Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Enzymology of assembly line synthesis by modular polyketide synthases

Abstract

Modular polyketide synthases (PKSs) run catalytic reactions over dozens of steps in a highly orchestrated manner. To accomplish this synthetic feat, they form megadalton multienzyme complexes that are among the most intricate proteins on earth. Polyketide products are of elaborate chemistry with molecular weights of usually several hundred daltons and include clinically important drugs such as erythromycin (antibiotic), rapamycin (immunosuppressant) and epothilone (anticancer drug). The term ‘modular’ refers to a hierarchical structuring of modules and domains within an overall assembly line arrangement, in which PKS organization is colinearly translated into the polyketide structure. New structural information obtained during the past few years provides substantial direct insight into the orchestration of catalytic events within a PKS module and leads to plausible models for synthetic progress along assembly lines. In light of these structural insights, the PKS engineering field is poised to enter a new era of engineering.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Modular polyketide biosynthesis.
Fig. 2: Postulated mechanism for modular PKS synthesis, according to PikAIII data obtained by Dutta et al. and Whicher et al.
Fig. 3: The architecture of type I PKS multienzymes.
Fig. 4: Postulated mechanism for modular PKS synthesis, according to DEBS M1 data obtained by Cogan et al.
Fig. 5: Postulated mechanism for modular PKS synthesis, according to Lsd14 data obtained by Bagde et al.
Fig. 6: Kinetic model of vectorial PKS synthesis proposed on the basis of Lsd14 data obtained by Bagde et al.
Fig. 7: ACP stalled at the AT and KS domains.
Fig. 8: Structural and phylogenetic comparison of PKSs.

Similar content being viewed by others

References

  1. Cortes, J., Haydock, S. F., Roberts, G. A., Bevitt, D. J. & Leadlay, P. F. An unusually large multifunctional polypeptide in the erythromycin-producing polyketide synthase of Saccharopolyspora erythraea. Nature 348, 176–178 (1990).

    Article  CAS  PubMed  Google Scholar 

  2. Staunton, J. & Weissman, K. J. Polyketide biosynthesis: a millennium review. Nat. Prod. Rep. 18, 380–416 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. Hertweck, C. The biosynthetic logic of polyketide diversity. Angew. Chem. Int. Ed. 48, 4688–4716 (2009).

    Article  CAS  Google Scholar 

  4. Weissman, K. J. The structural biology of biosynthetic megaenzymes. Nat. Chem. Biol. 11, 660–670 (2015).

    Article  CAS  PubMed  Google Scholar 

  5. Staunton, J. & Wilkinson, B. Biosynthesis of erythromycin and rapamycin. Chem. Rev. 97, 2611–2630 (1997).

    Article  CAS  PubMed  Google Scholar 

  6. Floss, H. G. & Yu, T.-W. Rifamycin—mode of action, resistance, and biosynthesis. Chem. Rev. 105, 621–632 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. Tang, L. et al. Cloning and heterologous expression of the epothilone gene cluster. Science 287, 640–642 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. Donadio, S., Staver, M. J., McAlpine, J. B., Swanson, S. J. & Katz, L. Modular organization of genes required for complex polyketide biosynthesis. Science 252, 675–679 (1991).

    Article  CAS  PubMed  Google Scholar 

  9. Sirirungruang, S. et al. Engineering site-selective incorporation of fluorine into polyketides. Nat. Chem. Biol. 18, 886–893 (2022). PKS engineering for the production of fluoro-desmethyl versions of the erythromycin precursor 6-deoxyerythronolide B in vivo. A trans-AT charges the assembly line with fluoromalonyl-CoA.

    Article  CAS  PubMed  Google Scholar 

  10. Rittner, A. et al. Chemoenzymatic synthesis of fluorinated polyketides. Nat. Chem. 14, 1000–1006 (2022). PKS engineering for the production of the fluorinated antibiotics methymycin and YC-17 as well as fluorinated precursors of pikromycin in vitro. A PKS–FAS hybrid module accepts fluoro-methylmalonyl-CoA for elongation of polyketide primers.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kalkreuter, E., CroweTipton, J. M., Lowell, A. N., Sherman, D. H. & Williams, G. J. Engineering the substrate specificity of a modular polyketide synthase for installation of consecutive non-natural extender units. J. Am. Chem. Soc. 141, 1961–1969 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Menzella, H. G. et al. Combinatorial polyketide biosynthesis by de novo design and rearrangement of modular polyketide synthase genes. Nat. Biotechnol. 23, 1171–1176 (2005).

    Article  CAS  PubMed  Google Scholar 

  13. Wlodek, A. et al. Diversity oriented biosynthesis via accelerated evolution of modular gene clusters. Nat. Commun. 8, 1206 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Peng, H., Ishida, K., Sugimoto, Y., Jenke-Kodama, H. & Hertweck, C. Emulating evolutionary processes to morph aureothin-type modular polyketide synthases and associated oxygenases. Nat. Commun. 10, 3918 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Su, L. et al. Engineering the stambomycin modular polyketide synthase yields 37-membered mini-stambomycins. Nat. Commun. 13, 515 (2022). Elaborate work on the engineering of modular PKSs based on different state-of-the-art approaches. The work presents new approaches to PKS engineering and encounters unexpected domain functions.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Williams, G. J. Engineering polyketide synthases and nonribosomal peptide synthetases. Curr. Opin. Struct. Biol. 23, 603–612 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Klaus, M. & Grininger, M. Engineering strategies for rational polyketide synthase design. Nat. Prod. Rep. 35, 1070–1081 (2018).

    Article  CAS  PubMed  Google Scholar 

  18. Tsai, S.-C. et al. Crystal structure of the macrocycle-forming thioesterase domain of the erythromycin polyketide synthase: versatility from a unique substrate channel. Proc. Natl Acad. Sci. USA 98, 14808–14813 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Tsai, S.-C., Lu, H., Cane, D. E., Khosla, C. & Stroud, R. M. Insights into channel architecture and substrate specificity from crystal structures of two macrocycle-forming thioesterases of modular polyketide synthases. Biochemistry 41, 12598–12606 (2002).

    Article  CAS  PubMed  Google Scholar 

  20. Broadhurst, R. W., Nietlispach, D., Wheatcroft, M. P., Leadlay, P. F. & Weissman, K. J. The structure of docking domains in modular polyketide synthases. Chem. Biol. 10, 723–731 (2003).

    Article  CAS  PubMed  Google Scholar 

  21. Keatinge-Clay, A. T. & Stroud, R. M. The structure of a ketoreductase determines the organization of the β-carbon processing enzymes of modular polyketide synthases. Structure 14, 737–748 (2006). Important structural study on the processing wing of a PKS module. Enabled insight into the architecture of a PKS module.

    Article  CAS  PubMed  Google Scholar 

  22. Tang, Y., Kim, C.-Y., Mathews, I. I., Cane, D. E. & Khosla, C. The 2.7-Å crystal structure of a 194-kDa homodimeric fragment of the 6-deoxyerythronolide B synthase. Proc. Natl Acad. Sci. USA 103, 11124–11129 (2006). A structure on the condensing wing of a PKS module. The extended structure reveals the need for a highly mobile ACP to approach active sites.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Tang, Y., Chen, A. Y., Kim, C. Y., Cane, D. E. & Khosla, C. Structural and mechanistic analysis of protein interactions in module 3 of the 6-deoxyerythronolide B synthase. Chem. Biol. 14, 931–943 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Keatinge-Clay, A. T. Crystal structure of the erythromycin polyketide synthase dehydratase. J. Mol. Biol. 384, 941–953 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Buchholz, T. J. et al. Structural basis for binding specificity between subclasses of modular polyketide synthase docking domains. ACS Chem. Biol. 1, 41–52 (2009).

    Article  Google Scholar 

  26. Zheng, J. & Keatinge-Clay, A. T. Structural and functional analysis of C2-type ketoreductases from modular polyketide synthases. J. Mol. Biol. 410, 105–117 (2011).

    Article  CAS  PubMed  Google Scholar 

  27. Herbst, D. A., Jakob, R. P., Zahringer, F. & Maier, T. Mycocerosic acid synthase exemplifies the architecture of reducing polyketide synthases. Nature 531, 533–537 (2016).

    Article  CAS  PubMed  Google Scholar 

  28. Herbst, D. A. et al. The structural organization of substrate loading in iterative polyketide synthases. Nat. Chem. Biol. 14, 474–479 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wang, J. et al. Structural basis for the biosynthesis of lovastatin. Nat. Commun. 12, 867 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Dutta, S. et al. Structure of a modular polyketide synthase. Nature 510, 512–517 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Whicher, J. R. et al. Structural rearrangements of a polyketide synthase module during its catalytic cycle. Nature 510, 560–564 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Edwards, A. L., Matsui, T., Weiss, T. M. & Khosla, C. Architectures of whole-module and bimodular proteins from the 6-deoxyerythronolide B synthase. J. Mol. Biol. 426, 2229–2245 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Klaus, M. et al. Solution structure and conformational flexibility of a polyketide synthase module. JACS Au 1, 2162–2171 (2021).

  34. Bagde, S. R., Mathews, I. I., Fromme, J. C. & Kim, C.-Y. Modular polyketide synthase contains two reaction chambers that operate asynchronously. Science 374, 723–729 (2021). Highly important recent advance in the structural analysis of a PKS module, containing the currently highest-resolution structure of a full-length PKS module. Structures of different conformations lead to a kinetic model for assembly line synthesis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Cogan, D. P. et al. Mapping the catalytic conformations of an assembly-line polyketide synthase module. Science 374, 729–734 (2021). Cryo-EM study on M1 of the PKS DEBS. Structures of different conformations support a turnstile-like mechanistic model for assembly line synthesis.

  36. Jenke-Kodama, H., Sandmann, A., Müller, R. & Dittmann, E. Evolutionary implications of bacterial polyketide synthases. Mol. Biol. Evol. 22, 2027–2039 (2005).

    Article  CAS  PubMed  Google Scholar 

  37. Nivina, A., Yuet, K. P., Hsu, J. & Khosla, C. Evolution and diversity of assembly-line polyketide synthases: focus review. Chem. Rev. 119, 12524–12547 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Grininger, M. The role of the iterative modules in polyketide synthase evolution. Proc. Natl Acad. Sci. USA 117, 8680–8682 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Herbst, D. A., Townsend, C. A. & Maier, T. The architectures of iterative type I PKS and FAS. Nat. Prod. Rep. 35, 1046–1069 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Cox, R. J. Curiouser and curiouser: progress in understanding the programming of iterative highly-reducing polyketide synthases. Nat. Prod. Rep. 40, 9–27 (2023).

    Article  CAS  PubMed  Google Scholar 

  41. Helfrich, E. J. N. & Piel, J. Biosynthesis of polyketides by trans-AT polyketide synthases. Nat. Prod. Rep. 33, 231–316 (2016).

    Article  CAS  PubMed  Google Scholar 

  42. Risser, F. et al. Towards improved understanding of intersubunit interactions in modular polyketide biosynthesis: docking in the enacyloxin IIa polyketide synthase. J. Struct. Biol. 212, 107581 (2020).

    Article  CAS  PubMed  Google Scholar 

  43. Amy, C. M., Williams-Ahlf, B., Naggert, J. & Smith, S. Intron–exon organization of the gene for the multifunctional animal fatty acid synthase. Proc. Natl Acad. Sci. USA 89, 1105–1108 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Smith, J. L. & Sherman, D. H. An enzyme assembly line. Science 321, 1304–1305 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Rittner, A. & Grininger, M. Modular polyketide synthases (PKSs): a new model fits all? ChemBioChem 15, 2489–2493 (2014).

    Article  CAS  PubMed  Google Scholar 

  46. Li, X. et al. Structure–function analysis of the extended conformation of a polyketide synthase module. J. Am. Chem. Soc. 140, 6518–6521 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Cogan, D. P. et al. Antibody probes of module 1 of the 6-deoxyerythronolide B synthase reveal an extended conformation during ketoreduction. J. Am. Chem. Soc. 142, 14933–14939 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Chen, S., Roberts, J. B., Xue, Y., Sherman, D. H. & Reynolds, K. A. The Streptomyces venezuelae pikAV gene contains a transcription unit essential for expression of enzymes involved in glycosylation of narbonolide and 10-deoxymethynolide. Gene 263, 255–264 (2001).

    Article  CAS  PubMed  Google Scholar 

  49. Staunton, J. et al. Evidence for a double-helical structure for modular polyketide synthases. Nat. Struct. Biol. 3, 188–192 (1996).

    Article  CAS  PubMed  Google Scholar 

  50. Tittes, Y. U. et al. The structure of a polyketide synthase bimodule core. Sci. Adv. 8, eabo6918 (2022).

  51. Gay, D. C. et al. The LINKS motif zippers trans-acyltransferase polyketide synthase assembly lines into a biosynthetic megacomplex. J. Struct. Biol. 193, 196–205 (2016).

    Article  CAS  PubMed  Google Scholar 

  52. McDaniel, R., Ebert-Khosla, S., Hopwood, D. A. & Khosla, C. Engineered biosynthesis of novel polyketides. Science 262, 1546–1550 (1993).

    Article  CAS  PubMed  Google Scholar 

  53. Lowry, B. et al. In vitro reconstitution and analysis of the 6-deoxyerythronolide B synthase. J. Am. Chem. Soc. 135, 16809–16812 (2013).

    Article  CAS  PubMed  Google Scholar 

  54. Worthington, A. S., Rivera, H., Torpey, J. W., Alexander, M. D. & Burkart, M. D. Mechanism-based protein cross-linking probes to investigate carrier protein-mediated biosynthesis. ACS Chem. Biol. 1, 687–691 (2006).

    Article  CAS  PubMed  Google Scholar 

  55. Kapur, S. et al. Mechanism based protein crosslinking of domains from the 6-deoxyerythronolide B synthase. Bioorg. Med. Chem. Lett. 18, 3034–3038 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Klaus, M., D’Souza, A., Nivina, A., Khosla, C. & Grininger, M. Engineering of chimeric polyketide synthases using SYNZIP docking domains. ACS Chem. Biol. 14, 426–433 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Lowry, B., Li, X., Robbins, T., Cane, D. E. & Khosla, C. A turnstile mechanism for the controlled growth of biosynthetic intermediates on assembly line polyketide synthases. ACS Cent. Sci. 2, 14–20 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Smith, H. G., Beech, M. J., Lewandowski, J. R., Challis, G. L. & Jenner, M. Docking domain-mediated subunit interactions in natural product megasynth(et)ases. J. Ind. Microbiol. Biotechnol. 48, kuab018 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Zheng, J., Fage, C. D., Demeler, B., Hoffman, D. W. & Keatinge-Clay, A. T. The missing linker: a dimerization motif located within polyketide synthase modules. ACS Chem. Biol. 8, 1263–1270 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Brignole, E. J., Smith, S. & Asturias, F. J. Conformational flexibility of metazoan fatty acid synthase enables catalysis. Nat. Struct. Mol. Biol. 16, 190–197 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Benning, F. M. C. et al. High-speed atomic force microscopy visualization of the dynamics of the multienzyme fatty acid synthase. ACS Nano 11, 10852–10859 (2017).

    CAS  Google Scholar 

  62. Lou, J. W., Iyer, K. R., Hasan, S. M. N., Cowen, L. E. & Mazhab-Jafari, M. T. Electron cryomicroscopy observation of acyl carrier protein translocation in type I fungal fatty acid synthase. Sci. Rep. 9, 12987 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Klaus, M. et al. Protein–protein interactions, not substrate recognition, dominate the turnover of chimeric assembly line polyketide synthases. J. Biol. Chem. 291, 16404–16415 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Klaus, M., Buyachuihan, L. & Grininger, M. Ketosynthase domain constrains the design of polyketide synthases. ACS Chem. Biol. 15, 2422–2432 (2020).

    Article  CAS  PubMed  Google Scholar 

  65. Beck, B. J., Aldrich, C. C., Fecik, R. A., Reynolds, K. A. & Sherman, D. H. Iterative chain elongation by a pikromycin monomodular polyketide synthase. J. Am. Chem. Soc. 125, 4682–4683 (2003).

    Article  CAS  PubMed  Google Scholar 

  66. Kapur, S. et al. Reprogramming a module of the 6-deoxyerythronolide B synthase for iterative chain elongation. Proc. Natl Acad. Sci. USA 109, 4110–4115 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Olano, C. et al. Biosynthesis of the angiogenesis inhibitor borrelidin by Streptomyces parvulus Tu4055: cluster analysis and assignment of functions. Chem. Biol. 11, 87–97 (2004).

    CAS  PubMed  Google Scholar 

  68. Busch, B. et al. Multifactorial control of iteration events in a modular polyketide assembly line. Angew. Chem. Int. Ed. Engl. 52, 5285–5289 (2013).

    Article  CAS  PubMed  Google Scholar 

  69. Kao, C. M., Pieper, R., Cane, D. E. & Khosla, C. Evidence for two catalytically independent clusters of active sites in a functional modular polyketide synthase. Biochemistry 35, 12363–12368 (1996).

    Article  CAS  PubMed  Google Scholar 

  70. Witkowski, A., Joshi, A. K. & Smith, S. Fatty acid synthase: in vitro complementation of inactive mutants. Biochemistry 35, 10569–10575 (1996).

    Article  CAS  PubMed  Google Scholar 

  71. Smith, S. & Tsai, S. C. The type I fatty acid and polyketide synthases: a tale of two megasynthases. Nat. Prod. Rep. 24, 1041–1072 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Miyanaga, A. et al. Structural basis of protein–protein interactions between a trans-acting acyltransferase and acyl carrier protein in polyketide disorazole biosynthesis. J. Am. Chem. Soc. 140, 7970–7978 (2018).

    Article  CAS  PubMed  Google Scholar 

  73. Miyanaga, A., Iwasawa, S., Shinohara, Y., Kudo, F. & Eguchi, T. Structure-based analysis of the molecular interactions between acyltransferase and acyl carrier protein in vicenistatin biosynthesis. Proc. Natl Acad. Sci. USA 113, 1802–1807 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Feng, Y. et al. Structural visualization of transient interactions between the cis-acting acyltransferase and acyl carrier protein of the salinomycin modular polyketide synthase. Acta Crystallogr. D Struct. Biol. 78, 779–791 (2022).

    Article  CAS  PubMed  Google Scholar 

  75. Kapur, S., Chen, A. Y., Cane, D. E. & Khosla, C. Molecular recognition between ketosynthase and acyl carrier protein domains of the 6-deoxyerythronolide B synthase. Proc. Natl Acad. Sci. USA 107, 22066–22071 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Bräuer, A. et al. Structural snapshots of the minimal PKS system responsible for octaketide biosynthesis. Nat. Chem. 12, 755–763 (2020).

    Article  PubMed  Google Scholar 

  77. Du, D. et al. Structural basis for selectivity in a highly reducing type II polyketide synthase. Nat. Chem. Biol. 16, 776–782 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Mindrebo, J. T. et al. Gating mechanism of elongating β-ketoacyl-ACP synthases. Nat. Commun. 11, 1727 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Milligan, J. C. et al. Molecular basis for interactions between an acyl carrier protein and a ketosynthase. Nat. Chem. Biol. 15, 669–671 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. van Rosmalen, M., Krom, M. & Merkx, M. Tuning the flexibility of glycine–serine linkers to allow rational design of multidomain proteins. Biochemistry 56, 6565–6574 (2017).

    Article  PubMed  Google Scholar 

  81. Buchan, D. W. A. & Jones, D. T. The PSIPRED Protein Analysis Workbench: 20 years on. Nucleic Acids Res. 47, W402–W407 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Lohman, J. R. et al. Structural and evolutionary relationships of ‘AT-less’ type I polyketide synthase ketosynthases. Proc. Natl Acad. Sci. USA 112, 12693–12698 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Shelest, E., Heimerl, N., Fichtner, M. & Sasso, S. Multimodular type I polyketide synthases in algae evolve by module duplications and displacement of AT domains in trans. BMC Genomics 16, 1015 (2015).

    Google Scholar 

  84. Nivina, A., Herrera Paredes, S., Fraser, H. B. & Khosla, C. GRINS: genetic elements that recode assembly-line polyketide synthases and accelerate their diversification. Proc. Natl Acad. Sci. USA 118, e2100751118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Bretschneider, T. et al. Vinylogous chain branching catalysed by a dedicated polyketide synthase module. Nature 502, 124–128 (2013).

    Article  CAS  PubMed  Google Scholar 

  86. Gay, D. C. et al. A close look at a ketosynthase from a trans-acyltransferase modular polyketide synthase. Structure 22, 444–451 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Nguyen, T. et al. Exploiting the mosaic structure of trans-acyltransferase polyketide synthases for natural product discovery and pathway dissection. Nat. Biotechnol. 26, 225–233 (2008).

    Article  CAS  PubMed  Google Scholar 

  88. Wang, B., Guo, F., Huang, C. & Zhao, H. Unraveling the iterative type I polyketide synthases hidden in Streptomyces. Proc. Natl Acad. Sci. USA 117, 8449–8454 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Riva, E. et al. Chemical probes for the functionalization of polyketide intermediates. Angew. Chem. Int. Ed. Engl. 53, 11944–11949 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Maier, T., Leibundgut, M. & Ban, N. The crystal structure of a mammalian fatty acid synthase. Science 321, 1315–1322 (2008). Landmark work that explained de novo fatty acid biosynthesis in mammals on a structural basis.

    Article  CAS  PubMed  Google Scholar 

  91. Hong, H., Leadlay, P. F. & Staunton, J. The changing patterns of covalent active site occupancy during catalysis on a modular polyketide synthase multienzyme revealed by ion-trap mass spectrometry: changing patterns of covalent active-site occupancy. FEBS J. 276, 7057–7069 (2009).

    Article  CAS  PubMed  Google Scholar 

  92. Stegemann, F. & Grininger, M. Transacylation kinetics in fatty acid and polyketide synthases and its sensitivity to point mutations. ChemCatChem 13, 2771–2782 (2021).

    Article  CAS  Google Scholar 

  93. Miyanaga, A., Ouchi, R., Kudo, F. & Eguchi, T. Complex structure of the acyltransferase VinK and the carrier protein VinL with a pantetheine cross-linking probe. Acta Crystallogr. F Struct. Biol. Commun. 77, 294–302 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Moriguchi, T., Kezuka, Y., Nonaka, T., Ebizuka, Y. & Fujii, I. Hidden function of catalytic domain in 6-methylsalicylic acid synthase for product release. J. Biol. Chem. 285, 15637–15643 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Dimroth, P., Ringelmann, E. & Lynen, F. 6-methylsalicylic acid synthetase from Penicillium patulum. Some catalytic properties of the enzyme and its relation to fatty acid synthetase. Eur. J. Biochem. 68, 591–596 (1976).

    Article  CAS  PubMed  Google Scholar 

  96. Torres, J. P., Lin, Z., Winter, J. M., Krug, P. J. & Schmidt, E. W. Animal biosynthesis of complex polyketides in a photosynthetic partnership. Nat. Commun. 11, 2882 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Okonechnikov, K., Golosova, O., Fursov, M. & UGENE team. Unipro UGENE: a unified bioinformatics toolkit. Bioinformatics 28, 1166–1167 (2012).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

M.G. thanks E. Helfrich for helpful discussions, A. Nivina for providing sequences of annotated modular PKSs and L. Buyachuihan for carefully reading and discussing the manuscript. Research on PKSs in the laboratory has generously been supported by the LOEWE program (Landes-Offensive zur Entwicklung wissenschaftlich-ökonomischer Exzellenz) of the state of Hesse conducted within the framework of the MegaSyn Research Cluster.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Grininger.

Ethics declarations

Competing interests

The author declares no competing interests.

Peer review

Peer review information

Nature Chemical Biology thanks Yi Tang, Kira Weissman and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grininger, M. Enzymology of assembly line synthesis by modular polyketide synthases. Nat Chem Biol 19, 401–415 (2023). https://doi.org/10.1038/s41589-023-01277-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41589-023-01277-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing