Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Photo-ANA enables profiling of host–bacteria protein interactions during infection

Abstract

Bacterial pathogens rapidly change and adapt their proteome to cope with the environment in host cells and secrete effector proteins to hijack host targets and ensure their survival and proliferation during infection. Excessive host proteins make it difficult to profile pathogens’ proteome dynamics by conventional proteomics. It is even more challenging to map pathogen–host protein–protein interactions in real time, given the low abundance of bacterial effectors and weak and transient interactions in which they may be involved. Here we report a method for selectively labeling bacterial proteomes using a bifunctional amino acid, photo-ANA, equipped with a bio-orthogonal handle and a photoreactive warhead, which enables simultaneous analysis of bacterial proteome reprogramming and pathogen–host protein interactions of Salmonella enterica serovar Typhimurium (S. Typhimurium) during infection. Using photo-ANA, we identified FLOT1/2 as host interactors of S. Typhimurium effector PipB2 in late-stage infection and globally profiled the extensive interactions between host proteins and pathogens during infection.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: MetRS (L13G) facilitates residue-specific incorporation of photo-ANA in S. Typhimurium nascent proteome.
Fig. 2: Photo-ANA is extensively and selectively incorporated into S. Typhimurium proteome during infection.
Fig. 3: Photo-ANA profiles temporal proteome adaptation of S. Typhimurium during infection.
Fig. 4: Photo-ANA enables the identification of HP-PPIs during infection.
Fig. 5: Photo-ANA revealed the global host proteins interacting with S. Typhimurium during infection.

Similar content being viewed by others

Data availability

The generated proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with accession no. PXD033036. Source data are provided with this paper.

References

  1. Mullard, A. The deadly burden of drug-resistant bacteria. Nat. Rev. Drug Discov. 21, 170 (2022).

    PubMed  Google Scholar 

  2. Akira, S., Uematsu, S. & Takeuchi, O. Pathogen recognition and innate immunity. Cell 124, 783–801 (2006).

    Article  CAS  PubMed  Google Scholar 

  3. LaRock, D. L., Chaudhary, A. & Miller, S. I. Salmonellae interactions with host processes. Nat. Rev. Microbiol. 13, 191–205 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Powers, T. R. Intracellular niche-specific profiling reveals transcriptional adaptations required for the cytosolic lifestyle of Salmonella enterica. PLoS Pathog. 17, e1009280 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Dandekar, T., Astrid, F., Jasmin, P. & Hensel, M. Salmonella enterica: a surprisingly well-adapted intracellular lifestyle. Front. Microbiol. 3, 164 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Jean Beltran, P. M., Federspiel, J. D., Sheng, X. & Cristea, I. M. Proteomics and integrative omic approaches for understanding host-pathogen interactions and infectious diseases. Mol. Syst. Biol. 13, 922 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Dieterich, D. C., Link, A. J., Graumann, J., Tirrell, D. A. & Schuman, E. M. Selective identification of newly synthesized proteins in mammalian cells using bioorthogonal noncanonical amino acid tagging (BONCAT). Proc. Natl Acad. Sci. USA 103, 9482–9487 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Schmidt, F. & Volker, U. Proteome analysis of host-pathogen interactions: investigation of pathogen responses to the host cell environment. Proteomics 11, 3203–3211 (2011).

    Article  CAS  PubMed  Google Scholar 

  9. Zhang, B. et al. Contributions of mass spectrometry-based proteomics to understanding Salmonella-host interactions. Pathogens 9, 581 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. D’Costa, V. M. et al. BioID screen of Salmonella type 3 secreted effectors reveals host factors involved in vacuole positioning and stability during infection. Nat. Microbiol. 4, 2511–2522 (2019).

    Article  PubMed  Google Scholar 

  11. Sontag, R. L. et al. Identification of novel host interactors of effectors secreted by Salmonella and Citrobacter. mSystems 1, e00032–15 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Mirrashidi, K. M. et al. Global mapping of the Inc-human interactome reveals that retromer restricts Chlamydia infection. Cell Host Microbe 18, 109–121 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Auweter, S. D. et al. Quantitative mass spectrometry catalogues Salmonella pathogenicity island-2 effectors and identifies their cognate host binding partners. J. Biol. Chem. 286, 24023–24035 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Nicod, C., Banaei-Esfahani, A. & Collins, B. C. Elucidation of host–pathogen protein–protein interactions to uncover mechanisms of host cell rewiring. Curr. Opin. Microbiol. 39, 7–15 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Walch, P. et al. Global mapping of Salmonella enterica–host protein–protein interactions during infection. Cell Host Microbe 29, 1316–1332 e12 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Tanrikulu, I. C., Schmitt, E., Mechulam, Y., Goddard, W. A. & Tirrell, D. A. Discovery of Escherichia coli methionyl-tRNA synthetase mutants for efficient labeling of proteins with azidonorleucine in vivo. Proc. Natl Acad. Sci. USA 106, 15285–15290 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Link, A. J. et al. Discovery of aminoacyl-tRNA synthetase activity through cell-surface display of noncanonical amino acids. Proc. Natl Acad. Sci. USA 103, 10180–10185 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ngo, J. T. et al. Cell-selective metabolic labeling of proteins. Nat. Chem. Biol. 5, 715–717 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Grammel, M., Zhang, M. M. & Hang, H. C. Orthogonal alkynyl amino acid reporter for selective labeling of bacterial proteomes during infection. Angew. Chem. Int. Ed. Engl. 49, 5970–5974 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Meldal, M. & Tornoe, C. W. Cu-catalyzed azide-alkyne cycloaddition. Chem. Rev. 108, 2952–3015 (2008).

    Article  CAS  PubMed  Google Scholar 

  21. Suchanek, M., Radzikowska, A. & Thiele, C. Photo-leucine and photo-methionine allow identification of protein-protein interactions in living cells. Nat. Methods 2, 261–267 (2005).

    Article  CAS  PubMed  Google Scholar 

  22. Seath, C. P., Trowbridge, A. D., Muir, T. W. & MacMillan, D. W. C. Reactive intermediates for interactome mapping. Chem. Soc. Rev. 50, 2911–2926 (2021).

    Article  CAS  PubMed  Google Scholar 

  23. Yang, T., Li, X.-M., Bao, X., Fung, Y. M. E. & Li, X. D. Photo-lysine captures proteins that bind lysine post-translational modifications. Nat. Chem. Biol. 12, 70–72 (2016).

    Article  CAS  PubMed  Google Scholar 

  24. He, D. et al. Quantitative and comparative profiling of protease substrates through a genetically encoded multifunctional photocrosslinker. Angew. Chem. Int. Ed. Engl. 56, 14521–14525 (2017).

    Article  CAS  PubMed  Google Scholar 

  25. Hoffmann, J. E., Dziuba, D., Stein, F. & Schultz, C. A bifunctional noncanonical amino acid: synthesis, expression, and residue-specific proteome-wide incorporation. Biochemistry 57, 4747–4752 (2018).

    Article  CAS  PubMed  Google Scholar 

  26. Joiner, C. M., Breen, M. E., Clayton, J. & Mapp, A. K. A bifunctional amino acid enables both covalent chemical capture and isolation of in vivo protein-protein interactions. ChemBioChem 18, 181–184 (2017).

    Article  CAS  PubMed  Google Scholar 

  27. Yamaguchi, A. et al. Incorporation of a doubly functionalized synthetic amino acid into proteins for creating chemical and light-induced conjugates. Bioconjug. Chem. 27, 198–206 (2016).

    Article  CAS  PubMed  Google Scholar 

  28. Chen, Y. et al. A photo-cross-linking strategy to map sites of protein–protein interactions. Chemistry 16, 7389–7394 (2010).

    Article  CAS  PubMed  Google Scholar 

  29. Yang, T. P., Li, X. & Li, X. D. A bifunctional amino acid to study protein–protein interactions. RSC Adv. 10, 42076–42083 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Serre, L. et al. How methionyl-tRNA synthetase creates its amino acid recognition pocket upon l-methionine binding. J. Mol. Biol. 306, 863–876 (2001).

    Article  CAS  PubMed  Google Scholar 

  31. Husna, A. U. et al. Methionine biosynthesis and transport are functionally redundant for the growth and virulence of Salmonella Typhimurium. J. Biol. Chem. 293, 9506–9519 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Galan, J. E., Lara-Tejero, M., Marlovits, T. C. & Wagner, S. Bacterial type III secretion systems: specialized nanomachines for protein delivery into target cells. Annu. Rev. Microbiol. 68, 415–438 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Jennings, E., Thurston, T. L. M. & Holden, D. W. Salmonella SPI-2 type III secretion system effectors: molecular mechanisms and physiological consequences. Cell Host Microbe 22, 217–231 (2017).

    Article  CAS  PubMed  Google Scholar 

  34. Liu, Y. et al. Quantitative proteomics charts the landscape of Salmonella carbon metabolism within host epithelial cells. J. Proteome Res. 16, 788–797 (2017).

    Article  CAS  PubMed  Google Scholar 

  35. Li, Z. et al. Salmonella proteomic profiling during infection distinguishes the intracellular environment of host cells. mSystems 4, e00314–e00318 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Liu, Y. et al. Proteomic analyses of intracellular Salmonella enterica serovar Typhimurium reveal extensive bacterial adaptations to infected host epithelial cells. Infect. Immun. 83, 2897–2906 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Henry, T. et al. The Salmonella effector protein PipB2 is a linker for kinesin-1. Proc. Natl Acad. Sci. USA 103, 13497–13502 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Knodler, L. A. & Steele-Mortimer, O. The Salmonella effector PipB2 affects late endosome/lysosome distribution to mediate Sif extension. Mol. Biol. Cell 16, 4108–4123 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Forgac, M. Vacuolar ATPases: rotary proton pumps in physiology and pathophysiology. Nat. Rev. Mol. Cell Biol. 8, 917–929 (2007).

    Article  CAS  PubMed  Google Scholar 

  40. Xu, L. et al. Inhibition of host vacuolar H+-ATPase activity by a Legionella pneumophila effector. PLoS Pathog. 6, e1000822 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Wong, D., Bach, H., Sun, J., Hmama, Z. & Av-Gay, Y. Mycobacterium tuberculosis protein tyrosine phosphatase (PtpA) excludes host vacuolar-H+-ATPase to inhibit phagosome acidification. Proc. Natl Acad. Sci. USA 108, 19371–19376 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Matsuda, S., Okada, N., Kodama, T., Honda, T. & Iida, T. A cytotoxic type III secretion effector of Vibrio parahaemolyticus targets vacuolar H+-ATPase subunit c and ruptures host cell lysosomes. PLoS Pathog. 8, e1002803 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Schmidt, F. et al. Flotillin-dependent membrane microdomains are required for functional phagolysosomes against fungal infections. Cell Rep. 32, 108017 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Knodler, L. A. et al. Salmonella type III effectors PipB and PipB2 are targeted to detergent-resistant microdomains on internal host cell membranes. Mol. Microbiol. 49, 685–704 (2003).

    Article  CAS  PubMed  Google Scholar 

  45. Zhou, D., Mooseker, M. S. & Galan, J. E. An invasion-associated Salmonella protein modulates the actin-bundling activity of plastin. Proc. Natl Acad. Sci. USA 96, 10176–10181 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Boucrot, E., Henry, T., Borg, J. P., Gorvel, J. P. & Meresse, S. The intracellular fate of Salmonella depends on the recruitment of kinesin. Science 308, 1174–1178 (2005).

    Article  CAS  PubMed  Google Scholar 

  47. Nichols, C. D. & Casanova, J. E. Salmonella-directed recruitment of new membrane to invasion foci via the host exocyst complex. Curr. Biol. 20, 1316–1320 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. McGourty, K. et al. Salmonella inhibits retrograde trafficking of mannose-6-phosphate receptors and lysosome function. Science 338, 963–967 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Harrison, R. E. et al. Salmonella impairs RILP recruitment to Rab7 during maturation of invasion vacuoles. Mol. Biol. Cell 15, 3146–3154 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. D’Costa, V. M. et al. Salmonella disrupts host endocytic trafficking by SopD2-mediated inhibition of Rab7. Cell Rep. 12, 1508–1518 (2015).

    Article  PubMed  Google Scholar 

  51. Dortet, L. et al. Recruitment of the major vault protein by InlK: a Listeria monocytogenes strategy to avoid autophagy. PLoS Pathog. 7, e1002168 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Bach, H., Papavinasasundaram, K. G., Wong, D., Hmama, Z. & Av-Gay, Y. Mycobacterium tuberculosis virulence is mediated by PtpA dephosphorylation of human vacuolar protein sorting 33B. Cell Host Microbe 3, 316–322 (2008).

    Article  CAS  PubMed  Google Scholar 

  53. Mahdavi, A. et al. Identification of secreted bacterial proteins by noncanonical amino acid tagging. Proc. Natl Acad. Sci. USA 111, 433–438 (2014).

    Article  CAS  PubMed  Google Scholar 

  54. Cox, J. & Mann, M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 26, 1367–1372 (2006).

    Article  Google Scholar 

  55. Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102, 15545–15550 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Mootha, V. K. et al. PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat. Genet. 34, 267–273 (2003).

    Article  CAS  PubMed  Google Scholar 

  57. Gillespie, M. et al. The reactome pathway knowledgebase 2022. Nucleic Acids Res. 50, D687–D692 (2022).

    Article  CAS  PubMed  Google Scholar 

  58. Kanehisa, M. & Goto, S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28, 27–30 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Crooks, G. E. et al. WebLogo: a sequence logo generator. Genome Res. 14, 1188–1190 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Szklarczyk, D. et al. STRING v11: protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 47, D607–D613 (2019).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank H. Hang (Scripps Research) for the MetRS plasmids, A. Yan (University of Hong Kong) and A. Typas (European Molecular Biology Laboratory) for S. Typhimurium strains. This work was supported by the Excellent Young Scientists Fund of China (Hong Kong and Macau) (grant no. 21922708 to X.D.L.), Shenzhen-Hong Kong-Macau Technology Research Program (Type C) (grant no. SGDX2020110309520101 to X.D.L.), Hong Kong Research Grants Council Collaborative Research Fund (grant no. C7028-19G to X.D.L.), Areas of Excellence Scheme (grant no. AoE/P-705/16 to X.D.L.) and General Research Fund (granst nos. 17310122 and 17121120 to X.D.L.)

Author information

Authors and Affiliations

Authors

Contributions

X.D.L. supervised the project. X.-M.L. and X.D.L. conceived the ideas and designed the experiments. S.H. screened the active MetRS and optimized and characterized photo-ANA labeling in vitro. X.-M.L. performed the optimization and characterization of photo-ANA labeling during infection, immunofluorescence, sample preparation for quantitative proteomics, data acquisition and analysis of MS. X.-M.L. and X.D.L wrote the manuscript.

Corresponding author

Correspondence to Xiang David Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemical Biology thanks Jan-Erik Hoffmann, Ben Collins and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1

Chemical structures for methionine, ANL, AOA, and photo-ANA.

Extended Data Fig. 2 Characterization of photo-ANA labeling of S. Typhimurium proteome.

a, In-gel fluorescence analysis (representative images from n = 2 independent experiments) of cell lysate from 2 mM photo-ANA-labeled S. Typhimurium expressing different MetRS mutants. b, In-gel fluorescence analysis (representative images from n = 2 independent experiments) shows the comparable labeling of photo-ANA by MetRS (L13G) to labeling of AOA by MetRS (NLL). c, In-gel fluorescence analysis (representative images from n = 2 independent experiments) of concentration-dependent labeling of photo-ANA for 2 hours. d, In-gel fluorescence analysis (representative images from n = 2 independent experiments) of time-dependent labeling of photo-ANA at concentration of 2 mM. CB, Coomassie blue staining, indicates equal loadings.

Source data

Extended Data Fig. 3 Characterization of photo-ANA-labeled S. Typhimurium proteins.

a, Pathway analysis of photo-ANA-incorporated proteins. b, In-gel fluorescence analysis (representative images from n = 2 independent experiments) of cell lysate from 2 mM photo-ANA-labeled HeLa cells, S. Typhimurium, or S. Typhimurium expressing MetRS L13G mutant. CB, Coomassie blue staining.

Source data

Extended Data Fig. 4

Experimental design to investigate nascent proteome change of S. Typhimurium in different infection stages.

Extended Data Fig. 5 Quantification of synthesis of S. Typhimurium proteins during infection.

Quantification of synthesis of proteins related to secretion system and virulence (a), metabolism of branched-chain amino acids (b) and cysteine (c), TCA cycle and oxidative phosphorylation (d), and glycolysis (e).

Extended Data Fig. 6 Photo-ANA enables the identification of host-pathogen protein-protein interactions during infection.

a, Schematic of ‘forward’ experiment to identify PipB2-interacting host proteins during infection using photo-ANA. In ‘reverse’ experiments, ‘heavy’ and ‘light’ cells were swapped. b, PPI network of identified PipB2-interacting host proteins generated by STRING v.11.5. Thickness of edges denotes confidence of interaction. Node color depicts k-mean clusters. Edges in dash line indicate interactions between clusters. c, Colocalization analysis of PipB2 and FLOT1-GFP signal in Fig. 4e. R indicate Pearson’s correlation coefficient. M1 and M2 indicate Mander’s overlap coefficient for PipB2 and FLOT1-GFP, respectively.

Extended Data Fig. 7 Characterization of the interaction between FLOT1/2 and PipB2.

a, Western blot analysis (representative images from n = 2 independent experiments) of HA-tag pull-down experiment in HEK293T cells expressing full-length (FL) or LFNEF-deleted (Δ341-345) PipB2-HA. b, Fluorescence images (representative images from n = 2 independent experiments) of HeLa cells expressing FLOT1/2-GFP and PipB2-FLAG. PipB2 was visualized by anti-FLAG (red) antibody. DNA were detected by DAPI (blue). Rectangle indicates regions with magnified views shown in bottom right. Scale bar indicates 10 μm (5 μm for magnified views). c, Fluorescence images (representative images from n = 2 independent experiments) of S. Typhimurium (PipB2-STF)-infected HeLa cells expressing GFP-tagged FLOT2 at 20 hpi. PipB2 was visualized by anti-FLAG (red) antibody. Cell nuclei were stained with DAPI (blue). Bottom panel displays the magnified view of SCV region as indicated with rectangle. Scale bar indicates 5 μm.

Source data

Extended Data Fig. 8

Workflow to identify proteome adaptation and host interactome with S. Typhimurium during infection using photo-ANA.

Extended Data Fig. 9 Identified host proteins targeted by S. Typhimurium from buffer containing harsh detergent.

a, Volcano plot of host proteins identified from buffer containing harsh detergent using photo-ANA at 3 hpi, 8 hpi and 20 hpi. Proteins with P value < 0.05 and fold change > 1.5 are highlighted in red. Dot size denotes significance. P value was calculated using two-way Student’s t-test (n = 4) and adjusted by Benjamini–Hochberg procedure. The exact P value for each protein can be found in Supplementary Data 8. b, Gene set enrichment analysis (GSEA) against a manually curated gene set evaluating the identified proteins from (a). See Method for details. Left, high fold change in infection samples (combined 3 hpi, 8hpi and 20 hpi sample). Right, high fold change in no infection samples. FDR, false discovery rate. NES, normalized enrichment score.

Extended Data Fig. 10 Photo-ANA revealed the global host proteins interacting with S. Typhimurium during infection.

a, Protein interaction network of identified host interactors. Thickness of edges denotes confidence of interaction. Node size indicates number of neighbors. b-c, GO-term enrichment analysis (b) and Pathway enrichment analysis (c) of identified host interactors. The number in column in (b) indicates number of associated proteins in each term. Only top 10 (b) or 20 (c) significant terms are shown. Full list can be found in Supplementary Data 9.

Supplementary information

Supplementary Information

Supplementary Figs. 1–3, Note and Tables 1–2.

Reporting Summary

Supplementary Data 1

Identified photo-ANA-incorporated peptides with abundance values and estimated incorporation rates of photo-ANA. Peptides without abundances value were discarded. The abundances of different photo-ANA-incorporated peptides but with same photo-ANA site due to missed cleavages were summed to create unique incorporation rate for each site.

Supplementary Data 2

All identified peptides for the estimation of incorporation rates.

Supplementary Data 3

Quantification of identified S. Typhimurium proteins in vitro, 0–3 h.p.i., 5–8 h.p.i. and 17–20 h.p.i.

Supplementary Data 4

Raw quantification data of heatmap and k-mean clusters related to Fig. 3d.

Supplementary Data 5

Identified PipB2 peptides including photo-ANA-incorporated peptides. The abundances of different photo-ANA-incorporated peptides but with same photo-ANA site due to missed cleavages were summed to create unique incorporation rate for each methionine site.

Supplementary Data 6

All proteins identified from photo-ANA-based proteomics to identify PipB2–host interactions during infection. Proteins showing ratio (‘forward’) >1.5 and ratio (‘reverse’) <0.67 were considered to be PipB2 interactors and highlighted in light blue. Proteins showing ratio (‘forward’) >2 and ratio (‘reverse’) <0.5 were highlighted in deep blue.

Supplementary Data 7

The quantification of proteins identified from lysis buffer II in the profiling of host interactome with S. Typhimurium.

Supplementary Data 8

The quantification of proteins identified from lysis buffer III in the profiling of host interactome with S. Typhimurium.

Supplementary Data 9

Full list of GO terms and pathway enrichment analysis.

Source data

Source Data Fig. 1

Unprocessed images of blots or gels.

Source Data Fig. 2

Unprocessed images of blots or gels.

Source Data Fig. 4

Unprocessed images of blots or gels.

Source Data Extended Data Fig. 2

Unprocessed images of blots or gels.

Source Data Extended Data Fig. 3

Unprocessed images of blots or gels.

Source Data Extended Data Fig. 7

Unprocessed images of blots or gels.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, XM., Huang, S. & Li, X.D. Photo-ANA enables profiling of host–bacteria protein interactions during infection. Nat Chem Biol 19, 614–623 (2023). https://doi.org/10.1038/s41589-022-01245-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41589-022-01245-7

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology