Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Balancing G protein selectivity and efficacy in the adenosine A2A receptor

An Author Correction to this article was published on 28 August 2024

This article has been updated

Abstract

The adenosine A2A receptor (A2AR) engages several G proteins, notably Go and its cognate Gs protein. This coupling promiscuity is facilitated by a dynamic ensemble, revealed by 19F nuclear magnetic resonance imaging of A2AR and G protein. Two transmembrane helix 6 (TM6) activation states, formerly associated with partial and full agonism, accommodate the differing volumes of Gs and Go. While nucleotide depletion biases TM7 toward a fully active state in A2AR–Gs, A2AR–Go is characterized by a dynamic inactive/intermediate fraction. Molecular dynamics simulations reveal that the NPxxY motif, a highly conserved switch, establishes a unique configuration in the A2AR–Go complex, failing to stabilize the helix-8 interface with Gs, and adoption of the active state. The resulting TM7 dynamics hamper G protein coupling, suggesting kinetic gating may be responsible for reduced efficacy in the noncognate G protein complex. Thus, dual TM6 activation states enable greater diversity of coupling partners while TM7 dynamics dictate coupling efficacy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: A2AR coupling to G proteins.
Fig. 2: MD and MC simulations show the NPxxY motif differentially stabilizes TM7 in A2AR–Gs and A2AR–Go complexes.
Fig. 3: Structural models and 19F NMR spectra of Gs and Go (CH5.23) in complex with receptor.
Fig. 4: Predicted allosteric pathway propagating through the receptor.
Fig. 5: Coupling between the A2AR and its cognate and noncognate G proteins (Gs and Go)—visualizing the free energy landscape.

Similar content being viewed by others

Data availability

All data from this study are included in Source data files provided with this paper. Requests for further information, resources and reagents should be directed to and will be fulfilled by the lead contacts, Scott Prosser (scott.prosser@utoronto.ca), Louis-Philippe Picard (louisphilippe.picard@utoronto.ca) or Adnan Sljoka (adnan.sljoka@riken.jp).

Change history

References

  1. Hauser, A. S., Attwood, M. M., Rask-Andersen, M., Schiöth, H. B. & Gloriam, D. E. Trends in GPCR drug discovery: new agents, targets and indications. Nat. Rev. Drug Discov. 16, 829–842 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Tehan, B. G., Bortolato, A., Blaney, F. E., Weir, M. P. & Mason, J. S. Unifying family A GPCR theories of activation. Pharmacol. Ther. 143, 51–60 (2014).

    Article  CAS  PubMed  Google Scholar 

  3. Inoue, A. et al. Illuminating G-protein-coupling selectivity of GPCRs. Cell 177, 1933–1947.e25 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Zhou, Q. et al. Common activation mechanism of class A GPCRs. eLife 8, e50279 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Kapolka, N. J. et al. DCyFIR: a high-throughput CRISPR platform for multiplexed G protein-coupled receptor profiling and ligand discovery. Proc. Natl Acad. Sci. USA 117, 13117–13126 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Madsen, J. J., Ye, L., Frimurer, T. M. & Olsen, O. H. Mechanistic basis of GPCR activation explored by ensemble refinement of crystallographic structures. Protein Sci. 31, e4456 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Avet, C. et al. Effector membrane translocation biosensors reveal G protein and βarrestin coupling profiles of 100 therapeutically relevant GPCRs. eLife 11, e74101 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chen, S., Teng, X. & Zheng, S. Molecular basis for the selective G protein signaling of somatostatin receptors. Nat. Chem. Biol. 19, 133–140 (2023).

    Article  CAS  PubMed  Google Scholar 

  9. Shimada, I., Ueda, T., Kofuku, Y., Eddy, M. T. & Wüthrich, K. GPCR drug discovery: integrating solution NMR data with crystal and cryo-EM structures. Nat. Rev. Drug Discov. 10, 579 (2018).

    Google Scholar 

  10. Nygaard, R. et al. The dynamic process of β2-adrenergic receptor activation. Cell 152, 532–542 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kofuku, Y. et al. Functional dynamics of deuterated β2-adrenergic receptor in lipid bilayers revealed by NMR spectroscopy. Angew. Chem. Int. ed. Engl. 53, 13376–13379 (2014).

    Article  CAS  PubMed  Google Scholar 

  12. Manglik, A. et al. Structural insights into the dynamic process of β2-adrenergic receptor signaling. Cell 161, 1101–1111 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Isogai, S. et al. Backbone NMR reveals allosteric signal transduction networks in the β1-adrenergic receptor. Nature 530, 237–241 (2016).

    Article  CAS  PubMed  Google Scholar 

  14. Eddy, M. T. et al. Allosteric coupling of drug binding and intracellular signaling in the A2A adenosine receptor. Cell 172, 68–80.e12 (2018).

    Article  CAS  PubMed  Google Scholar 

  15. Mizumura, T. et al. Activation of adenosine A2A receptor by lipids from docosahexaenoic acid revealed by NMR. Sci. Adv. 6, eaay8544 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Huang, S. K. et al. Delineating the conformational landscape of the adenosine A2A receptor during G protein coupling. Cell 184, 1884–1894.e14 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wu, F.-J. et al. Nanobody GPS by PCS: an efficient new NMR analysis method for G protein coupled receptors and other large proteins. J. Am. Chem. Soc. 144, 21728–21740 (2022).

    Article  CAS  PubMed  Google Scholar 

  18. Guerrero, A. A2A adenosine receptor agonists and their potential therapeutic applications. An update. Curr. Med. Chem. 25, 3597–3612 (2018).

    Article  CAS  PubMed  Google Scholar 

  19. Gessi, S. et al. A2A adenosine receptor as a potential biomarker and a possible therapeutic target in Alzheimer’s disease. Cells 10, 2344 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Fredholm, B. B., Chen, J.-F., Masino, S. A. & Vaugeois, J.-M. Actions of adenosine at its receptors in the CNS: insights from knockouts and drugs. Annu. Rev. Pharmacol. Toxicol. 45, 385–412 (2005).

    Article  CAS  PubMed  Google Scholar 

  21. Yu, F., Zhu, C., Xie, Q. & Wang, Y. Adenosine A2A receptor antagonists for cancer immunotherapy: miniperspective. J. Med. Chem. 63, 12196–12212 (2020).

    Article  CAS  PubMed  Google Scholar 

  22. Hickey, P. & Stacy, M. Adenosine A2A antagonists in Parkinson’s disease: what’s next? Curr. Neurol. Neurosci. 12, 376–385 (2012).

    Article  CAS  Google Scholar 

  23. Morello, S., Sorrentino, R. & Pinto, A. Adenosine A2a receptor agonists as regulators of inflammation: pharmacology and therapeutic opportunities. J. Receptor Ligand Channel Res. 2, 11–17 (2009).

    Article  CAS  Google Scholar 

  24. Zhu, C. et al. Adenosine A2A receptor antagonist istradefylline 20 versus 40 mg/day as augmentation for Parkinson’s disease: a meta-analysis. Neurol. Res. 36, 1028–1034 (2014).

    Article  CAS  PubMed  Google Scholar 

  25. Victor-Vega, C., Desai, A., Montesinos, M. C. & Cronstein, B. N. Adenosine A2A receptor agonists promote more rapid wound healing than recombinant human platelet–derived growth factor (becaplermin gel). Inflammation 26, 19–24 (2002).

    Article  CAS  PubMed  Google Scholar 

  26. Valls, M. D., Cronstein, B. N. & Montesinos, M. C. Adenosine receptor agonists for promotion of dermal wound healing. Biochem. Pharmacol. 77, 1117–1124 (2009).

    Article  CAS  PubMed  Google Scholar 

  27. Jenner, P. An Overview of Adenosine A2A Receptor Antagonists in Parkinson’s Disease Vol. 119 (Elsevier, 2014).

  28. Zheng, J., Zhang, X. & Zhen, X. Development of adenosine A2A receptor antagonists for the treatment of Parkinson’s disease: a recent update and challenge. ACS Chem. Neurosci. 10, 783–791 (2019).

    Article  CAS  PubMed  Google Scholar 

  29. Cunha, R. A. Neuroprotection by adenosine in the brain: from A1 receptor activation to A2A receptor blockade. Purinergic Signal. 1, 111–134 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Allard, D., Turcotte, M. & Stagg, J. Targeting A2 adenosine receptors in cancer. Immunol. Cell Biol. 95, 333–339 (2017).

    Article  CAS  PubMed  Google Scholar 

  31. Fredholm, B., Cunha, R. & Svenningsson, P. Pharmacology of adenosine A2A receptors and therapeutic applications. Curr. Top. Med. Chem. 3, 413–426 (2003).

    Article  CAS  PubMed  Google Scholar 

  32. Mondal, S., Hsiao, K. & Goueli, S. A. A homogenous bioluminescent system for measuring GTPase, GTPase activating protein, and guanine nucleotide exchange factor activities. Assay Drug Dev. Technol. 13, 444–455 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Carpenter, B., Nehmé, R., Warne, T., Leslie, A. G. W. & Tate, C. G. Structure of the adenosine A2A receptor bound to an engineered G protein. Nature 536, 104–107 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. García-Nafría, J., Lee, Y., Bai, X., Carpenter, B. & Tate, C. G. Cryo-EM structure of the adenosine A2A receptor coupled to an engineered heterotrimeric G protein. eLife 7, 213 (2018).

    Article  Google Scholar 

  35. Flock, T. et al. Universal allosteric mechanism for Gα activation by GPCRs. Nature 524, 173 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Venkatakrishnan, A. J. et al. Diverse activation pathways in class A GPCRs converge near the G-protein-coupling region. Nature 536, 484–487 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ragnarsson, L., Andersson, Å., Thomas, W. G. & Lewis, R. J. Mutations in the NPxxY motif stabilize pharmacologically distinct conformational states of the α1B- and β2-adrenoceptors. Sci. Signal. 12, eaas9485 (2019).

    Article  CAS  PubMed  Google Scholar 

  38. Prosser, R. S., Ye, L., Pandey, A. & Orazietti, A. Activation processes in ligand-activated G protein-coupled receptors: a case study of the adenosine A2A receptor. BioEssays 39, 1700072–10 (2017).

    Article  Google Scholar 

  39. Sušac, L., Eddy, M. T., Didenko, T., Stevens, R. C. & Wüthrich, K. A2A adenosine receptor functional states characterized by 19F-NMR. Proc. Natl Acad. Sci. USA 115, 12733–12738 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Sykes, B. D., Weingarten, H. I. & Schlesinger, M. J. Fluorotyrosine alkaline phosphatase from Escherichia coli: preparation, properties, and fluorine-19 nuclear magnetic resonance spectrum. Proc. Natl Acad. Sci. USA 71, 469–473 (1974).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lovera, S., Cuzzolin, A., Kelm, S., Fabritiis, G. D. & Sands, Z. A. Reconstruction of apo A2A receptor activation pathways reveal ligand-competent intermediates and state-dependent cholesterol hotspots. Sci. Rep. 9, 14199 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Liu, X. et al. Structural insights into the process of GPCR-G protein complex formation. Cell 177, 1–22 (2019).

    Article  Google Scholar 

  43. Wang, J. & Miao, Y. Mechanistic insights into specific G protein interactions with adenosine receptors. J. Phys. Chem. B 123, 6462–6473 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hata, H., Tran, D. P., Sobeh, M. M. & Kitao, A. Binding free energy of protein/ligand complexes calculated using dissociation Parallel Cascade Selection Molecular Dynamics and Markov state model. Biophys. Physicobiol. 18, 305–316 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Tran, D. P. & Kitao, A. Dissociation process of a MDM2/p53 complex investigated by parallel cascade selection molecular dynamics and the Markov state model. J. Phys. Chem. B 123, 2469–2478 (2019).

    Article  CAS  PubMed  Google Scholar 

  46. Farrell, D. W., Speranskiy, K. & Thorpe, M. F. Generating stereochemically acceptable protein pathways. Proteins 78, 2908–2921 (2010).

    Article  CAS  PubMed  Google Scholar 

  47. Zhu, S. et al. Hyperphosphorylation of intrinsically disordered tau protein induces an amyloidogenic shift in its conformational ensemble. PLoS ONE 10, e0120416 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Gowers, R. J. et al. MDAnalysis: a Python package for the rapid analysis of molecular dynamics simulations. SciPy2016 https://doi.org/10.25080/majora-629e541a-00e (2016).

  49. Huang, S. et al. GPCRs steer Gi and Gs selectivity via TM5-TM6 switches as revealed by structures of serotonin receptors. Mol. Cell 82, 2681–2695.e6 (2022).

    Article  CAS  PubMed  Google Scholar 

  50. Westfield, G. H. et al. Structural flexibility of the Gαs α-helical domain in the β2-adrenoceptor Gs complex. Proc. Natl Acad. Sci. USA 108, 16086–16091 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Eps, N. V. et al. Interaction of a G protein with an activated receptor opens the interdomain interface in the alpha subunit. Proc. Natl Acad. Sci. USA 108, 9420–9424 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Ham, D. et al. Conformational switch that induces GDP release from Gi. J. Struct. Biol. 213, 107694 (2021).

    Article  CAS  PubMed  Google Scholar 

  53. Huang, S. K. et al. Mapping the conformational landscape of the stimulatory heterotrimeric G protein. Nat. Struct. Mol. Biol. 30, 502–511 (2023).

    Article  CAS  PubMed  Google Scholar 

  54. Koehl, A. et al. Structure of the µ-opioid receptor–Gi protein complex. Nature 558, 547–552 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Eps, N. V. et al. Gi- and Gs-coupled GPCRs show different modes of G-protein binding. Proc. Natl Acad. Sci. USA 115, 2383–2388 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Maeda, S., Qu, Q., Robertson, M. J., Skiniotis, G. & Kobilka, B. K. Structures of the M1 and M2 muscarinic acetylcholine receptor/G-protein complexes. Science 364, 552–557 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Faurobert, E., Otto‐Bruc, A., Chardin, P. & Chabre, M. Tryptophan W207 in transducin T alpha is the fluorescence sensor of the G protein activation switch and is involved in the effector binding. EMBO J. 12, 4191–4198 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Sljoka, A. Probing allosteric mechanism with long-range rigidity transmission across protein networks. Methods Mol. Biol. 2253, 61–75 (2021).

  59. Chen, X. et al. Structural determinants in the second intracellular loop of the human cannabinoid CB1 receptor mediate selective coupling to Gs and Gi. Br. J. Pharmacol. 161, 1817–1834 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Hauser, A. S. et al. Common coupling map advances GPCR-G protein selectivity. eLife 11, e74107 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Sandhu, M. et al. Dynamic spatiotemporal determinants modulate GPCR:G protein coupling selectivity and promiscuity. Nat. Commun. 13, 7428 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Okashah, N. et al. Variable G protein determinants of GPCR coupling selectivity. Proc. Natl Acad. Sci. USA 46, 201905993–201905996 (2019).

    Google Scholar 

  63. Flock, T. et al. Selectivity determinants of GPCR–G-protein binding. Nature 545, 317–322 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Tawfik, D. S. Accuracy-rate tradeoffs: how do enzymes meet demands of selectivity and catalytic efficiency? Curr. Opin. Chem. Biol. 21, 73–80 (2014).

    Article  CAS  PubMed  Google Scholar 

  65. Copley, S. D. An evolutionary biochemist’s perspective on promiscuity. Trends Biochem. Sci. 40, 72–78 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Pabon, N. A. & Camacho, C. J. Probing protein flexibility reveals a mechanism for selective promiscuity. eLife 6, e22889 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Okashah, N. et al. Variable G protein determinants of GPCR coupling selectivity. Proc. Natl Acad. Sci. USA 116, 12054–12059 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Sandhu, M. et al. Conformational plasticity of the intracellular cavity of GPCR−G-protein complexes leads to G-protein promiscuity and selectivity. Proc. Natl Acad. Sci. USA 116, 11956–11965 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Ridge, K. D. et al. NMR analysis of rhodopsin–transducin interactions. Vis. Res. 46, 4482–4492 (2006).

    Article  CAS  PubMed  Google Scholar 

  70. Wrabl, J. O. et al. The role of protein conformational fluctuations in allostery, function, and evolution. Biophys. Chem. 159, 129–141 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Motlagh, H. N., Wrabl, J. O., Li, J. & Hilser, V. J. The ensemble nature of allostery. Nature 508, 331–339 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Ye, L., Eps, N. V., Zimmer, M., Ernst, O. P. & Prosser, R. S. Activation of the A2A adenosine G-protein-coupled receptor by conformational selection. Nature 533, 265 (2016).

    Article  CAS  PubMed  Google Scholar 

  73. Etzkorn, M. et al. Cell-free expressed bacteriorhodopsin in different soluble membrane mimetics: biophysical properties and NMR accessibility. Structure 21, 394–401 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Ehrlich, A. T. et al. Mapping GPR88-Venus illuminates a novel role for GPR88 in sensory processing. Brain Struct. Funct. 223, 1275–1296 (2018).

    Article  CAS  PubMed  Google Scholar 

  75. Fiser, A. & Šali, A. Modeller: generation and refinement of homology-based protein structure models. Methods Enzymol. 374, 461–491 (2003).

    Article  CAS  PubMed  Google Scholar 

  76. Tian, C. et al. ff19SB: amino-acid-specific protein backbone parameters trained against quantum mechanics energy surfaces in solution. J. Chem. Theory Comput. 16, 528–552 (2019).

    Article  PubMed  Google Scholar 

  77. He, X., Man, V. H., Yang, W., Lee, T.-S. & Wang, J. A fast and high-quality charge model for the next generation general AMBER force field. J. Chem. Phys. 153, 114502 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Dickson, C. J. et al. Lipid14: the amber lipid force field. J. Chem. Theory Comput. 10, 865–879 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Izadi, S., Anandakrishnan, R. & Onufriev, A. V. Building water models: a different approach. J. Phys. Chem. Lett. 5, 3863–3871 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Nosé, S. A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys. 81, 511–519 (1984).

    Article  Google Scholar 

  81. Hoover, W. G. Canonical dynamics-equilibrium phase-space distributions. Phys. Rev. A 31, 1695–1697 (1985).

    Article  CAS  Google Scholar 

  82. Parrinello, M. & Rahman, A. Polymorphic transitions in single crystals: a new molecular dynamics method. J. Appl. Phys. 52, 7182–7190 (1981).

    Article  CAS  Google Scholar 

  83. Scherer, M. K. et al. PyEMMA 2: a software package for estimation, validation, and analysis of Markov models. J. Chem. Theory Comput. 11, 5525–5542 (2015).

    Article  CAS  PubMed  Google Scholar 

  84. Harada, R. & Kitao, A. Parallel cascade selection molecular dynamics (PaCS-MD) to generate conformational transition pathway. J. Chem. Phys. 139, 035103 (2013).

    Article  PubMed  Google Scholar 

  85. Ikizawa, S. et al. PaCS-Toolkit: optimized software utilities for parallel cascade selection molecular dynamics (PaCS-MD) simulations and subsequent analyses. J. Phys. Chem. B 128, 3631–3642 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Sljoka, A. in Sublinear Computation Paradigm (eds Katoh, N. et al.) 337–367 (Springer Singapore, 2022).

  87. Tucs, A., Tsuda, K. & Sljoka, A. Probing conformational dynamics of antibodies with geometric simulations. Methods Mol. Biol. 2552, 125–139 (2023).

    Article  PubMed  Google Scholar 

  88. Sljoka, A. Algorithms in rigidity theory with applications to protein flexibility and mechanical linkages. PhD dissertation, York University. (2012).

  89. Whiteley, W. Counting out to the flexibility of molecules. Phys. Biol. 2, S116–S126 (2005).

    Article  CAS  PubMed  Google Scholar 

  90. Jacobs, D. J., Rader, A. J., Kuhn, L. A. & Thorpe, M. F. Protein flexibility predictions using graph theory. Proteins 44, 150–165 (2001).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Canadian Institutes of Health Research (CIHR) Operating Grant no. MOP-43998 to R.S.P.; the MEXT/JSPS KAKENHI grant nos. JP19K23721 and JP23K14154 D.P.T. and grant nos. JP19H03191, JP22H04745, JP23H02445 and JP23H02445 to A.K.; and the MEXT ‘Program for Promoting Research on the Supercomputer Fugaku’ (Simulation- and AI-driven next-generation medicine and drug discovery based on ‘Fugaku’, grant no. JPMXP1020230120) to D.P.T. A.S. was supported by the RIKEN International Collaboration Program grant. S.K.H. was supported by an Alexander Graham Bell Canada Graduate Scholarship-Doctoral from NSERC. A.S. was supported by CREST, Japan Science and Technology Agency (JST), Japan, grant no. JPMJCR1402. We thank M. Bouvier for providing constructs for BRET studies, D. Pichugin for technical assistance and maintenance of the NMR spectrometer at the Center for Magnetic Resonance Research, University of Toronto Mississauga, and the UTM’s Office of the Vice-Principal, Research (OVPR), for providing research infrastructure needed for this research. We also thank S. Furness (U. Queensland) for helpful suggestions. This work also used computational resources provided by the Institute for Solid State Physics, the University of Tokyo, the Research Center for Computational Science, Okazaki, Japan (Project: 23-IMS-C045), and the supercomputer Fugaku through the HPCI System Research Project (Project IDs: hp220107, hp230077 and hp240024) and the RIKEN Center for Computational Science (Project ID: hp230216).

Author information

Authors and Affiliations

Authors

Contributions

L.-P.P., A.O. and R.S.P. designed the research. L.-P.P., A.O., Z.Q. and S.K.H. performed protein expression and purification. L.-P.P. performed BRET and hydrolysis experiments. L.-P.P. and A.O. performed NMR experiments. D.P.T. and S.H. performed MD simulations under the supervision of A.K. A.K. designed and supervised analysis of molecular modelling, MD simulations, PCA analysis and related analysis. A.T. performed MC simulations under the supervision of A.S. K.T. assisted with simulations. A.S. performed RTA analysis. A.S. designed and supervised computational analysis, M.C. simulations and rigidity theory analysis. L.-P.P., A.O., D.P.T., A.K., A.S. and R.S.P. prepared the manuscript. R.S.P. supervised the project.

Corresponding authors

Correspondence to Louis-Philippe Picard, Adnan Sljoka or R. Scott Prosser.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemical Biology thanks Yinglong Miao and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 A2AR coupling to multiple G proteins and corresponding Bioluminescence Resonance Energy Transfer (BRET) and 19F NMR response to Gs and Go associated with TM6.

(a) Schematic representation of the BRET sensor, showing activation through the addition of an agonist (yellow triangle) and the corresponding dissociation of the α and βγ subunits, allowing for formation of the GRK-GFP and βγ-RLuc BRET pair. (b) BRET-based assay showing coupling of A2AR to Gs and Go upon agonist (NECA) stimulation. Data represent mean +/− SEM of n = 4 independent experiments. (c) Overlay of inactive and mini-Gs bound active A2AR crystal structures, illustrating the reorientation of TM6. (d) 19F NMR of TM6 labeled A2AR. The A2AR inactive ensemble (S1TM6 and S2TM6) is distinguished by a salt bridge between R1023.50 and E2286.30 that is either intact (S1TM6, −61.2 ppm) or broken (S2TM6, −60.9 ppm), where disruption of the salt bridge is necessary for reorientation of TM6 and activation. The A2AR activation ensemble is characterized by a preactivated state (A3), observed upon complexation of the apo receptor with GDP-bound G protein, and two distinct active states (A1 and A2) which become prominent upon removal of nucleotide. The nucleotide-free A2AR-Go complex is characterized by a lack of the A1 state, formerly associated with full agonism in the A2AR-Gs complex. All 19F NMR spectra are deconvoluted into a superposition of Lorentzian lines as shown. The light red line illustrates the residual error between the fitted and experimental spectra.

Source data

Extended Data Fig. 2 TM7-labeled A2AR reveals multiple intermediates and activation states.

a) 19F NMR reveals a wealth of functional states in a dynamic equilibrium. Complexation with Gs results in an activation ensemble, defined by A1TM7, A2TM7 and A3TM7. Removal of nucleotide subsequently shifts this activation ensemble toward A1TM7. In contrast, complexation with Go results in a partial shift to the activation ensemble, while multiple activation intermediates persist upon nucleotide removal. b) Overlay of inactive and active crystal structures of A2AR depict reorientation of TM7 upon complexation with mini-Gs. c–d) T2-filtered spectroscopy of the nucleotide-free complexes reveals sub-millisecond timescale dynamics of the intermediates, while the surviving (long-T2) activation states are identical for the nucleotide-free A2AR-Gs and A2AR-Go complexes. In this experiment, signal associated with states undergoing conformational exchange comparable to or faster than the refocusing frequency will become decoherent and not be fully refocused such that an exchange rate can be derived75. The overall effect is the removal from the apparent spectra of any such homogeneous line broadening. Here, a delay of 150 μs between refocusing pulses was used in the T2-filtered spectroscopy, corresponding to a refocusing frequency (1/4τ) of 1.67 kHz.

Source data

Extended Data Fig. 3 RMSD of heavy atoms from the initial structures during MD simulations.

(a) RMSD of heavy atoms associated with A2AR only for the A2AR-Gs complex. Note that the 10 different colors designate separate 1 µs trajectories for a total sampling time of 10 µs. (b) RMSD of A2AR heavy atoms for the A2AR-Go complex. (c) RMSD of heavy atoms of Gs in the A2AR-Gs complex (d) RMSD of Go in the A2AR-Go complex. RMSD is calculated after first superimposing structures to the initial energy minimized reference structure. In general, the simulated structures were judged to converge after 500 ns. Note that one trajectory undergoes a significant departure at ~ 500 ns (orange in d), indicative of a global rearrangement of Go. (e) Overlay of A2A-Gs in cyan (in (c) at 990 ns indicated by the arrow) and the outlier A2AR-Gs (shown in red in (c) at 990 ns indicated by the arrow). The difference is largely a consequence of rearrangement of the αN helix of Gα and the Ras domain. (f) Overlay of A2A-Go in magenta (in (d) at 990 ns indicated by the arrow) and the outlier A2AR-Go (shown in orange in (d) at 990 ns indicated by the arrow). Here, the outlier is distinguished by a reorientation of the αN helix as well as that of Gγ.

Source data

Extended Data Fig. 4 Evaluation of direct interactions in the A2AR-Gs and A2AR-Go complexes.

a) Connectivity map showing residues making direct contact with Gαs. Magenta and grey lines designate hydrogen bonds or hydrophobic contacts respectively. b) A2AR-Gαo connectivity map.

Extended Data Fig. 5 Calculation of binding free energies for the A2AR-Gs and A2AR-Go complexes by dPaCS-MD/MSM.

(a, c) The dissociation process of G proteins from A2AR shown by the inter-center of mass distances between A2AR and Gs/Go, d, as a function of dPaCS-MD cycle. The results for a) A2AR-Gs and c) A 2AR-Go. (b, d) The potential of mean force (PMF) as a function of d for (b) A2AR-Gs and (d) A2AR-Go obtained from the Markov State Model (MSM). The results of five trials (dots) and the average (thick lines) are shown. The PMF of the bound state is −22.1 ± 1.6 (A2AR-Gs) and −19.7 ± 1.5 (A2AR-Go) kcal/mol compared to that of the completely unbound states. Considering the volume correction of 1.8 ± 0.1 (A2AR-Gs) and 1.7 ± 0.2 (A2AR-Go) kcal/mol, the standard binding free energies are −20.3 ± 1.6 (A2AR-Gs) and −18.0 ± 1.5 (A2AR-Go) kcal/mol. (e, f) The implied time scale versus lag time plots of MSM for (e) A2AR-Gs and (f) A2AR-Go. The lag time of 50 ps was used to construct MSM.

Source data

Extended Data Fig. 6 A2AR-Gs and A2AR-Go have distinct features of the NPxxY motif and conformational dynamics.

a) MD simulations reveal an ensemble of NPxxY A2AR-Gs and A2AR-Go dihedral angle configurations in a nucleotide-free or GDP-bound states. b) Difference in Root Mean Square Fluctuations as a function of residue across A2AR between A2AR-Gs and A2AR-Go complexes during MC simulation. Note that cutoff energies of 1, 2, and 3 kcal/mol refer to the extent of sampling of conformers and give rise to predictably greater excursions in the Gs and Go complexes, particularly in the vicinity of ECL2 and ICL3. c) MC-derived distances between R2938.48 and E378H5.24/G352H5.24.

Source data

Extended Data Fig. 7 Principal component analysis (PCA) of A2AR conformations sampled by 10 μs MD simulations.

Projections onto the space spanned by the first two principal components (PCs) and conformational changes along these PCs, showing the distributions of the snapshots from each cluster with different color. The stars indicate the representative structures of the most populated clusters (Cluster 1) and the crosses signify the representative structures from the rest of the clusters. The x- and y-axes are scaled by the standard deviations (σ) of PC1 and PC2 (1.0 and 0.7 Å for A2AR-Gs and 1.1 and 0.8 Å for A2AR-Go) (a) Superposition of A2AR-Gs structures (right) and corresponding PCA mapping (left). Structures were generated by moving the average structure at (PC1, PC2) = (0,0) from −0.5 σ to 0.5 σ along PC1 or PC2. (b) Superposition of A2AR-Go structures (right) and corresponding PCA mapping (left).

Source data

Extended Data Fig. 8 The volume of the H5-helix dictates TM6 position.

a) Superposition of 56 Gs coupled receptors(orange) and 15 Go coupled receptors (blue) shows TM6 adopts a more outward orientation by 2 Å in the case of Gs. b-c) H5 volume of Gs (b) and Go (c) on all structures shown in a protein modeled by MD simulations with volume calculations for the last 5 and 8 amino acids and full H5 on all structures showing a bigger volume for Gs.

Extended Data Fig. 9 Validation of Gα constructs.

a-b) GloSensor assays of A2AGs and A2AGo heterotrimers, utilizing the 19F-labeled Δ5 Gαs and Δ5 Gαo constructs. Data are presented as mean values +/− SEM of n = 4 independent experiments. c) Native tryptophan residues and the conserved FH5.08 are overlayed between GDP-bound Gαs (PDB: 6eg8, dark red and brown) and GTPγS-bound Gαs (PDB: 1AZT, red and orange). d) 19F NMR spectra of 5FW-enriched Gαs. Individual unassigned resonances are resolved (P1S-P4S) for each of the four native tryptophan residues for the WT Gαs (dark red spectra). GTPγS substitution (light red spectra) produces no changes aside from a downfield shift in resonance P2S. The mutant F362WG.H5.08s produces spectra with an additional severely broadened resonance (P5S, −128.25 ppm). GTPγS for GDP substitution (orange and brown spectra, respectively) reveals no large-scale changes in H5 helix topology related to the bound nucleotide, however, significant line broadening suggests local exchange processes at the H5 helix. e) Native tryptophan residues and the conserved FH5.08 are shown in the GDP-bound state (PDB: 3c7k, Blue and teal, respectively). f) 19F NMR spectra of 5FW-enriched Gαo. Unassigned resonances for the two native tryptophan residues are resolved for the WT Gαo in the GDP-bound (dark blue) and GTPγS-bound (light blue) states (P1O, P2O) where, only one tryptophan is sensitive to nucleotide exchange. Finer resolution of minor state conformers in the GDP-bound state alongside the dominant peak P2O indicate plasticity around the nucleotide core which is abrogated upon exchange for GTPγS. Mutant F336WG.H5.08o, similarly to Gαs, is insensitive to the presence of either GDP (teal spectra) or GTPγS (aqua spectra). The results reflect the higher basal activity of Go, where the dominant resonance of the nucleotide sensitive tryptophan associated with GTPγS binding is also dominant in the GDP-bound state.

Source data

Extended Data Fig. 10 Allosteric pathways in the A2AR-Gs and A2AR-Go complexes and commonalities with the serotonin-G protein complexes.

(a-b) Predicted allosteric pathway propagating through the G-protein upon rigidification of the nucleotide binding pocket in the A2AR-Gs (a) and A2AR-Go (b) complexes. (c-d) Predicted allosteric pathway propagating through the receptor in the 5HT4-Gs (c) and 5HT4-Gi (d) complexes, upon rigidification of the agonist binding contacts.

Supplementary information

Supplementary Information

Supplementary Tables 1 and 2.

Reporting Summary

Supplementary Video 1

Video of the A2AR-Gs complex and associated principal components: PC1, PC2 and PC3. Significant conformational changes are observed within ECL2, ICL3 and NPxxY motifs through the trajectories.

Supplementary Video 2

Video of the A2AR-Go complex and associated principal components: PC1, PC2 and PC3. Significant conformational changes are observed within ECL2, ICL3 and NPxxY motifs through the trajectories.

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Extended Data Fig. 1

Statistical source data.

Source Data Extended Data Fig. 2

Statistical source data.

Source Data Extended Data Fig. 3

Statistical source data.

Source Data Extended Data Fig. 5

Statistical source data.

Source Data Extended Data Fig. 6

Statistical source data.

Source Data Extended Data Fig. 7

Statistical source data.

Source Data Extended Data Fig. 9

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Picard, LP., Orazietti, A., Tran, D.P. et al. Balancing G protein selectivity and efficacy in the adenosine A2A receptor. Nat Chem Biol (2024). https://doi.org/10.1038/s41589-024-01682-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41589-024-01682-6

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing