Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Learning the chemical grammar of biomolecular condensates

Abstract

Biomolecular condensates compartmentalize and regulate assemblies of biomolecules engaged in vital physiological processes in cells. Specific proteins and nucleic acids engaged in shared functions occur in any one kind of condensate, suggesting that these compartments have distinct chemical specificities. Indeed, some small-molecule drugs concentrate in specific condensates due to chemical properties engendered by particular amino acids in the proteins in those condensates. Here we argue that the chemical properties that govern molecular interactions between a small molecule and biomolecules within a condensate can be ascertained for both the small molecule and the biomolecules. We propose that learning this ‘chemical grammar’, the rules describing the chemical features of small molecules that engender attraction or repulsion by the physicochemical environment of a specific condensate, should enable design of drugs with improved efficacy and reduced toxicity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Small molecules can concentrate selectively within specific biomolecular condensates and may do so both through interactions with the chemical environment of the condensate and through interactions with target proteins or nucleic acids within the condensate.
Fig. 2: Chemical mechanisms in biomolecular condensate assembly.
Fig. 3: Biomolecular condensates composed of different protein components have different chemical environments that engender selective partitioning of biomolecules.
Fig. 4: Chemical specificity for small molecules in condensates.
Fig. 5: Cisplatin concentrates in large transcriptional condensates at driver oncogenes, where it selectively platinates oncogene regulatory DNA36.
Fig. 6: Small molecules and peptides may be designed to have chemical properties that interact with and influence condensates to improve therapeutic efficacy.

Similar content being viewed by others

References

  1. Wagner, R. Einige Bemerkungen und Fragen über das Keimbläschen (vesicular germinativa). Müller’s Archiv. Anat. Physiol. Wissenschaft Med. 1835, 373–377 (1835). Wagner was apparently the first to publish a description of the largest and best-characterized condensate, the nucleolus.

    Google Scholar 

  2. Valentin, G. Repertorium für Anatomie und Physiologie, Vol. 1 (Verlag von Veit und Comp., 1836).

  3. Valentin, G. Repertorium für Anatomie und Physiologie, Vol. 4 (Verlag von Veit und Comp., 1839).

  4. Cajal, S. R. Y. Un sencillo metodo de coloracion seletiva del reticulo protoplasmatico y sus efectos en los diversos organos nerviosos de vertebrados e invertebrados. Trab. Lab. Invest. Biol. 2, 129–221 (1903).

    Google Scholar 

  5. Vincent, W. S. The isolation and chemical properties of the nucleoli of starfish oocytes. Proc. Natl Acad. Sci. USA 38, 139–145 (1952).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Brangwynne, C. P. et al. Germline P granules are liquid droplets that localize by controlled dissolution/condensation. Science 324, 1729–1732 (2009). This pioneering study noted that the behavior of a cellular body was not that of a standard membrane-bound organelle but rather more like liquid droplets that arise by phase separation.

    CAS  PubMed  Google Scholar 

  7. Alberti, S., Gladfelter, A. & Mittag, T. Considerations and challenges in studying liquid–liquid phase separation and biomolecular condensates. Cell 176, 419–434 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Case, L. B., Ditlev, J. A. & Rosen, M. K. Regulation of transmembrane signaling by phase separation. Annu. Rev. Biophys. 48, 465–494 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Alberti, S. & Dormann, D. Liquid–liquid phase separation in disease. Annu. Rev. Genet. 53, 171–194 (2019).

    CAS  PubMed  Google Scholar 

  10. Boija, A., Klein, I. A. & Young, R. A. Biomolecular condensates and cancer. Cancer Cell 39, 174–192 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Sabari, B. R., Dall’Agnese, A. & Young, R. A. Biomolecular condensates in the nucleus. Trends Biochem. Sci. 45, 961–977 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Shin, Y. & Brangwynne, C. P. Liquid phase condensation in cell physiology and disease. Science 357, eaaf4382 (2017).

    PubMed  Google Scholar 

  13. Chen, X., Wu, X., Wu, H. & Zhang, M. Phase separation at the synapse. Nat. Neurosci. 23, 301–310 (2020).

    CAS  PubMed  Google Scholar 

  14. Nedelsky, N. B. & Taylor, J. P. Bridging biophysics and neurology: aberrant phase transitions in neurodegenerative disease. Nat. Rev. Neurol. 15, 272–286 (2019).

    PubMed  Google Scholar 

  15. Banani, S. F., Lee, H. O., Hyman, A. A. & Rosen, M. K. Biomolecular condensates: organizers of cellular biochemistry. Nat. Rev. Mol. Cell Biol. 18, 285–298 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Pak, C. W. et al. Sequence determinants of intracellular phase separation by complex coacervation of a disordered protein. Mol. Cell 63, 72–85 (2016). This study provides a powerful example of combining theory and experimentation to enhance understanding of the roles of amino acid patterns in protein phase separation.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Wang, J. et al. A molecular grammar governing the driving forces for phase separation of prion-like RNA binding proteins. Cell 174, 688–699 (2018). A study exploring the roles of diverse amino acids in promoting phase separation and influencing the material properties of condensates formed by a class of proteins.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Martin, E. W. et al. Valence and patterning of aromatic residues determine the phase behavior of prion-like domains. Science 367, 694–699 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Banani, S. F. et al. Composition control of phase-separated bodies. Cell 166, 651–663 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Abyzov, A., Blackledge, M. & Zweckstetter, M. Conformational dynamics of intrinsically disordered proteins regulate biomolecular condensate chemistry. Chem. Rev. 122, 6719–6748 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Greig, J. A. et al. Arginine-enriched mixed-charge domains provide cohesion for nuclear speckle condensation. Mol. Cell 77, 1237–1250 (2020).

    CAS  PubMed  Google Scholar 

  22. Case, L. B., Zhang, X., Ditlev, J. A. & Rosen, M. K. Stoichiometry controls activity of phase-separated clusters of actin signaling proteins. Science 363, 1093–1097 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Shrinivas, K. et al. Enhancer features that drive formation of transcriptional condensates. Mol. Cell 75, 549–561 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Choi, J.-M., Holehouse, A. S. & Pappu, R. V. Physical principles underlying the complex biology of intracellular phase transitions. Annu. Rev. Biophys. 49, 107–133 (2020).

    CAS  PubMed  Google Scholar 

  25. McSwiggen, D. T., Mir, M., Darzacq, X. & Tjian, R. Evaluating phase separation in live cells: diagnosis, caveats, and functional consequences. Genes Dev. 33, 1619–1634 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Peng, A. & Weber, S. C. Evidence for and against liquid–liquid phase separation in the nucleus. Noncoding RNA 5, 50 (2019).

  27. Boija, A. et al. Transcription factors activate genes through the phase-separation capacity of their activation domains. Cell 175, 1842–1855 (2018).

    CAS  PubMed  Google Scholar 

  28. Guo, Y. E. et al. Pol II phosphorylation regulates a switch between transcriptional and splicing condensates. Nature 572, 543–548 (2019). This work establishes that post-translational modifications of the transcription apparatus can regulate its partitioning into different condensates involved in RNA synthesis and splicing.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Henninger, J. E. et al. RNA-mediated feedback control of transcriptional condensates. Cell 184, 207–225 (2021).

    CAS  PubMed  Google Scholar 

  30. Lu, S. et al. The SARS-CoV-2 nucleocapsid phosphoprotein forms mutually exclusive condensates with RNA and the membrane-associated M protein. Nat. Commun. 12, 502 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Yu, X. et al. The STING phase-separator suppresses innate immune signalling. Nat. Cell Biol. 23, 330–340 (2021).

    CAS  PubMed  Google Scholar 

  32. Su, X. et al. Phase separation of signaling molecules promotes T cell receptor signal transduction. Science 352, 595–599 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Dao, T. P. et al. Mechanistic insights into the enhancement or inhibition of phase separation by polyubiquitin chains of different lengths or linkages. Preprint at bioRxiv https://doi.org/10.1101/2021.11.12.467822 (2021).

  34. Cho, W.-K. et al. Mediator and RNA polymerase II clusters associate in transcription-dependent condensates. Science 361, 412–415 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Cho, W.-K. et al. RNA polymerase II cluster dynamics predict mRNA output in living cells. eLife 5, e13617 (2016).

    PubMed  PubMed Central  Google Scholar 

  36. Klein, I. A. et al. Partitioning of cancer therapeutics in nuclear condensates. Science 368, 1386–1392 (2020). This study showed that selective partitioning and concentration of small molecules within condensates contributes to drug pharmacodynamics, suggesting that further understanding of condensate chemical grammar may facilitate advances in disease therapy.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Schuster, B. S. et al. Identifying sequence perturbations to an intrinsically disordered protein that determine its phase-separation behavior. Proc. Natl Acad. Sci. USA 117, 11421–11431 (2020).

    PubMed  PubMed Central  Google Scholar 

  38. Alshareedah, I., Moosa, M. M., Pham, M., Potoyan, D. A. & Banerjee, P. R. Programmable viscoelasticity in protein–RNA condensates with disordered sticker–spacer polypeptides. Nat. Commun. 12, 6620 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Roden, C. & Gladfelter, A. S. RNA contributions to the form and function of biomolecular condensates. Nat. Rev. Mol. Cell Biol. 22, 183–195 (2021).

    CAS  PubMed  Google Scholar 

  40. Savastano, A., Ibáñez de Opakua, A., Rankovic, A. & Zweckstetter, M. Nucleocapsid protein of SARS-CoV-2 phase separates into RNA-rich polymerase-containing condensates. Nat. Commun. 11, 6041 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Guillén-Boixet, J. et al. RNA-induced conformational switching and clustering of G3BP drive stress granule assembly by condensation. Cell 181, 346–361 (2020).

    PubMed  PubMed Central  Google Scholar 

  42. Sanders, D. W. et al. Competing protein–RNA interaction networks control multiphase intracellular organization. Cell 181, 306–324 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Boeynaems, S. et al. Spontaneous driving forces give rise to protein−RNA condensates with coexisting phases and complex material properties. Proc. Natl Acad. Sci. USA 116, 7889–7898 (2019).

    PubMed  PubMed Central  Google Scholar 

  44. Holehouse, A. S., Ginell, G. M., Griffith, D. & Böke, E. Clustering of aromatic residues in prion-like domains can tune the formation, state, and organization of biomolecular condensates. Biochemistry 60, 3566–3581 (2021).

    CAS  PubMed  Google Scholar 

  45. Kar, M. et al. Glycine-rich peptides from FUS have an intrinsic ability to self-assemble into fibers and networked fibrils. Biochemistry 60, 3213–3222 (2021).

    CAS  PubMed  Google Scholar 

  46. Rubinstein, M. & Semenov, A. N. Thermoreversible gelation in solutions of associating polymers. 2. Linear dynamics. Macromolecules 31, 1386–1397 (1998).

    CAS  Google Scholar 

  47. Tanaka, F. & Ishida, M. Microphase formation in mixtures of associating polymers. Macromolecules 30, 1836–1844 (1997).

    CAS  Google Scholar 

  48. Leibler, L. Theory of microphase separation in block copolymers. Macromolecules 13, 1602–1617 (1980).

    CAS  Google Scholar 

  49. Murthy, A. C. et al. Molecular interactions underlying liquid−liquid phase separation of the FUS low-complexity domain. Nat. Struct. Mol. Biol. 26, 637–648 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Qamar, S. et al. FUS phase separation is modulated by a molecular chaperone and methylation of arginine cation–π interactions. Cell 173, 720–734 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Kim, T. H. et al. Interaction hot spots for phase separation revealed by NMR studies of a CAPRIN1 condensed phase. Proc. Natl Acad. Sci. USA 118, e2104897118 (2021).

  52. Kim, T. H. et al. Phospho-dependent phase separation of FMRP and CAPRIN1 recapitulates regulation of translation and deadenylation. Science 365, 825–829 (2019).

    CAS  PubMed  Google Scholar 

  53. Wyman, J. & Gill, S. J. Ligand-linked phase changes in a biological system: applications to sickle cell hemoglobin. Proc. Natl Acad. Sci. USA 77, 5239–5242 (1980).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Ruff, K. M., Dar, F. & Pappu, R. V. Polyphasic linkage and the impact of ligand binding on the regulation of biomolecular condensates. Biophys. Rev. 2, 021302 (2021).

  55. Ruff, K. M., Dar, F. & Pappu, R. V. Ligand effects on phase separation of multivalent macromolecules. Proc. Natl Acad. Sci. USA 118, e2017184118 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Burslem, G. M. & Crews, C. M. Proteolysis-targeting chimeras as therapeutics and tools for biological discovery. Cell 181, 102–114 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Gerry, C. J. & Schreiber, S. L. Unifying principles of bifunctional, proximity-inducing small molecules. Nat. Chem. Biol. 16, 369–378 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Forman-Kay, J. D., Ditlev, J. A., Nosella, M. L. & Lee, H. O. What are the distinguishing features and size requirements of biomolecular condensates and their implications for RNA-containing condensates? RNA 28, 36–47 (2021).

  59. Andersen, J. S. et al. Nucleolar proteome dynamics. Nature 433, 77–83 (2005).

    CAS  PubMed  Google Scholar 

  60. Su, X. et al. Phase separation of signaling molecules promotes T cell receptor signal transduction. Science 352, 595–599 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Jain, S. et al. ATPase-modulated stress granules contain a diverse proteome and substructure. Cell 164, 487–498 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Langdon, E. M. & Gladfelter, A. S. A new lens for RNA localization: liquid–liquid phase separation. Annu. Rev. Microbiol. 72, 255–271 (2018).

    CAS  PubMed  Google Scholar 

  63. Woodruff, J. B., Hyman, A. A. & Boke, E. Organization and function of non-dynamic biomolecular condensates. Trends Biochem. Sci. 43, 81–94 (2018).

    CAS  PubMed  Google Scholar 

  64. Lafontaine, D. L. J., Riback, J. A., Bascetin, R. & Brangwynne, C. P. The nucleolus as a multiphase liquid condensate. Nat. Rev. Mol. Cell Biol. 22, 165–182 (2021).

  65. Boehning, M. et al. RNA polymerase II clustering through carboxy-terminal domain phase separation. Nat. Struct. Mol. Biol. 25, 833–840 (2018).

    CAS  PubMed  Google Scholar 

  66. Nojima, T. et al. RNA polymerase II phosphorylated on CTD serine 5 interacts with the spliceosome during co-transcriptional splicing. Mol. Cell 72, 369–379 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Hnisz, D., Shrinivas, K., Young, R. A., Chakraborty, A. K. & Sharp, P. A. A phase separation model for transcriptional control. Cell 169, 13–23 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Vibet, S. et al. Differential subcellular distribution of mitoxantrone in relation to chemosensitization in two human breast cancer cell lines. Drug Metab. Dispos. 35, 822–828 (2007).

    PubMed  Google Scholar 

  69. Smith, P. J., Sykes, H. R., Fox, M. E. & Furlong, I. J. Subcellular distribution of the anticancer drug mitoxantrone in human and drug-resistant murine cells analyzed by flow cytometry and confocal microscopy and its relationship to the induction of DNA damage. Cancer Res. 52, 4000–4008 (1992).

    PubMed  Google Scholar 

  70. Sabari, B. R. et al. Coactivator condensation at super-enhancers links phase separation and gene control. Science 361, eaar3958 (2018).

    PubMed  PubMed Central  Google Scholar 

  71. Bradner, J. E., Hnisz, D. & Young, R. A. Transcriptional addiction in cancer. Cell 168, 629–643 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Filippakopoulos, P. et al. Selective inhibition of BET bromodomains. Nature 468, 1067–1073 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Christensen, C. L. et al. Targeting transcriptional addictions in small cell lung cancer with a covalent CDK7 inhibitor. Cancer Cell 26, 909–922 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Kwiatkowski, N. et al. Targeting transcription regulation in cancer with a covalent CDK7 inhibitor. Nature 511, 616–620 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Fanning, S. W. et al. Estrogen receptor α somatic mutations Y537S and D538G confer breast cancer endocrine resistance by stabilizing the activating function-2 binding conformation. eLife 5, e12792 (2016).

    PubMed  PubMed Central  Google Scholar 

  76. Nagalingam, A. et al. Med1 plays a critical role in the development of tamoxifen resistance. Carcinogenesis 33, 918–930 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Pommier, Y., Leo, E., Zhang, H. & Marchand, C. DNA topoisomerases and their poisoning by anticancer and antibacterial drugs. Chem. Biol. 17, 421–433 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Bielskutė, S. et al. Low amounts of heavy water increase the phase separation propensity of a fragment of the androgen receptor activation domain. Protein Sci. 30, 1427–1437 (2021).

    PubMed  PubMed Central  Google Scholar 

  79. Petronilho, E. C. et al. Phase separation of p53 precedes aggregation and is affected by oncogenic mutations and ligands. Chem. Sci. 12, 7334–7349 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Babinchak, M. W. et al. Small molecules as potent biphasic modulators of protein liquid–liquid phase separation. Nat. Commun. 11, 5574 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Krainer, G. et al. Reentrant liquid condensate phase of proteins is stabilized by hydrophobic and non-ionic interactions. Nat. Commun. 12, 1085 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Fang, M. Y. et al. Small-molecule modulation of TDP-43 recruitment to stress granules prevents persistent TDP-43 accumulation in ALS/FTD. Neuron 103, 802–819 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Alshareedah, I., Kaur, T. & Banerjee, P. R. Methods for characterizing the material properties of biomolecular condensates. In Methods in Enzymology, Vol. 646 (ed. Keating, C. D.), Ch. 6, 143–183 (Academic Press, 2021).

  84. Wang, S. et al. Targeting liquid–liquid phase separation of SARS-CoV-2 nucleocapsid protein promotes innate antiviral immunity by elevating MAVS activity. Nat. Cell Biol. 23, 718–732 (2021).

    CAS  PubMed  Google Scholar 

  85. Hadjadj, J. et al. Impaired type I interferon activity and inflammatory responses in severe COVID-19 patients. Science 369, 718–724 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Li, Y. et al. SARS-CoV-2 induces double-stranded RNA-mediated innate immune responses in respiratory epithelial-derived cells and cardiomyocytes. Proc. Natl Acad. Sci. USA 118, e2022643118 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Wu, J. et al. SARS-CoV-2 ORF9b inhibits RIG-I–MAVS antiviral signaling by interrupting K63-linked ubiquitination of NEMO. Cell Rep. 34, 108761 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Zotta, A., Hooftman, A. & O’Neill, L. A. J. SARS-CoV-2 targets MAVS for immune evasion. Nat. Cell Biol. 23, 682–683 (2021).

    CAS  PubMed  Google Scholar 

  89. Risso-Ballester, J. et al. A condensate-hardening drug blocks RSV replication in vivo. Nature 595, 596–599 (2021).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank A. Dall’agnese for providing the images presented in Fig. 3a and A. Boija and K. Overholt for helpful discussions. Funding: H.R.K. is supported by a fellowship from the Damon Runyon Cancer Research Foundation (grant number 2458-22). R.A.Y. is supported by NIH grants R01 GM123511 and R01 MH104610, NCI grant CA155258, NSF grant PHY2044895, the 3D Genome Consortium of St. Jude Children’s Research Hospital, and funds from Novo Nordisk.

Author information

Authors and Affiliations

Authors

Contributions

H.R.K. and R.A.Y. conceived of and wrote this perspective.

Corresponding authors

Correspondence to Henry R. Kilgore or Richard A. Young.

Ethics declarations

Competing interests

R.A.Y. is a founder and shareholder of Syros Pharmaceuticals, Camp4 Therapeutics, Omega Therapeutics and Dewpoint Therapeutics. H.R.K. is a consultant of Dewpoint Therapeutics.

Peer review

Peer review information

Nature Chemical Biology thanks Tingting Li and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kilgore, H.R., Young, R.A. Learning the chemical grammar of biomolecular condensates. Nat Chem Biol 18, 1298–1306 (2022). https://doi.org/10.1038/s41589-022-01046-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41589-022-01046-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing