid; α-KG, α-ketoglutarate; LPS, lipopolysaccharide; TCA, tricarboxylic acid.

Source data

Extended Data Fig. 7 Differential expression analysis of protein levels following antibiotic treatment.

a, Response of the community periphery (left panel) and interior (right panel) to tetracycline treatment respectively. Two biological replicates. P-values were calculated using two-sided Student’s t-tests. Refer to Supplementary Fig. 5 for analysis of other antibiotics. b, Venn diagrams depicting the proteins significantly upregulated in the community following antibiotic treatment, as indicated by the differential expression analysis in a. Blue represents the community periphery and red represents the interior. The numbers indicate the number of genes identified in each group.

Source data

Extended Data Fig. 8 Impact of fabH deletion on bacterial growth and glucose consumption.

a, Growth of planktonic culture. Data are presented as mean values +/− SD, 3 biological replicates. b, Growth rate of the bacterial community. Data are presented as mean values +/− SD. Biological replicates: 6 for wild type, 8 for fabH deletion. c,d, Snapshots of wild type and fabH deletion communities respectively. Green represents 2-NBDG fluorescence. Scale bar, 100 μm. e, Depth of the 2-NBDG ring within the community. Data are presented as mean values +/− SD. Eight biological replicates for each strain. Statistical significance was determined using two-sided Student’s t-tests: n.s., not significant.

Source data

Supplementary information

Supplementary Information

Supplementary Note, Figs. 1–7 and Table 1.

Reporting Summary

Supplementary Data 1

The proteomics dataset and COG classification results shown in Fig. 4.

Supplementary Data 2

The lipidome data shown in Fig. 4.

Source data

Source Data Fig. 1

Statistical source data and unprocessed image data.

Source Data Fig. 2

Statistical source data and unprocessed image data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Extended Data Fig. 1

Statistical source data and unprocessed image data.

Extended Data Fig. 2

Statistical source data and unprocessed image data.

Extended Data Fig. 3

Statistical source data.

Extended Data Fig. 4

Statistical source data.

Extended Data Fig. 5

Statistical source data.

Extended Data Fig. 6

Statistical source data.

Extended Data Fig. 7

Statistical source data.

Extended Data Fig. 8

Statistical source data and unprocessed image data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Cai, Y., Jin, X. et al. Persistent glucose consumption under antibiotic treatment protects bacterial community. Nat Chem Biol (2024). https://doi.org/10.1038/s41589-024-01708-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41589-024-01708-z

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research