Abstract
Recent studies have revealed that Caenorhabditis elegans and other nematodes repurpose products from biochemical degradation pathways for the combinatorial assembly of complex modular structures that serve diverse signaling functions. Building blocks from neurotransmitter, amino acid, nucleoside and fatty acid metabolism are attached to scaffolds based on the dideoxyhexose ascarylose or glucose, resulting in hundreds of modular ascarosides and glucosides. Genome-wide association studies have identified carboxylesterases as the key enzymes mediating modular assembly, enabling rapid compound discovery via untargeted metabolomics and suggesting that modular metabolite biosynthesis originates from the ‘hijacking’ of conserved detoxification mechanisms. Modular metabolites thus represent a distinct biosynthetic strategy for generating structural and functional diversity in nematodes, complementing the primarily polyketide synthase- and nonribosomal peptide synthetase-derived universe of microbial natural products. Although many aspects of modular metabolite biosynthesis and function remain to be elucidated, their identification demonstrates how phenotype-driven compound discovery, untargeted metabolomics and genomic approaches can synergize to facilitate the annotation of metabolic dark matter.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Da Silva, R. R., Dorrestein, P. C. & Quinn, R. A. Illuminating the dark matter in metabolomics. Proc. Natl Acad. Sci. USA 112, 12549–12550 (2015).
Zamboni, N., Saghatelian, A. & Patti, G. J. Defining the metabolome: size, flux and regulation. Mol. Cell 58, 699–706 (2015).
Artyukhin, A. B. et al. Metabolomic ‘dark matter’ dependent on peroxisomal β-oxidation in Caenorhabditis elegans. J. Am. Chem. Soc. 140, 2841–2852 (2018). Using comparative metabolomics to study a mutant defective in peroxisomal β‑oxidation, which is required for the biosynthesis of the ascaroside core scaffolds, the authors uncover more than 200 modular ascarosides that integrate diverse building blocks from all major metabolic pathways.
Helf, M. J., Fox, B. W., Artyukhin, A. B., Zhang, Y. K. & Schroeder, F. C. Comparative metabolomics with Metaboseek reveals functions of a conserved fat metabolism pathway in C. elegans. Nat. Commun. 13, 782 (2022).
Sindelar, M. & Patti, G. J. Chemical discovery in the era of metabolomics. J. Am. Chem. Soc. 142, 9097–9105 (2020).
Camilli, A. & Bassler, B. L. Bacterial small-molecule signaling pathways. Science 311, 1113–1116 (2006).
Manosalva, P. et al. Conserved nematode signalling molecules elicit plant defenses and pathogen resistance. Nat. Commun. 6, 7795 (2015).
Butcher, R. A. Natural products as chemical tools to dissect complex biology in C. elegans. Curr. Opin. Chem. Biol. 50, 138–144 (2019).
Johansson, B. G. & Jones, T. M. The role of chemical communication in mate choice. Biol. Rev. 82, 265–289 (2007).
Machado, R. A. R. & Reuss, S. Hvon Chemical ecology of nematodes. Chimia 76, 945 (2022).
Ludewig, A. H. & Schroeder, F. C. Ascaroside signaling in C. elegans. WormBook (The C. elegans Research Community, 2013); https://doi.org/10.1895/wormbook.1.155.1
von Reuss, S. H. Exploring modular glycolipids involved in nematode chemical communication. Chim. Int. J. Chem. 72, 297–303 (2018). This review outlines the chemical diversity, biosynthesis, and species-specificity of ascarosides in several Caenorhabditis species and in P. pacificus. This review also discusses the use of targeted MS-based metabolomics to screen for entire ascaroside profiles across various nematode species.
Butcher, R. A. Small-molecule pheromones and hormones controlling nematode development. Nat. Chem. Biol. 13, 577–586 (2017).
Butcher, R. A. Decoding chemical communication in nematodes. Nat. Prod. Rep. 34, 472–477 (2017).
von Reuss, S. H. & Schroeder, F. C. Combinatorial chemistry in nematodes: modular assembly of primary metabolism-derived building blocks. Nat. Prod. Rep. 32, 994–1006 (2015).
Schroeder, F. C. Modular assembly of primary metabolic building blocks: a chemical language in C. elegans. Chem. Biol. 22, 7–16 (2015).
Golden, J. W. & Riddle, D. L. A pheromone influences larval development in the nematode Caenorhabditis elegans. Science 218, 578–580 (1982).
Golden, J. W. & Riddle, D. L. A Caenorhabditis elegans dauer-inducing pheromone and an antagonistic component of the food supply. J. Chem. Ecol. 10, 1265–1280 (1984).
Golden, J. W. & Riddle, D. L. The Caenorhabditis elegans dauer larva: developmental effects of pheromone, food and temperature. Dev. Biol. 102, 368–378 (1984).
Butcher, R. A., Fujita, M., Schroeder, F. C. & Clardy, J. Small-molecule pheromones that control dauer development in Caenorhabditis elegans. Nat. Chem. Biol. 3, 420–422 (2007).
Jeong, P. Y. et al. Chemical structure and biological activity of the Caenorhabditis elegans dauer-inducing pheromone. Nature 433, 541–545 (2005). This work provides the first direct evidence that ascarosides are the key small-molecule component of the dauer pheromone in C. elegans. This work springboards the discovery of the entire family of modular ascarosides and is an instructive example of the power of activity-guided fractionation.
Srinivasan, J. et al. A modular library of small molecule signals regulates social behaviors in Caenorhabditis elegans. PLoS Biol. 10, e1001237 (2012).
Artyukhin, A. B. et al. Succinylated octopamine ascarosides and a new pathway of biogenic amine metabolism in Caenorhabditis elegans. J. Biol. Chem. 288, 18778–18783 (2013).
Pungaliya, C. et al. A shortcut to identifying small molecule signals that regulate behavior and development in Caenorhabditis elegans. Proc. Natl Acad. Sci. USA 106, 7708–7713 (2009).
Dong, C., Weadick, C. J., Truffault, V. & Sommer, R. J. Convergent evolution of small molecule pheromones in pristionchus nematodes. eLife 9, e55687 (2020).
Bose, N. et al. Complex small-molecule architectures regulate phenotypic plasticity in a nematode. Angew. Chem. Int. Ed. 51, 12438–12443 (2012).
Bose, N. et al. Natural variation in dauer pheromone production and sensing supports intraspecific competition in nematodes. Curr. Biol. 24, 1536–1541 (2014).
Bergame, C. P., Dong, C., Sutour, S. & Von Reuß, S. H. Epimerization of an ascaroside-type glycolipid downstream of the canonical β-oxidation cycle in the nematode Caenorhabditis nigoni. Org. Lett. 21, 9889–9892 (2019).
Curtis, B. J. et al. Identification of uric acid gluconucleoside-ascaroside conjugates in Caenorhabditis elegans by combining synthesis and MicroED. Org. Lett. 22, 6724–6728 (2020).
Burkhardt, R. N. et al. Sex-specificity of the C. elegans metabolome. Nat. Commun. 14, 320 (2023).
Hoki, J. S. et al. Deep interrogation of metabolism using a pathway-targeted click-chemistry approach. J. Am. Chem. Soc. 142, 18449–18459 (2020).
Von Reuss, S. H. et al. Comparative metabolomics reveals biogenesis of ascarosides, a modular library of small-molecule signals in C. elegans. J. Am. Chem. Soc. 134, 1817–1824 (2012).
Choe, A. et al. Ascaroside signaling is widely conserved among nematodes. Curr. Biol. 22, 772–780 (2012).
Dolke, F. et al. Ascaroside signaling in the bacterivorous nematode Caenorhabditis remanei encodes the growth phase of its bacterial food source. Org. Lett. 21, 5832–5837 (2019).
Panda, O. et al. Biosynthesis of modular ascarosides in C. elegans. Angew. Chem. Int. Ed. 56, 4729–4733 (2017).
Falcke, J. M. et al. Linking genomic and metabolomic natural variation uncovers nematode pheromone piosynthesis. Cell Chem. Biol. 25, 787–796 (2018). This work demonstrates the potential of GWAS for the discovery of unexpected enzymatic functions in the context of modular metabolite biosynthesis and beyond.
Rauwerdink, A. & Kazlauskas, R. J. How the same core catalytic machinery catalyzes 17 different reactions: the serine-histidine-aspartate catalytic triad of α/β-hydrolase fold enzymes. ACS Catal. 5, 6153–6176 (2015).
Mindrebo, J. T., Nartey, C. M., Seto, Y., Burkart, M. D. & Noel, J. P. Unveiling the functional diversity of the α/β hydrolase superfamily in the plant kingdom. Curr. Opin. Struct. Biol. 41, 233–246 (2016).
Zheng, Q. et al. An α/β-hydrolase fold protein in the biosynthesis of thiostrepton exhibits a dual activity for endopeptidyl hydrolysis and epoxide ring opening/macrocyclization. Proc. Natl Acad. Sci. USA 113, 14318–14323 (2016).
Lejon, S., Ellis, J. & Valegård, K. The last step in cephalosporin C formation revealed: crystal structures of deacetylcephalosporin C acetyltransferase from acremonium chrysogenum in complexes with reaction intermediates. J. Mol. Biol. 377, 935–944 (2008).
Faghih, N. et al. A large family of enzymes responsible for the modular architecture of nematode pheromones. J. Am. Chem. Soc. 142, jacs.0c04223 (2020). This paper demonstrate that the cest homologs are required for modular ascaroside assembly in C. elegans, specifically for the attachment of 4′-modifications.
Le, H. H. et al. Modular metabolite assembly in Caenorhabditis elegans depends on carboxylesterases and formation of lysosome-related organelles. eLife 9, e61886 (2020). This work demonstrates the power of untargeted metabolomics in determining that the cest enzymes additionally participate in the biosynthesis of modular glucosides (MOGLs).
Piazzesi, A. et al. CEST-2.2 overexpression alters lipid metabolism and extends longevity of mitochondrial mutants. EMBO Rep. 23, e52606 (2022).
Zhou, Y. et al. Biosynthetic tailoring of existing ascaroside pheromones alters their biological function in C. elegans. eLife 7, e33286 (2018).
Taylor, S. R. et al. Molecular topography of an entire nervous system. Cell 184, 4329–4347 (2021).
Teufel, F. et al. SignalP 6.0 predicts all five types of signal peptides using protein language models. Nat. Biotechnol. 40, 1023–1025 (2022).
Nyathi, Y., Wilkinson, B. M. & Pool, M. R. Co-translational targeting and translocation of proteins to the endoplasmic reticulum. Biochim. Biophys. Acta 1833, 2392–2402 (2013).
Yu, J. et al. Parallel pathways for serotonin biosynthesis and metabolism in C. elegans. Nat. Chem. Biol. 19, 141–150 (2023).
Wrobel, C. J. J. et al. Combinatorial assembly of modular glucosides via carboxylesterases regulates C. elegans starvation survival. J. Am. Chem. Soc. 143, 14676–14683 (2021). This work provides insights into the biological roles of MOGL production, including their association with nutritional status and starvation survival in C. elegans.
Imai, T., Taketani, M., Shii, M., Hosokawa, M. & Chiba, K. Substrate specificity of carboxylesterase isozymes and their contribution to hydrolase activity in human liver and small intestine. Drug Metab. Dispos. 34, 1734–1741 (2006).
Martínez-Martínez, M. et al. Determinants and prediction of esterase substrate promiscuity patterns. ACS Chem. Biol. 13, 225–234 (2018).
Blaxter, M. Nematodes: the worm and its relatives. PLoS Biol. 9, e1001050 (2011).
Bargmann, C. I. Comparative chemosensation from receptors to ecology. Nature 444, 295–301 (2006).
Kanzaki, N. et al. Biology and genome of a newly discovered sibling species of Caenorhabditis elegans. Nat. Commun. 9, 3216 (2018).
Chute, C. D. et al. Co-option of neurotransmitter signaling for inter-organismal communication in C. elegans. Nat. Commun. 10, 3186 (2019).
O'Donnell, M. P., Fox, B. W., Chao, P.-H., Schroeder, F. C. & Sengupta, P. A neurotransmitter produced by gut bacteria modulates host sensory behaviour. Nature 583, 415–420 (2020).
Coburn, C. et al. Anthranilate fluorescence marks a calcium-propagated necrotic wave that promotes organismal death in C. elegans. PLoS Biol. 11, e1001613 (2013).
Stasiuk, S. J. et al. Similarities and differences in the biotransformation and transcriptomic responses of Caenorhabditis elegans and Haemonchus contortus to five different benzimidazole drugs. Int. J. Parasitol. Drugs Drug Resist. 11, 13–29 (2019).
Lee, J. H. et al. Indole-associated predator–prey interactions between the nematode Caenorhabditis elegans and bacteria. Environ. Microbiol. 19, 1776–1790 (2017).
Stupp, G. S. et al. Chemical detoxification of small molecules by Caenorhabditis elegans. ACS Chem. Biol. 8, 309–313 (2013).
Ouzzine, M., Gulberti, S., Ramalanjaona, N., Magdalou, J. & Fournel-Gigleux, S. The UDP-glucuronosyltransferases of the blood–brain barrier: their role in drug metabolism and detoxication. Front. Cell. Neurosci. 8, 349 (2014).
Lindblom, T. H. & Dodd, A. K. Xenobiotic detoxification in the nematode Caenorhabditis elegans. J. Exp. Zool. A Comp. Exp. Biol. 305A, 720–730 (2006).
Bock, K. W. The UDP-glycosyltransferase (UGT) superfamily expressed in humans, insects and plants: animal-plant arms-race and co-evolution. Biochem. Pharmacol. 99, 11–17 (2016).
Soukup, S. T. et al. Formation of phosphoglycosides in Caenorhabditis elegans: a novel biotransformation pathway. PLoS ONE 7, e46914 (2012).
Hosoda, K., Furuta, T. & Ishii, K. Metabolism and disposition of isoflavone conjugated metabolites in humans after ingestion of kinako. Drug Metab. Dispos. 39, 1762–1767 (2011).
Lai, Y. et al. High-coverage metabolomics uncovers microbiota-driven biochemical landscape of interorgan transport and gut–brain communication in mice. Nat. Commun. 12, 6000 (2021).
Meech, R., Miners, J. O., Lewis, B. C. & MacKenzie, P. I. The glycosidation of xenobiotics and endogenous compounds: versatility and redundancy in the UDP glycosyltransferase superfamily. Pharmacol. Ther. 134, 200–218 (2012).
Dong, D., Ako, R., Hu, M. & Wu, B. Understanding substrate selectivity of human UDP-glucuronosyltransferases through QSAR modeling and analysis of homologous enzymes. Xenobiotica 42, 808–820 (2012).
Brown, V., Jonesyb, A. J., Laceya, M. J. & Moorea, B. P. The chemistry of buprestins A and B. Bitter principles of jewel beetles (Coleoptera: Buprestidae). Aust. J. Chem. 38, 197–206 (1985).
Ryczek, S., Dettner, K. & Unverzagt, C. Synthesis of buprestins D, E, F, G and H; structural confirmation and biological testing of acyl glucoses from jewel beetles (Coleoptera: Buprestidae). Bioorg. Med. Chem. 17, 1187–1192 (2009).
Schramm, S., Dettner, K. & Unverzagt, C. Chemical and enzymatic synthesis of buprestin A and B—bitter acylglucosides from Australian jewel beetles (Coleoptera: Buprestidae). Tetrahedron Lett. 47, 7741–7743 (2006).
Moore, B. P. & Brown, W. V. The buprestins: bitter principles of jewel bettle (Coleoptera: Buprestidae). Aust. J. Entomol. 24, 81–85 (1985).
Herrmann, M. et al. The nematode Pristionchus pacificus (Nematoda: Diplogastridae) is associated with the oriental beetle Exomala orientalis (Coleoptera: Scarabaeidae) in Japan. Zoolog. Sci 24, 883–889 (2007).
Wegensteiner, R., Wermelinger, B. & Herrmann, M. in Bark Beetles (eds Vega, F. E. & Hofstetter, R. W.) Ch. 7, 247–304 (Elsevier, 2015).
Nordgren, M., Wang, B., Apanasets, O. & Fransen, M. Peroxisome degradation in mammals: mechanisms of action, recent advances and perspectives. Front. Physiol. 4, 145 (2013).
Soto-Heredero, G., Baixauli, F. & Mittelbrunn, M. Interorganelle communication between mitochondria and the endolysosomal system. Front. Cell Dev. Biol. 5, 95 (2017).
Klecker, T., Böckler, S. & Westermann, B. Making connections: interorganelle contacts orchestrate mitochondrial behavior. Trends Cell Biol. 24, 537–545 (2014).
Du, L. & Li, S. Compartmentalized biosynthesis of fungal natural products. Curr. Opin. Biotechnol. 69, 128–135 (2021).
Evans, K. S., van Wijk, M. H., McGrath, P. T., Andersen, E. C. & Sterken, M. G. From QTL to gene: C. elegans facilitates discoveries of the genetic mechanisms underlying natural variation. Trends Genet. 37, 933–947 (2021).
Widmayer, S. J., Evans, K. S., Zdraljevic, S. & Andersen, E. C. Evaluating the power and limitations of genome-wide association studies in Caenorhabditis elegans. G3 (Bethesda) 12, jkac114 (2022).
Andersen, E. C. & Rockman, M. V. Natural genetic variation as a tool for discovery in Caenorhabditis nematodes. Genetics 220, iyab156 (2022).
Fukunaga, K. et al. Recombinant inbred lines and next-generation sequencing enable rapid identification of candidate genes involved in morphological and agronomic traits in foxtail millet. Sci. Rep. 12, 218 (2022).
Nivina, A., Yuet, K. P., Hsu, J. & Khosla, C. Evolution and diversity of assembly-line polyketide synthases. Chem. Rev. 119, 12524–12547 (2019).
Süssmuth, R. D. & Mainz, A. Nonribosomal peptide synthesis—principles and prospects. Angew. Chem. Int. Ed. 56, 3770–3821 (2017).
Cane, D. E. & Walsh, C. T. The parallel and convergent universes of polyketide synthases and nonribosomal peptide synthetases. Chem. Biol. 6, R319–R325 (1999).
Keatinge-Clay, A. T. The uncommon enzymology of cis-acyltransferase assembly lines. Chem. Rev. 117, 5334–5366 (2017).
Shou, Q. et al. A hybrid polyketide–nonribosomal peptide in nematodes that promotes larval survival. Nat. Chem. Biol. 12, 770–772 (2016). This work elucidated the structure of the hybrid polyketide–nonribosomal peptide nemamide A from C. elegans, one of the few examples of NRPS–PKS pathways in animals exhibiting many of the typical characteristics of microbial assembly-line biosynthesis.
Feng, L., Gordon, M. T., Liu, Y., Basso, K. B. & Butcher, R. A. Mapping the biosynthetic pathway of a hybrid polyketide–nonribosomal peptide in a metazoan. Nat. Commun. 12, 4912 (2021).
Acknowledgements
We thank B. Fox and J. Yu for helpful comments on the manuscript. This work was supported, in part, by the National Institutes of Health (R35GM131877) and the Howard Hughes Medical Institute.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Chemical Biology thanks Stephan von Reuss, Xinxing Zhang, Yue Zhou and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Table 1
List of structures, source species and phenotypic associations for modular ascarosides and MOGLs produced by nematodes.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Wrobel, C.J.J., Schroeder, F.C. Repurposing degradation pathways for modular metabolite biosynthesis in nematodes. Nat Chem Biol 19, 676–686 (2023). https://doi.org/10.1038/s41589-023-01301-w
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41589-023-01301-w