Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Restoring susceptibility to β-lactam antibiotics in methicillin-resistant Staphylococcus aureus

Abstract

Infections by Staphylococcus aureus have been treated historically with β-lactam antibiotics. However, these antibiotics have become obsolete in methicillin-resistant S. aureus by acquisition of the bla and mec operons. The presence of the β-lactam antibiotic is detected by the sensor domains of BlaR and/or MecR, and the information is transmitted to the cytoplasm, resulting in derepression of the antibiotic-resistance genes. We hypothesized that inhibition of the sensor domain would shut down this response system, and β-lactam susceptibility would be restored. An in silico search of 11 million compounds led to a benzimidazole-based hit and, ultimately, to the boronate 4. The X-ray structure of 4 is covalently engaged with the active-site serine of BlaR. Compound 4 potentiates by 16- to 4,096-fold the activities of oxacillin and of meropenem against methicillin-resistant S. aureus strains. The combination of 4 with oxacillin or meropenem shows efficacy in infected mice, validating the strategy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic for the activation of BlaR.
Fig. 2: Fluorescence assay to identify potential BlaR inhibitors and their binding modes to the sensor domain of BlaR.
Fig. 3: Analysis of compound 4 binding to BlaR sensor domain.
Fig. 4: Interactions of compound 4 and cefepime with the extracellular loop EL1 of BlaR.
Fig. 5: Growth curves with specific anti-sense RNA in the COL strain background.
Fig. 6: In vitro and in vivo activities of compound 4 in combination with OXA or MEM.

Similar content being viewed by others

Data availability

The data that support the findings of this work are available in this Article and its Supplementary Information. General synthetic procedure; synthetic experimental procedures and characterization data; X-ray data collection method; crystal data and structure refinement for 2 and 4 and cefepime; NMR spectra for representative compounds, extended potential and MIC data, checkerboard and time-kill assays are included in Supplementary Information. The crystallographic parameters for structures of BlaR:2, BlaR:4 and BlaR:cefepime complexes have been deposited in the Protein Data Bank under accession codes 8C0S, 8C0P and 8CF3, respectively. Source data are provided with this paper.

References

  1. Mulani, M. S., Kamble, E. E., Kumkar, S. N., Tawre, M. S. & Pardesi, K. R. Emerging strategies to combat ESKAPE pathogens in the era of antimicrobial resistance: a review. Front. Microbiol. 10, 539 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Talbot, G. H. et al. The infectious diseases society of America’s 10 × ′20 Initiative (10 new systemic antibacterial agents US food and drug administration approved by 2020): is 20 × ′20 a possibility? Clin. Infect. Dis. 69, 1–11 (2019).

  3. De Oliveira, D. M. P. et al. Antimicrobial resistance in ESKAPE pathogens. Clin. Microbiol. Rev. 33, e00181–19 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Testero, S. A., Llarrull, L. I., Fisher, J. F. & Mobashery, S. in Burger’s Medicinal Chemistry, Drug Discovery and Development 8th edn (ed. Abraham, D. J.) 1–188 (Wiley, 2021).

  5. Jevons, M. P., Rolinson, G. N. & Knox, R. ‘Celbenin’-resistant staphylococci. Br. Med. J. 1, 124–125 (1961).

  6. Turner, N. A. et al. Methicillin-resistant Staphylococcus aureus: an overview of basic and clinical research. Nat. Rev. Microbiol. 17, 203–218 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Palavecino, E. L. Clinical, epidemiologic, and laboratory aspects of methicillin-resistant Staphylococcus aureus infections. Methods Mol. Biol. 2069, 1–28 (2020).

    Article  CAS  PubMed  Google Scholar 

  8. Jarvis, W. R. Prevention and control of methicillin-resistant Staphylococcus aureus: dealing with reality, resistance, and resistance to reality. Clin. Infect. Dis. 50, 218–220 (2010).

    Article  PubMed  Google Scholar 

  9. Chastre, J. Evolving problems with resistant pathogens. Clin. Microb. Infect. 14, 3–14 (2008).

    Article  CAS  Google Scholar 

  10. Andersen, E. When staff meet Staph-MRSA in the hospital setting. AAOHN J. 51, 499–500 (2003).

    Article  PubMed  Google Scholar 

  11. Zhang, H. Z., Hackbarth, C. J., Chansky, K. M. & Chambers, H. F. A proteolytic transmembrane signaling pathway and resistance to β-lactams in Staphylococci. Science 291, 1962–1965 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Llarrull, L. I., Toth, M., Champion, M. M. & Mobashery, S. Activation of BlaR1 protein of methicillin-resistant Staphylococcus aureus, its proteolytic processing, and recovery from induction of resistance. J. Biol. Chem. 286, 38148–38158 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Llarrull, L. I., Fisher, J. F. & Mobashery, S. Molecular basis and phenotype of methicillin-resistance in Staphylococcus aureus and insights into new β-lactams that meet the challenge. Antimicrob. Agents Chemother. 53, 4051–4063 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Alexander, J. A. N. et al. Structural basis of broad-spectrum β-lactam resistance in Staphylococcus aureus. Nature 613, 375–382 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Fisher, J. F. & Mobashery, S. β-Lactams against the fortress of the gram-positive Staphylococcus aureus bacterium. Chem. Rev. 121, 3412–3463 (2021).

  16. Fuda, C. C., Fisher, J. F. & Mobashery, S. β-lactam resistance in Staphylococcus aureus: the adaptive resistance of a plastic genome. Cell. Mol. Life Sci. 62, 2617–2633 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chambers, H. F. & Deleo, F. R. Waves of resistance: Staphylococcus aureus in the antibiotic era. Nat. Rev. Microbiol. 7, 629–641 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Fuda, C., Suvorov, M., Vakulenko, S. & Mobashery, S. The basis for resistance to β-lactam antibiotics by penicillin-binding protein 2a (PBP2a) of methicillin-resistant Staphylococcus aureus. J. Biol. Chem. 279, 40802–40806 (2004).

    Article  CAS  PubMed  Google Scholar 

  19. Safo, M. K. et al. Structure of the MecI repressor from Staphylococcus aureus in complex with the cognate DNA operator of mec. Acta Crystallogr. Sect. F 62, 320–324 (2006).

    Article  CAS  Google Scholar 

  20. Safo, M. K. et al. Crystal structures of the BlaI repressor from Staphylococcus aureus and its complex with DNA: insights into transcriptional regulation of the bla and mec operons. J. Bacteriol. 187, 1833–1844 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Llarrull, L. I., Prorok, M. & Mobashery, S. Binding of the gene repressor BlaI to the bla operon in methicillin-resistant Staphylococcus aureus. Biochemistry 49, 7975–7977 (2010).

    Article  CAS  PubMed  Google Scholar 

  22. Blazquez, B. et al. Regulation of the expression of the β-lactam antibiotic-resistance determinants in methicillin-resistant Staphylococcus aureus (MRSA). Biochemistry 53, 1548–1550 (2014).

    Article  CAS  PubMed  Google Scholar 

  23. Bouley, R. et al. Discovery of antibiotic (E)-3-(3-carboxyphenyl)-2-(4-cyanostyryl)quinazolin-4(3H)-one. J. Am. Chem. Soc. 137, 1738–1741 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Irwin, J. J. & Shoichet, B. K. ZINC-a free database of commercially available compounds for virtual screening. J. Chem. Inf. Model. 45, 177–182 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kawatkar, S., Wang, H., Czerminski, R. & Joseph-McCarthy, D. Virtual fragment screening: an exploration of various docking and scoring protocols for fragments using GLIDE. J. Comput. Aided Mol. Des. 23, 527–539 (2009).

    Article  CAS  PubMed  Google Scholar 

  26. Friesner, R. A. et al. GLIDE: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J. Med. Chem. 47, 1739–1749 (2004).

    Article  CAS  PubMed  Google Scholar 

  27. Halgren, T. A. et al. GLIDE: a new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. J. Med. Chem. 47, 1750–1759 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. Friesner, R. A. et al. Extra precision GLIDE: docking and scoring incorporating a model of hydrophobic enclosure for protein–ligand complexes. J. Med. Chem. 49, 6177–6196 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. Charpentier, E. et al. Novel cassette-based shuttle vector system for gram-positive bacteria. Appl. Environ. Microbiol. 70, 6076–6085 (2004).

  30. Tsivkovski, R. & Lomovskaya, O. Biochemical activity of vaborbactam. Antimicrob. Agents Chemother. 64, e01935–19 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Tsivkovski, R. & Lomovskaya, O. Potency of vaborbactam is less affected than that of avibactam in strains producing KPC-2 mutations that confer resistance to ceftazidime–avibactam. Antimicrob. Agents Chemother. 64, e01936–19 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hecker, S. J. et al. Discovery of cyclic boronic acid QPX7728, an ultrabroad-spectrum inhibitor of serine and metallo-β-lactamases. J. Med. Chem. 63, 7491–7507 (2020).

    Article  CAS  PubMed  Google Scholar 

  33. Werner, J. P., Mitchell, J. M., Taracila, M. A., Bonomo, R. A. & Powers, R. A. Exploring the potential of boronic acids as inhibitors of OXA-24/40 β-lactamase. Protein Sci. 26, 515–526 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Mons, E., Roet, S., Kim, R. Q. & Mulder, M. P. C. A comprehensive guide for assessing covalent inhibition in enzymatic assays illustrated with kinetic simulations. Curr. Protoc. 2, 419 (2022).

    Article  Google Scholar 

  35. Kim, H., Hwang, Y. S., Kim, M. & Park, S. B. Recent advances in the development of covalent inhibitors. RSC Med. Chem. 12, 1037–1045 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Tan, H. et al. Fluorescence spectroscopic investigation of competitive interactions between quercetin and aflatoxin B1 for binding to human serum albumin. Toxins 11, 214 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Alam, M. Exploration of binding affinities of a 3β,6β-diacetoxy-5α-cholestan-5-ol with human serum albumin: insights from synthesis, characterization, crystal structure, antioxidant and molecular docking. Molecules 28, 5942 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Massova, I. & Mobashery, S. Kinship and diversification of bacterial penicillin-binding proteins and β-lactamases. Antimicrob. Agents Chemother. 42, 1–17 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Drusano, G. Meropenem: laboratory and clinical data. Clin. Microbiol. Infect. 4, S51–S59 (1997).

    Google Scholar 

  40. Lakhundi, S. & Zhang, K. Methicillin-resistant Staphylococcus aureus: molecular characterization, evolution, and epidemiology. Clin. Microbiol. Rev. 31, e00020–18 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Dien Bard, J., Hindler, J. A., Gold, H. S. & Limbago, B. Rationale for eliminating Staphylococcus breakpoints for β-lactam agents other than penicillin, oxacillin or cefoxitin, and ceftaroline. Clin. Infect. Dis. 58, 1287–1296 (2014).

    Article  PubMed  Google Scholar 

  42. Staph infection can kill. Center for Disease Control and Infection https://www.cdc.gov/vitalsigns/staph/index.html (2019).

  43. Belluzo, B. S. et al. An experiment-informed signal transduction model for the role of the Staphylococcus aureus MecR1 protein in β-lactam resistance. Sci. Rep. 9, 19558 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Otero, L. H. et al. How allosteric control of Staphylococcus aureus penicillin binding protein 2a enables methicillin-resistance and physiological function. Proc. Natl Acad. Sci. USA 110, 16808–16813 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Cong, Y., Yang, S. & Rao, X. Vancomycin resistant. J. Adv. Res. 21, 169–176 (2020).

    Article  PubMed  Google Scholar 

  46. Smith, T. L. et al. Emergence of vancomycin resistance in Staphylococcus aureus. Glycopeptide-intermediate Staphylococcus aureus Working Group. N. Engl. J. Med. 340, 493–501 (1999).

    Article  CAS  PubMed  Google Scholar 

  47. Pillai, S. K. et al. Development of reduced vancomycin susceptibility in methicillin-susceptible Staphylococcus aureus. Clin. Infect. Dis. 49, 1169–1174 (2009).

    Article  CAS  PubMed  Google Scholar 

  48. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically in M07 (Clinical and Laboratory Standards Institute, 2024).

  49. Borbulevych, O. et al. Lysine Nζ-decarboxylation switch and activation of the β-lactam sensor domain of BlaR1 protein of methicillin-resistant Staphylococcus aureus. J. Biol. Chem. 286, 31466–31472 (2011).

  50. Kabsch, W. Integration, scaling, space-group assignment and post-refinement. Acta Crystallogr. D 66, 133–144 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Evans, P. R. & Murshudov, G. N. How good are my data and what is the resolution? Acta Crystallogr. D 69, 1204–1214 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D 66, 486–501 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D 66, 213–121 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Murshudov, G. N. et al. REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallogr. D 67, 355–367 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Speri, E. et al. Cinnamonitrile adjuvants restore susceptibility to β-lactams against methicillin-resistant Staphylococcus aureus. ACS Med. Chem. Lett. 10, 1148–1153 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Marrujo, S. A. et al. Dimeric 2-aminoimidazoles are highly active adjuvants for gram-positive selective antibiotics against Acinetobacter baumannii. Eur. J. Med. Chem. 253, 115329 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Lu, C. et al. OPLS4: improving force field accuracy on challenging regimes of chemical space. J. Chem. Theory Comput. 17, 4291–4300 (2021).

    Article  CAS  PubMed  Google Scholar 

  58. Bowers, K. J. et al. Scalable algorithms for molecular dynamics simulations on commodity clusters. In Proc. 2006 ACM/IEEE Conference on Supercomputing, 84-es (IEEE, 2006).

  59. Hoover, W. G. Canonical dynamics: equilibrium phase–space distributions. Phys. Rev. A 31, 1695–1697 (1985).

    Article  CAS  Google Scholar 

  60. Martyna, G. J., Tobias, D. J. & Klein, M. L. Constant pressure molecular dynamics algorithms. J. Chem. Phys. 101, 4177–4189 (1994).

    Article  CAS  Google Scholar 

  61. Predescu, C. et al. Computationally efficient molecular dynamics integrators with improved sampling accuracy. Mol. Phys. 110, 967–983 (2012).

    Article  Google Scholar 

  62. Bailey, A. & Lowe, C. MILCH SHAKE: an efficient method for constraint dynamics applied to alkanes. J. Comp. Chem. 30, 2485–2493 (2009).

    Article  CAS  Google Scholar 

  63. Shan, Y., Klepeis, J., Eastwood, M., Dror, R. & Shaw, D. Gaussian split Ewald: a fast Ewald method for molecular simulation. J. Chem. Phys. 122, 54101 (2005).

    Article  PubMed  Google Scholar 

  64. Humphrey, W., Dalke, A. & Schulten, K. VMD: visual molecular dynamics. J. Mol. Graph. 14, 33–38 (1996).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the staff from the XALOC beamline at ALBA synchrotron facility for their help during crystallographic data collection. J.Y. and A.M.E.-A. are Ruth L. Kirschtein National Research Service Award Fellows of the Chemistry–Biochemistry–Biology Interface (CBBI) Program at the University of Notre Dame supported by training grant T32 GM145773. We thank BEI Resources, NIAID, NIH for strains of MSSA and MRSA. The anti-sense strains were generous gifts of T. Roemer of Merck. We also thank R. Bonomo for the kind gift of samples of vaborbactam and taniborbactam. This work was supported by a grant from the National Institutes of Health (AI104987) in the USA. The work in Spain was supported by grants from the Spanish Ministry of Science and Innovation (PID2020-115331GB-I00) and from the Swiss National Science Foundation (CRSII5_198737/1, SINERGIA) to J.A.H.

Author information

Authors and Affiliations

Authors

Contributions

V.T.N. synthesized compounds. C.K. produced fluorescent plasmids. V.T.N. and C.K. performed MIC, potentiation, fluorescence and anti-sense assays. B.T.B. conducted time-kill assays. B.T.B. and J.Y. conducted the mouse neutropenic thigh infection studies. J.Y. performed the PK study and toxicity assay. M.L. performed mass spectrometry experiments. A.M.E.-A performed the binding experiments. S.S. and A.M.E.-A. performed MD simulations. N.R. performed virtual screening of compound libraries. R.F. and C.A.T purified the BlaR protein. V.M.-R., M.B., E.J.-F., A. A. and J.A.H. obtained and analyzed X-ray crystal structures. V.M.-R. and J.A.H performed computational modeling. B.T.B. and V.A.S. conducted the in-life portion of the PK and neutropenic thigh infection studies. M.C. directed the time-kill assays and in vivo studies. S.M. directed the project. S.M., J.F.F., M.C., J.A.H., V.T.N., B.T.B. and C.K. prepared the manuscript. All authors approved the final version of the manuscript.

Corresponding author

Correspondence to Shahriar Mobashery.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemical Biology thanks Gemma Nixon, Alejandro Vila and the other, anonymous, reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–16, Tables 1 and 2 and Notes 1–6.

Reporting Summary

Supplementary Video 1

MD simulations of BlaR and compound 4.

Supplementary Video 2

MD simulations of wild-type BlaR.

Supplementary Video 3

MD simulation of mutant BlaR and compound 4.

Supplementary Data 1

Raw fluorescence intensity data for Supplemenary Fig. 7.

Supplementary Data 2

Inhibition data for Supplemenary Fig. 8.

Supplementary Data 3

Raw data for time-kill assay for Supplementary Fig. 14.

Supplementary Data 4

Raw PK data for Supplementary Fig. 15.

Supplementary Data 5

Raw data and statistical analysis for in vivo experiment for Supplementary Fig. 16.

Source data

Source Data Fig. 3

Raw data for binding affinity and kinetic analysis.

Source Data Fig. 5

Raw data for inhibitions of PBPs.

Source Data Fig. 6

Raw data for in vivo experiment.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, V.T., Birhanu, B.T., Miguel-Ruano, V. et al. Restoring susceptibility to β-lactam antibiotics in methicillin-resistant Staphylococcus aureus. Nat Chem Biol (2024). https://doi.org/10.1038/s41589-024-01688-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41589-024-01688-0

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research