Abstract
Bacteria use two-component system (TCS) signaling pathways to sense and respond to peptides involved in host defense, quorum sensing and inter-bacterial warfare. However, little is known about the broad peptide-sensing capabilities of TCSs. In this study, we developed an Escherichia coli display method to characterize the effects of human antimicrobial peptides (AMPs) on the pathogenesis-regulating TCS PhoPQ of Salmonella Typhimurium with much higher throughput than previously possible. We found that PhoPQ senses AMPs with diverse sequences, structures and biological functions. We further combined thousands of displayed AMP variants with machine learning to identify peptide sub-domains and biophysical features linked to PhoPQ activation. Most of the newfound AMP activators induce PhoPQ in S. Typhimurium, suggesting possible roles in virulence regulation. Finally, we present evidence that PhoPQ peptide-sensing specificity has evolved across commensal and pathogenic bacteria. Our method enables new insights into the specificities, mechanisms and evolutionary dynamics of TCS-mediated peptide sensing in bacteria.

This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout






Data availability
The raw and processed NGS datasets generated in this study (reported in Fig. 3c–f, Extended Data Figs. 4a, 5 and 7 and Supplementary Dataset 1) have been deposited in the Gene Expression Omnibus (GEO) database with series accession ID GSE174191. Raw flow cytometry data for Figs. 1c,d, 2d, 3b, 4b, 5a–c and 6b, Supplementary Figs. 6b–d and 7, Extended Data Figs. 1, 6, 9a–h and 10a–l, raw OD600 data for Extended Data Fig. 2, raw CD data for Extended Data Fig. 8a–g and raw Western blot data for Supplementary Fig. 4b,c are available on figshare (https://doi.org/10.6084/m9.figshare.21173701). Source data for Fig. 3 are available on GitHub at https://github.com/krbrink/PhoPQ_hAMP_sort-seq. Human AMP sequences were downloaded from the Antimicrobial Peptide Database; see Supplementary Dataset 1 for accession numbers. Peptide structures were downloaded from the Research Collaboratory for Structural Bioinformatics (RCSB) Protein Data Bank (PDB) (Figs. 2b,c and 4a and Supplementary Fig. 2; references are provided in Supplementary Table 11; PDB IDs: 3GNY, 2N92, 1PG1, 6DST, 2K6O, 2JYO, 3U69, 2MP1, 1KJ6, 1RON and 1L9L). Tissue RNA expression data (Supplementary Fig. 3) were downloaded from the Human Protein Atlas RNA consensus tissue gene data dataset (http://v20.proteinatlas.org). Single PBMC expression data were downloaded from the GEO database under accession numbers GSM3454528 (naive cells) and GSM3454529 (Salmonella-exposed cells) (Supplementary Fig. 4a). Plasmids are available through Addgene with accession IDs listed in Supplementary Table 8. Strains are available from the corresponding author upon reasonable request. Source data are provided with this paper.
Code availability
Code for the analysis and visualization of sort-seq data, except for the cathelicidin machine learning model, is available on GitHub at https://github.com/krbrink/PhoPQ_hAMP_sort-seq. Code for the cathelicidin machine learning model is available on GitHub at https://github.com/kennygrosz/PhoPQ_Activation_model. Details of publically available software tools used in this study are provided in Supplementary Table 12.
References
Verbeke, F. et al. Peptides as quorum sensing molecules: measurement techniques and obtained levels in vitro and in vivo. Front. Neurosci. 11, 183 (2017).
Gruenheid, S. & Moual, H. Resistance to antimicrobial peptides in Gram‐negative bacteria. FEMS Microbiol. Lett. 330, 81–89 (2012).
Kawada-Matsuo, M. et al. Three distinct two-component systems are involved in resistance to the class I bacteriocins, nukacin ISK-1 and nisin A, in Staphylococcus aureus. PLoS ONE 8, e69455 (2013).
Ahmad, A., Majaz, S. & Nouroz, F. Two-component systems regulate ABC transporters in antimicrobial peptide production, immunity and resistance. Microbiology 166, 4–20 (2019).
Otto, M. Bacterial sensing of antimicrobial peptides. Contrib. Microbiol. 16, 136–149 (2009).
Rutherford, S. T. & Bassler, B. L. Bacterial quorum sensing: its role in virulence and possibilities for its control. Cold Spring Harb. Perspect. Med. 2, a012427 (2012).
Knodler, L. A. Salmonella enterica: living a double life in epithelial cells. Curr. Opin. Microbiol. 23, 23–31 (2015).
Hume, P. J., Singh, V., Davidson, A. C. & Koronakis, V. Swiss Army pathogen: the Salmonella entry toolkit. Front. Cell Infect. Microbiol. 7, 348 (2017).
Prost, L. R. et al. Activation of the bacterial sensor kinase PhoQ by acidic pH. Mol. Cell 26, 165–174 (2007).
Richards, S. M., Strandberg, K. L., Conroy, M. & Gunn, J. S. Cationic antimicrobial peptides serve as activation signals for the Salmonella Typhimurium PhoPQ and PmrAB regulons in vitro and in vivo. Front. Cell. Infect. Microbiol. 2, 102 (2012).
Bader, M. W. et al. Recognition of antimicrobial peptides by a bacterial sensor kinase. Cell 122, 461–472 (2005).
Bader, M. W. et al. Regulation of Salmonella typhimurium virulence gene expression by cationic antimicrobial peptides. Mol. Microbiol. 50, 219–230 (2003).
Groisman, E. A. & Mouslim, C. Sensing by bacterial regulatory systems in host and non-host environments. Nat. Rev. Microbiol. 4, 705–709 (2006).
Tucker, A. T. et al. Discovery of next-generation antimicrobials through bacterial self-screening of surface-displayed peptide libraries. Cell 172, 618–628 (2018).
Peschel, A. & Sahl, H.-G. The co-evolution of host cationic antimicrobial peptides and microbial resistance. Nat. Rev. Microbiol. 4, 529–536 (2006).
Wang, G., Li, X. & Wang, Z. APD3: the antimicrobial peptide database as a tool for research and education. Nucleic Acids Res. 44, D1087–D1093 (2016).
Kindrachuk, J., Paur, N., Reiman, C., Scruten, E. & Napper, S. The PhoQ-activating potential of antimicrobial peptides contributes to antimicrobial efficacy and is predictive of the induction of bacterial resistance. Antimicrob. Agents Chemother. 51, 4374–4381 (2007).
Shprung, T., Peleg, A., Rosenfeld, Y., Trieu-Cuot, P. & Shai, Y. Effect of PhoP-PhoQ activation by broad repertoire of antimicrobial peptides on bacterial resistance. J. Biol. Chem. 287, 4544–4551 (2012).
Miller, S. I., Pulkkinen, W. S., Selsted, M. E. & Mekalanos, J. J. Characterization of defensin resistance phenotypes associated with mutations in the phoP virulence regulon of Salmonella typhimurium. Infect. Immun. 58, 3706–3710 (1990).
Lehrer, R. I. & Lu, W. α-Defensins in human innate immunity. Immunol. Rev. 245, 84–112 (2011).
Hicks, K. G. et al. Acidic pH and divalent cation sensing by PhoQ are dispensable for systemic salmonellae virulence. eLife 4, e06792 (2015).
Prost, L. R., Daley, M. E., Bader, M. W., Klevit, R. E. & Miller, S. I. The PhoQ histidine kinases of Salmonella and Pseudomonas spp. are structurally and functionally different: evidence that pH and antimicrobial peptide sensing contribute to mammalian pathogenesis. Mol. Microbiol. 69, 503–519 (2008).
Zhou, L., Lei, X.-H., Bochner, B. R. & Wanner, B. L. Phenotype microarray analysis of Escherichia coli K-12 mutants with deletions of all two-component systems. J. Bacteriol. 185, 4956–4972 (2003).
Lejona, S. et al. PhoP can activate its target genes in a PhoQ-independent manner. J. Bacteriol. 186, 2476–2480 (2004).
Groisman, E. A., Parra-Lopez, C., Salcedo, M., Lipps, C. J. & Heffron, F. Resistance to host antimicrobial peptides is necessary for Salmonella virulence. Proc. Natl Acad. Sci. USA 89, 11939–11943 (1992).
Ben-Moshe, N. B. et al. Predicting bacterial infection outcomes using single cell RNA-sequencing analysis of human immune cells. Nat. Commun. 10, 3266 (2019).
Bertsimas, D. & Van Parys, B. Sparse high-dimensional regression: exact scalable algorithms and phase transitions. Ann. Stat. 48, 300–323 (2020).
Wu, Z. et al. Engineering disulfide bridges to dissect antimicrobial and chemotactic activities of human β-defensin 3. Proc. Natl Acad. Sci. USA 100, 8880–8885 (2003).
de las Mercedes Pescaretti, M., López, F. E., Morero, R. D. & Delgado, M. A. The PmrA/PmrB regulatory system controls the expression of the wzzfepE gene involved in the O-antigen synthesis of Salmonella enterica serovar Typhimurium. Microbiology (Reading) 157, 2515–2521 (2011).
Liu, D. & Reeves, P. R. Escherichia coli K12 regains its O antigen. Microbiology 140, 49–57 (1994).
Zwir, I., Latifi, T., Perez, J. C., Huang, H. & Groisman, E. A. The promoter architectural landscape of the Salmonella PhoP regulon. Mol. Microbiol. 84, 463–485 (2012).
Cromie, M. J. & Groisman, E. A. Promoter and riboswitch control of the Mg2+ transporter MgtA from Salmonella enterica. J. Bacteriol. 192, 604–607 (2009).
You, Z.-H., Lei, Y.-K., Zhu, L., Xia, J. & Wang, B. Prediction of protein–protein interactions from amino acid sequences with ensemble extreme learning machines and principal component analysis. BMC Bioinformatics 14, S10 (2013).
Sun, T., Zhou, B., Lai, L. & Pei, J. Sequence-based prediction of protein protein interaction using a deep-learning algorithm. BMC Bioinformatics 18, 277 (2017).
Cunningham, J. M., Koytiger, G., Sorger, P. K. & AlQuraishi, M. Biophysical prediction of protein–peptide interactions and signaling networks using machine learning. Nat. Methods 17, 175–183 (2020).
Comerford, I. et al. A myriad of functions and complex regulation of the CCR7/CCL19/CCL21 chemokine axis in the adaptive immune system. Cytokine Growth Factor Rev. 24, 269–283 (2013).
Lee, A. Y. S., Eri, R., Lyons, A. B., Grimm, M. C. & Korner, H. CC chemokine ligand 20 and its cognate receptor CCR6 in mucosal T cell immunology and inflammatory bowel disease: odd couple or axis of evil? Front. Immunol. 4, 194 (2013).
Sparrow, E. & Bodman-Smith, M. D. Granulysin: the attractive side of a natural born killer. Immunol. Lett. 217, 126–132 (2020).
Weinberg, A., Jin, G., Sieg, S. & McCormick, T. S. The yin and yang of human beta-defensins in health and disease. Front. Immunol. 3, 294 (2012).
Hansen, F. C., Strömdahl, A.-C., Mörgelin, M., Schmidtchen, A. & van der Plas, M. J. A. Thrombin-derived host-defense peptides modulate monocyte/macrophage inflammatory responses to Gram-negative bacteria. Front. Immunol. 8, 843 (2017).
Holzer, P., Reichmann, F. & Farzi, A. Neuropeptide Y, peptide YY and pancreatic polypeptide in the gut–brain axis. Neuropeptides 46, 261–274 (2012).
Manges, A. R. et al. Global extraintestinal pathogenic Escherichia coli (ExPEC) lineages. Clin. Microbiol. Rev. 32, e00135–18 (2019).
Bengoechea, J. A. & Pessoa, J. S. Klebsiella pneumoniae infection biology: living to counteract host defences. FEMS Microbiol. Rev. 43, 123–144 (2018).
Nazareth, H., Genagon, S. A. & Russo, T. A. Extraintestinal pathogenic Escherichia coli survives within neutrophils. Infect. Immun. 75, 2776–2785 (2007).
Gryllos, I. et al. Induction of group A Streptococcus virulence by a human antimicrobial peptide. Proc. Natl Acad. Sci. USA 105, 16755–16760 (2008).
Fernández, L. et al. The two-component system CprRS senses cationic peptides and triggers adaptive resistance in Pseudomonas aeruginosa independently of ParRS. Antimicrob. Agents Chemother. 56, 6212–6222 (2012).
Herrera, C. M. et al. The Vibrio cholerae VprA-VprB two-component system controls virulence through endotoxin modification. mBio 5, e02283–14 (2014).
Eijsink, V. G. H. et al. Production of class II bacteriocins by lactic acid bacteria; an example of biological warfare and communication. Antonie Van Leeuwenhoek 81, 639–654 (2002).
St-Pierre, F. et al. One-step cloning and chromosomal integration of DNA. ACS Synth. Biol. 2, 537–541 (2013).
Mutalik, V. K. et al. Precise and reliable gene expression via standard transcription and translation initiation elements. Nat. Methods 10, 354–360 (2013).
Lou, C., Stanton, B., Chen, Y.-J., Munsky, B. & Voigt, C. A. Ribozyme-based insulator parts buffer synthetic circuits from genetic context. Nat. Biotechnol. 30, 1137–1142 (2012).
Engler, C., Gruetzner, R., Kandzia, R. & Marillonnet, S. Golden gate shuffling: a one-pot DNA shuffling method based on type IIs restriction enzymes. PLoS ONE 4, e5553 (2009).
Castillo-Hair, S. M. et al. FlowCal: a user-friendly, open source software tool for automatically converting flow cytometry data from arbitrary to calibrated units. ACS Synth. Biol. 5, 774–780 (2016).
Peterman, N. & Levine, E. Sort-seq under the hood: implications of design choices on large-scale characterization of sequence–function relations. BMC Genomics 17, 206 (2016).
Lee, E. Y., Fulan, B. M., Wong, G. C. L. & Ferguson, A. L. Mapping membrane activity in undiscovered peptide sequence space using machine learning. Proc. Natl Acad. Sci. USA 113, 13588–13593 (2016).
Gauba, V. & Hartgerink, J. D. Self-assembled heterotrimeric collagen triple helices directed through electrostatic interactions. J. Am. Chem. Soc. 129, 2683–2690 (2007).
Hoang, K. V. et al. Complement receptor 3-mediated inhibition of inflammasome priming by Ras GTPase-activating protein during Francisella tularensis phagocytosis by human mononuclear phagocytes. Front. Immunol. 9, 561 (2018).
Starr, T., Bauler, T. J., Malik-Kale, P. & Steele-Mortimer, O. The phorbol 12-myristate-13-acetate differentiation protocol is critical to the interaction of THP-1 macrophages with Salmonella Typhimurium. PLoS ONE 13, e0193601 (2018).
Hoang, K. V. et al. Acetalated dextran encapsulated AR-12 as a host-directed therapy to control Salmonella infection. Int. J. Pharmaceut. 477, 334–343 (2014).
Acknowledgements
We thank B. Davies for providing SLAY source plasmids and insights into using SLAY in E. coli. Salmonella enterica subsp. enterica, strain 14028s ΔphoQ (serovar Typhimurium), NR-40554 was obtained through BEI Resources, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH). We thank J. Moake for the use of his cytometer. This work was supported by the Welch Foundation (C-1856 to J.J.T.), the National Science Foundation (CAREER 1553317 to J.J.T. and Graduate Research Fellowship 1842494 to B.P.) and NIH/NIAID (1-R01-AI-155586-01A1 to J.J.T.). K.R.B. was supported by the Nettie S. Autrey Fellowship from Rice University. K.V.H. and J.G. were supported by funds from Nationwide Children’s Hospital.
Author information
Authors and Affiliations
Contributions
K.R.B. and J.J.T. conceived of the project. J.J.T. and J.S.G. supervised the project. K.R.B. and A.M.M. (identification of PhoPQ reporter promoter and PhoPQ orthologs), M.G.H. (exogenous AMPs), K.V.H. (AMP expression in human cell lines), K.P.L. (K-12 PhoPQ display experiments), B.H.P. (CD experiments) and K.R.B. (all other experiments) designed and executed experiments. K.G. and K.R.B. designed, implemented and analyzed the cathelicidin machine learning model. K.R.B., M.G.H. and K.P.L. analyzed reported results and generated figures and tables. K.R.B., M.G.H. and J.J.T. wrote the manuscript.
Corresponding author
Ethics declarations
Competing interests
Rice University has filed a patent application including the use of PhoPQ for host peptide biosensing. J.J.T. is a founder of Pana Bio, a company that aims to commercialize diagnostic and therapeutic bacteria. The remaining authors declare no competing interests.
Peer review
Peer review information
Nature Chemical Biology thanks Octavio Franco and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Extended data
Extended Data Fig. 1 Identification of PvirK as the primary reporter of PhoPQ activity.
Transcriptional activity of each promoter in response to aTc-induced PhoP overexpression was measured using an sfGFP reporter protein (Supplementary Fig. 1b) and flow cytometry. Data was collected over n = 3 separate days, with results from each day shown as a separate marker. Annotated promoter sequences are provided in Supplementary Table 1.
Extended Data Fig. 2 Most PhoQ-activating AMPs are not toxic when displayed on the E. coli outer membrane.
Endpoint OD600 measurements for KB1 and KB1 PhoQ H277A in response to IPTG induction of surface-displayed AMPs. A negative control strain expressing the SLAY peptide display system without an appended peptide cargo (no-peptide) is shown. Measurements were performed after 4.5 h growth from an initial culture OD600 of 0.0001. Data was collected over n = 3 separate days, with results from each day shown as a separate marker.
Extended Data Fig. 3 Composition of the surface-displayed human AMP library.
(a) Length distribution of the 133 human AMPs identified in APD316. Peptides excluded from the human AMP library due to length considerations are indicated in light grey. (b) Charge, (c) grand average of hydropathicity (GRAVY), and (d) secondary structure distributions of AMPs in the human AMP library. (e) Distribution of cluster sizes for AMPs in the human AMP library.
Extended Data Fig. 4 Growth and fluorescence analysis of sort-seq results.
(a) Peptide frequency in the human AMP library before and after the sort-seq workflow. Pre- and post-sort frequency data was determined from single biological replicates (n = 1). (b) Fluorescence of KB1, KB1 with PvirK-mNG and no peptide control plasmids, KB1 with PvirK-mNG and C18G display plasmids, and KB1 with the human AMP (hAMP) library plasmids prior to sorting. Controls were grown as single-strain cultures alongside the human AMP library. Each histogram represents a single biological replicate (n = 1).
Extended Data Fig. 5 PhoPQ activation by human cathelicidin fragments of at least 3 amino acids in the sort-seq screen.
Amino acids 113 to 170 of full-length cathelicidin are shown. The α-helical region of LL-37 is indicated by the grey boxed region. Peptide names are shown for cathelicidin-derived peptides in the APD3 database. Asterisks (*) indicate truncation variants not present in the APD3 database. Data refer to fold-change in PvirK-mNG reporter expression and represent results from a single biological replicate (n = 1).
Extended Data Fig. 6 Single strain peptide display experiments validate non-cathelicidin activators identified in the sort-seq screen.
PhoPQ activation is reported via the PvirK-mNG plasmid. Strains in which human AMP activators are displayed in KB1 are shown in black. Control strains in which human AMP activators are displayed in KB1 PhoQ H277A are shown in grey. Positive (LL-37) and negative (no peptide) peptide display controls in KB1 are shown in red and blue, respectively. Each plot contains data collected over n = 3 separate days, with results from each day shown as a separate marker.
Extended Data Fig. 7 Training and test set results for the cathelicidin sparse robust linear model.
Coefficient of determination (r2) and Pearson correlation coefficient and its associated two-sided p-value (r, p) were calculated for log10-transformed fold change and predicted fold change values.
Extended Data Fig. 8 Circular dichroism spectra of exogenous peptides.
(a-g) Spectra were collected as the average of 5-10 accumulations for a single sample. For all peptides, the absence of a minimum between 196-200 nm is consistent with secondary structure formation. Minima at 210 and 225 nm are characteristic of α-helical character, while a minimum at 218 nm is characteristic of β-sheet character. The broad minima observed for all peptides between 205–225 nm is characteristic of α-helical character and may also be obscuring a weak β-sheet signal. These spectra indicate proper folding of the peptides in accordance with their previously-reported secondary structures.
Extended Data Fig. 9 Exogenous peptide activation of S. Typhimurium PhoPQ in engineered E. coli.
(a) PhoPQ activation by exogenous AMPs in pKB233-containing KB1 and KB1 PhoQ H277A strains, as measured by flow cytometry. TCP refers to the TCP C-terminal α-helix fragment. Data for each AMP was collected in n = 3 replicates; conditions where no AMP was added were collected alongside each AMP replicate for a total of n = 7 replicates. Each marker represents one biological replicate; bar heights correspond to the average of these replicates. Numbers above the bars are the mean fold changes between AMP-containing and control samples. (b) Flow cytometry histograms of the pKB233-containing KB1 strain in response to exogenous AMPs. TCP refers to the TCP C-terminal α-helix fragment. Each histogram is the combined fluorescence distribution for all biological replicates (n = 3 for +AMP groups and n = 7 for -AMP groups). Histograms are scaled to size. Black bars represent the arithmetic mean fluorescence of the combined populations. Concentration-dependent PhoPQ activation and toxicity for (c-d) GNLY, (e-f) CCL20, and (g-h) hBD3 as measured by flow cytometry. Flow rate depicts the number of intact bacteria (events) counted by the cytometer per second. Reduced flow rate is indicative of peptide-mediated growth inhibition. Data for each AMP was collected in n = 3 replicates; conditions where no AMP was added were collected alongside each AMP replicate in n = 3 replicates. Each marker represents one biological replicate; bar heights correspond to the average of these replicates. Numbers above the bars are the mean fold changes between AMP-containing and control samples.
Extended Data Fig. 10 Exogenous AMPs activate diverse PhoPQ-regulated promoters in E. coli and S. Typhimurium.
(a-d) Mg2+ limitation activates S. Typhimurium Pmig-14, PmgtA, PpmrD and PslyB in a PhoQ-dependent manner in E. coli. The activity of each promoter was measured by mNG expression from pKB233.1-4 in KB1 (colored bars) and KB1 PhoQ H277A mutant (white bars) in n = 3 replicates. (e-h) Exogenous AMPs activate diverse PhoPQ-activated promoters in engineered E. coli KB1 (colored bars) and KB1 PhoQ H277A mutant (white bars). TCP refers to the C-terminal α-helix fragment. (i-l) Exogenous AMPs activate diverse PhoPQ-activated promoters in S. Typhimurium and S. Typhimurium ∆phoQ. TCP refers to the C-terminal α-helix fragment. Data for each AMP was collected in n = 3 replicates; conditions where no AMP was added were collected alongside each AMP replicate in n = 7 or n = 5 replicates for E. coli and S. Typhimurium experiments respectively. Each marker represents one biological replicate; bar heights correspond to the average of these replicates. Numbers above the bars are the mean fold changes between AMP-containing and control samples.
Supplementary information
Supplementary Information
Supplementary Figs. 1–8, Supplementary Tables 1–12, Source Data for Supplementary Fig.4c and References.
Supplementary Data 1
Human AMP sequences, cluster assignments, basic biophysical and biochemical properties, primer sequences and fold changes in sort-seq experiment.
Supplementary Data 2
Source data for Supplementary Fig. 6.
Source data
Source Data Fig. 1
Processed flow cytometry data.
Source Data Fig. 2
Processed flow cytometry data.
Source Data Fig. 4
Processed flow cytometry data.
Source Data Fig. 5
Processed flow cytometry data.
Source Data Fig. 6
Processed flow cytometry data.
Source Data Extended Data Fig. 1
Processed flow cytometry data
Source Data Extended Data Fig. 2
Processed flow cytometry data.
Source Data Extended Data Fig. 6
Processed flow cytometry data.
Source Data Extended Data Fig. 8
Processed flow cytometry data.
Source Data Extended Data Fig. 9
Processed flow cytometry data.
Source Data Extended Data Fig. 10
Processed flow cytometry data.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Brink, K.R., Hunt, M.G., Mu, A.M. et al. An E. coli display method for characterization of peptide–sensor kinase interactions. Nat Chem Biol 19, 451–459 (2023). https://doi.org/10.1038/s41589-022-01207-z
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41589-022-01207-z