Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Escherichia coli small molecule metabolism at the host–microorganism interface

Abstract

Escherichia coli are a common component of the human microbiota, and isolates exhibit probiotic, commensal and pathogenic roles in the host. E. coli members often use diverse small molecule chemistry to regulate intrabacterial, intermicrobial and host–bacterial interactions. While E. coli are considered to be a well-studied model organism in biology, much of their chemical arsenal has only more recently been defined, and much remains to be explored. Here we describe chemical signaling systems in E. coli in the context of the broader field of metabolism at the host–bacteria interface and the role of this signaling in disease modulation.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Gram-negative QS synthases and E. coli receptors.
Fig. 2: Aromatic amino acid-containing bacterial small molecules and their proposed mechanisms of action.
Fig. 3: MccB17 biological mechanisms.
Fig. 4: Siderophore chemical structures and their interactions within the human gut.
Fig. 5: Proposed biosynthesis and biology of colibactin.
Fig. 6: cdN signaling defense pathways in bacteria and mammalian cells.

References

  1. 1.

    Huttenhower, C. et al. Structure, function and diversity of the healthy human microbiome. Nature 486, 207–214 (2012).

    CAS  Article  Google Scholar 

  2. 2.

    Secher, T., Brehin, C. & Oswald, E. Early settlers: which E. coli strains do you not want at birth? Am. J. Physiol. Gastrointest. Liver Physiol. 311, G123–G129 (2016).

    PubMed  Article  Google Scholar 

  3. 3.

    Kaper, J. B., Nataro, J. P. & Mobley, H. L. T. Pathogenic Escherichia coli. Nature 2, 123–140 (2004).

    CAS  Google Scholar 

  4. 4.

    Ricardo, R., Dorrestein, P. C. & Quinn, R. A. Illuminating the dark matter in metabolomics. Proc. Natl Acad. Sci. USA 112, 12549–12550 (2015).

    Article  CAS  Google Scholar 

  5. 5.

    Papenfort, K. & Bassler, B. L. Quorum sensing signal–response systems in Gram-negative bacteria. Nat. Rev. Microbiol. 14, 576–588 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  6. 6.

    Van Houdt, R., Aertsen, A., Moons, P., Vanoirbeek, K. & Michiels, C. W. N-acyl-l-homoserine lactone signal interception by Escherichia coli. FEMS Microbiol. Lett. 256, 83–89 (2006).

    PubMed  Article  CAS  Google Scholar 

  7. 7.

    Lee, J., Maeda, T., Hong, S. H. & Wood, T. K. Reconfiguring the quorum-sensing regulator SdiA of Escherichia coli to control biofilm formation via indole and N-acylhomoserine lactones. Appl. Environ. Microbiol. 75, 1703–1716 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  8. 8.

    Nguyen, Y. et al. Structural and mechanistic roles of novel chemical ligands on the SdiA quorum-sensing transcription regulator. MBio 6, e02429-14 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  9. 9.

    Gorelik, O. et al. Vibrio cholerae autoinducer-1 enhances the virulence of enteropathogenic Escherichia coli. Sci. Rep. 9, 4122 (2019).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  10. 10.

    Schauder, S., Shokat, K., Surette, M. G. & Bassler, B. L. The LuxS family of bacterial autoinducers: biosynthesis of a novel quorum-sensing signal molecule. Mol. Microbiol. 41, 463–476 (2001).

    CAS  PubMed  Article  Google Scholar 

  11. 11.

    Pereira, C. S., Thompson, J. A. & Xavier, K. B. AI-2-mediated signalling in bacteria. FEMS Microbiol. Rev. 37, 156–181 (2013).

    CAS  PubMed  Article  Google Scholar 

  12. 12.

    González Barrios, A. F. et al. Autoinducer 2 controls biofilm formation in Escherichia coli through a novel motility quorum-sensing regulator (MqsR, B3022). J. Bacteriol. 188, 305–316 (2006).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  13. 13.

    Laganenka, L., Colin, R. & Sourjik, V. Chemotaxis towards autoinducer 2 mediates autoaggregation in Escherichia coli. Nat. Commun. 7, 12984 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  14. 14.

    Ha, J. H. et al. Evidence of link between quorum sensing and sugar metabolism in Escherichia coli revealed via cocrystal structures of LsrK and HPr. Sci. Adv. 4, eaar7063 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  15. 15.

    Zargar, A. et al. Bacterial secretions of nonpathogenic Escherichia coli elicit inflammatory pathways: a closer investigation of interkingdom signaling. MBio 6, e00025 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  16. 16.

    Ismail, A. S., Valastyan, J. S. & Bassler, B. L. A host-produced autoinducer-2 mimic activates bacterial quorum sensing. Cell Host Microbe 19, 470–480 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  17. 17.

    Sperandio, V., Torres, A. G., Jarvis, B., Nataro, J. P. & Kaper, J. B. Bacteria–host communication: the language of hormones. Proc. Natl Acad. Sci. USA 100, 8951–8956 (2003).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  18. 18.

    Furniss, R. C. D. & Clements, A. Regulation of the locus of enterocyte effacement in attaching and effacing pathogens. J. Bacteriol. 200, e00336-17 (2018).

    PubMed  Article  Google Scholar 

  19. 19.

    Bearson, B. L. & Bearson, S. M. D. The role of the QseC quorum-sensing sensor kinase in colonization and norepinephrine-enhanced motility of Salmonella enterica serovar Typhimurium. Microb. Pathog. 44, 271–278 (2008).

    CAS  PubMed  Article  Google Scholar 

  20. 20.

    Njoroge, J. & Sperandio, V. Enterohemorrhagic Escherichia coli virulence regulation by two bacterial adrenergic kinases, QseC and QseE. Infect. Immun. 80, 688–703 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  21. 21.

    Kim, C. S. et al. Characterization of autoinducer-3 structure and biosynthesis in E. coli. ACS Cent. Sci. https://doi.org/10.1021/acscentsci.9b01076 (2020).

  22. 22.

    Carlson-Banning, K. M. & Sperandio, V. Enterohemorrhagic Escherichia coli outwits hosts through sensing small molecules. Curr. Opin. Microbiol. 41, 83–88 (2018).

    CAS  PubMed  Article  Google Scholar 

  23. 23.

    Lopez, C. A. et al. Virulence factors enhance Citrobacter rodentium expansion through aerobic respiration. Science 353, 1249–1254 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  24. 24.

    Papenfort, K. et al. A Vibrio cholerae autoinducer–receptor pair that controls biofilm formation. Nat. Chem. Biol. 13, 551–557 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  25. 25.

    Silva-Junior, E. A. et al. Pyrazines from bacteria and ants: convergent chemistry within an ecological niche. Sci. Rep. 8, 2595 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  26. 26.

    Lee, J. H. & Lee, J. Indole as an intercellular signal in microbial communities. FEMS Microbiol. Rev. 34, 426–444 (2010).

    CAS  PubMed  Article  Google Scholar 

  27. 27.

    Zarkan, A., Liu, J., Matuszewska, M., Gaimster, H. & Summers, D. K. Local and universal action: the paradoxes of indole signalling in bacteria. Trends Microbiol. 28, 566–577 (2020).

    CAS  PubMed  Article  Google Scholar 

  28. 28.

    Bansal, T. et al. Differential effects of epinephrine, norepinephrine, and indole on Escherichia coli O157:H7 chemotaxis, colonization, and gene expression. Infect. Immun. 75, 4597–4607 (2007).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  29. 29.

    Kumar, A. & Sperandio, V. Indole signaling at the host–microbiota–pathogen interface. BMC Microbiol. 10, e01031-19 (2019).

    Google Scholar 

  30. 30.

    Kohli, N. et al. The microbiota metabolite indole inhibits Salmonella virulence: involvement of the PhoPQ two-component system. PLoS ONE 13, e0190613 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  31. 31.

    Kumar, A. et al. The serotonin neurotransmitter modulates virulence of enteric pathogens. Cell Host Microbe 28, 41–52 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  32. 32.

    Esmaili, A. et al. Enteropathogenic Escherichia coli infection inhibits intestinal serotonin transporter function and expression. Gastroenterology 137, 2074–2083 (2009).

    CAS  PubMed  Article  Google Scholar 

  33. 33.

    Bansal, T., Alaniz, R. C., Wood, T. K. & Jayaraman, A. The bacterial signal indole increases epithelial-cell tight-junction resistance and attenuates indicators of inflammation. Proc. Natl Acad. Sci. USA 107, 228–233 (2010).

    CAS  PubMed  Article  Google Scholar 

  34. 34.

    Shimada, Y. et al. Commensal bacteria-dependent indole production enhances epithelial barrier function in the colon. PLoS ONE 8, e80604 (2013).

    PubMed  PubMed Central  Article  Google Scholar 

  35. 35.

    Chimerel, C. et al. Bacterial metabolite indole modulates incretin secretion from intestinal enteroendocrine L cells. Cell Rep. 9, 1202–1208 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  36. 36.

    Holst, J. J. The physiology of glucagon-like peptide 1. Physiol. Rev. 87, 1409–1439 (2007).

    CAS  PubMed  Article  Google Scholar 

  37. 37.

    Roager, H. M. & Licht, T. R. Microbial tryptophan catabolites in health and disease. Nat. Commun. 9, 3294 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  38. 38.

    Beaumont, M. et al. The gut microbiota metabolite indole alleviates liver inflammation in mice. FASEB J. 32, 6681–6693 (2018).

    CAS  PubMed Central  Article  PubMed  Google Scholar 

  39. 39.

    Smith, E. A. & Macfarlane, G. T. Enumeration of human colonie bacteria producing phenolic and indolic compounds: effects of pH, carbohydrate availability and retention time on dissimilatory aromatic amino acid metabolism. J. Appl. Bacteriol. 81, 288–302 (1996).

    CAS  PubMed  Article  Google Scholar 

  40. 40.

    Liu, Y., Hou, Y., Wang, G., Zheng, X. & Hao, H. Gut microbial metabolites of aromatic amino acids as signals in host–microbe interplay. Trends Endocrinol. Metab. https://doi.org/10.1016/j.tem.2020.02.012 (2020).

  41. 41.

    Rothhammer, V. & Quintana, F. J. The aryl hydrocarbon receptor: an environmental sensor integrating immune responses in health and disease. Nat. Rev. Immunol. 19, 184–197 (2019).

    CAS  PubMed  Article  Google Scholar 

  42. 42.

    Li, Y. et al. Exogenous stimuli maintain intraepithelial lymphocytes via aryl hydrocarbon receptor activation. Cell 147, 629–640 (2011).

    CAS  PubMed  Article  Google Scholar 

  43. 43.

    Cervantes-Barragan, L. et al. Lactobacillus reuteri induces gut intraepithelial CD4+CD8αα+ T cells. Science 357, 806–810 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  44. 44.

    Wilck, N. et al. Salt-responsive gut commensal modulates TH17 axis and disease. Nature 551, 585–589 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  45. 45.

    Wu, C. et al. Induction of pathogenic TH17 cells by inducible salt-sensing kinase SGK1. Nature 496, 513–517 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  46. 46.

    Yang, J., Sundrud, M. S., Skepner, J. & Yamagata, T. Targeting Th17 cells in autoimmune diseases. Trends Pharmacol. Sci. 35, 493–500 (2014).

    CAS  PubMed  Article  Google Scholar 

  47. 47.

    Goettel, J. A. et al. AHR activation is protective against colitis driven by T cells in humanized mice. Cell Rep. 17, 1318–1329 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  48. 48.

    Monteleone, I. et al. Aryl hydrocarbon receptor-induced signals up-regulate IL-22 production and inhibit inflammation in the gastrointestinal tract. Gastroenterology 141, 237–248 (2011).

    CAS  PubMed  Article  Google Scholar 

  49. 49.

    Lamas, B. et al. CARD9 impacts colitis by altering gut microbiota metabolism of tryptophan into aryl hydrocarbon receptor ligands. Nat. Med. 22, 598–605 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  50. 50.

    Krishnan, S. et al. Gut microbiota-derived tryptophan metabolites modulate inflammatory response in hepatocytes and macrophages. Cell Rep. 23, 1099–1111 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  51. 51.

    Giani Tagliabue, S., Faber, S. C., Motta, S., Denison, M. S. & Bonati, L. Modeling the binding of diverse ligands within the Ah receptor ligand binding domain. Sci. Rep. 9, 10693 (2019).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  52. 52.

    Denison, M. S. & Faber, S. C. And now for something completely different: diversity in ligand-dependent activation of Ah receptor responses. Curr. Opin. Toxicol. 2, 124–131 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  53. 53.

    Kim, C. S. et al. Cellular stress upregulates indole signaling metabolites in Escherichia coli. Cell Chem. Biol. https://doi.org/10.1016/j.chembiol.2020.03.003 (2020).

  54. 54.

    Park, H. B. et al. Sulfamethoxazole drug stress upregulates antioxidant immunomodulatory metabolites in Escherichia coli. Nat. Microbiol. 5, 1319–1329 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  55. 55.

    Arnison, P. G. et al. Ribosomally synthesized and post-translationally modified peptide natural products: overview and recommendations for a universal nomenclature. Nat. Prod. Rep. 30, 108–160 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  56. 56.

    Hetrick, K. J. & van der Donk, W. A. Ribosomally synthesized and post-translationally modified peptide natural product discovery in the genomic era. Curr. Opin. Chem. Biol. 38, 36–44 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  57. 57.

    Duquesne, S., Destoumieux-Garzón, D., Peduzzi, J. & Rebuffat, S. Microcins, gene-encoded antibacterial peptides from enterobacteria. Nat. Prod. Rep. 24, 708–734 (2007).

    CAS  PubMed  Article  Google Scholar 

  58. 58.

    Baquero, F., Lanza, V. F., Baquero, M. R., del Campo, R. & Bravo-Vázquez, D. A. Microcins in Enterobacteriaceae: peptide antimicrobials in the eco-active intestinal chemosphere. Front. Microbiol. 10, 2261 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  59. 59.

    Sassone-Corsi, M. et al. Microcins mediate competition among Enterobacteriaceae in the inflamed gut. Nature 540, 280–283 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  60. 60.

    Soudy, R., Etayash, H., Bahadorani, K., Lavasanifar, A. & Kaur, K. Breast cancer targeting peptide binds keratin 1: a new molecular marker for targeted drug delivery to breast cancer. Mol. Pharm. 14, 593–604 (2017).

    CAS  PubMed  Article  Google Scholar 

  61. 61.

    Iyer, S. S. et al. Dietary and microbial oxazoles induce intestinal inflammation by modulating aryl hydrocarbon receptor responses. Cell 173, 1123–1134 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  62. 62.

    Lanis, J. M. et al. Tryptophan metabolite activation of the aryl hydrocarbon receptor regulates IL-10 receptor expression on intestinal epithelia. Mucosal Immunol. 10, 1133–1144 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  63. 63.

    Heller, F., Fuss, I. J., Nieuwenhuis, E. E., Blumberg, R. S. & Strober, W. Oxazolone colitis, a Th2 colitis model resembling ulcerative colitis, is mediated by IL-13-producing NK-T cells. Immunity 17, 629–638 (2002).

    CAS  PubMed  Article  Google Scholar 

  64. 64.

    Skaar, E. P. The battle for iron between bacterial pathogens and their vertebrate hosts. PLoS Pathog. 6, e1000949 (2010).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  65. 65.

    Beare, P. A., For, R. J., Martin, L. W. & Lamont, I. L. Siderophore-mediated cell signalling in Pseudomonas aeruginosa: divergent pathways regulate virulence factor production and siderophore receptor synthesis. Mol. Microbiol. 47, 195–207 (2003).

    CAS  PubMed  Article  Google Scholar 

  66. 66.

    Loomis, L. D. & Raymond, K. N. Solution equilibria of enterobactin and metal–enterobactin complexes. Inorg. Chem. 30, 906–911 (1991).

    CAS  Article  Google Scholar 

  67. 67.

    Scholz, R. L. & Greenberg, E. P. Sociality in Escherichia coli: enterochelin is a private good at low cell density and can be shared at high cell density. J. Bacteriol. 197, 2122–2128 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  68. 68.

    Kramer, J., Özkaya, Ö. & Kümmerli, R. Bacterial siderophores in community and host interactions. Nat. Rev. Microbiol. https://doi.org/10.1038/s41579-019-0284-4 (2019).

  69. 69.

    Brickman, T. J. & Armstrong, S. K. Temporal signaling and differential expression of Bordetella iron transport systems: the role of ferrimones and positive regulators. BioMetals 22, 33–41 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  70. 70.

    Singh, V. et al. Interplay between enterobactin, myeloperoxidase and lipocalin 2 regulates E. coli survival in the inflamed gut. Nat. Commun. 6, 7113 (2015).

    CAS  PubMed  Article  Google Scholar 

  71. 71.

    Garénaux, A., Caza, M. & Dozois, C. M. The ins and outs of siderophore mediated iron uptake by extra-intestinal pathogenic Escherichia coli. Vet. Microbiol. 153, 89–98 (2011).

    PubMed  Article  CAS  Google Scholar 

  72. 72.

    Qi, B. & Han, M. Microbial siderophore enterobactin promotes mitochondrial iron uptake and development of the host via interaction with ATP synthase. Cell 175, 571–582 (2018).

    CAS  PubMed  Article  Google Scholar 

  73. 73.

    Nougayrède, J.-P. et al. Escherichia coli induces DNA double-strand breaks in eukaryotic cells. Science 313, 848–852 (2006).

    PubMed  Article  CAS  Google Scholar 

  74. 74.

    Cuevas-Ramos, G. et al. Escherichia coli induces DNA damage in vivo and triggers genomic instability in mammalian cells. Proc. Natl Acad. Sci. USA 107, 11537–11542 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  75. 75.

    Arthur, J. C. et al. Intestinal inflammation targets cancer-inducing activity of the microbiota. Science 338, 120–123 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  76. 76.

    Buc, E. et al. High prevalence of mucosa-associated E. coli producing cyclomodulin and genotoxin in colon cancer. PLoS ONE 8, e56964 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  77. 77.

    Arthur, J. C. et al. Microbial genomic analysis reveals the essential role of inflammation in bacteria-induced colorectal cancer. Nat. Commun. 5, 4724 (2014).

    CAS  PubMed  Article  Google Scholar 

  78. 78.

    Taieb, F., Petit, C., Nougayrède, J.-P. & Oswald, E. The enterobacterial genotoxins: cytolethal distending toxin and colibactin. EcoSal Plus https://doi.org/10.1128/ecosalplus.ESP-0008-2016 (2016).

  79. 79.

    Faïs, T., Delmas, J., Barnich, N., Bonnet, R. & Dalmasso, G. Colibactin: more than a new bacterial toxin. Toxins 10, 16–18 (2018).

    Article  CAS  Google Scholar 

  80. 80.

    Wernke, K. M. et al. Structure and bioactivity of colibactin. Bioorg. Med. Chem. Lett. 30, 127280 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  81. 81.

    Bossuet-Greif, N. et al. The colibactin genotoxin generates DNA interstrand cross-links in infected cells. MBio 9, e02393-17 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  82. 82.

    Xue, M. et al. Structure elucidation of colibactin and its DNA cross-links. Science 365, eaax2685 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  83. 83.

    Wilson, M. R. et al. The human gut bacterial genotoxin colibactin alkylates DNA. Science 363, eaar7785 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  84. 84.

    Pleguezuelos-Manzano, C. et al. Mutational signature in colorectal cancer caused by genotoxic pks+ E. coli. Nature 580, 269–273 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  85. 85.

    Dziubańska-Kusibab, P. J. et al. Colibactin DNA-damage signature indicates mutational impact in colorectal cancer. Nat. Med. 26, 1063–1069 (2020).

    PubMed  Article  CAS  Google Scholar 

  86. 86.

    Massip, C. et al. Deciphering the interplay between the genotoxic and probiotic activities of Escherichia coli Nissle 1917. PLoS Pathog. 15, e1008029 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  87. 87.

    Tripathi, P. et al. ClbS is a cyclopropane hydrolase that confers colibactin resistance. J. Am. Chem. Soc. 139, 17719–17722 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  88. 88.

    Shine, E. E. et al. Model colibactins exhibit human cell genotoxicity in the absence of host bacteria. ACS Chem. Biol. 13, 3286–3293 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  89. 89.

    Martin, P., Tronnet, S., Garcie, C. & Oswald, E. Interplay between siderophores and colibactin genotoxin in Escherichia coli. IUBMB Life 69, 435–441 (2017).

    CAS  PubMed  Article  Google Scholar 

  90. 90.

    Bertinet, R., Nualart, F., Li, X., Yáñez, A. J. & Gomis, R. Preclinical and clinical studies for sodium tungstate: application in humans. J. Clin. Cell. Immunol. 6, 285 (2015).

    Google Scholar 

  91. 91.

    Zhu, W. et al. Precision editing of the gut microbiota ameliorates colitis. Nature 553, 208–211 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  92. 92.

    Cougnoux, A. et al. Small-molecule inhibitors prevent the genotoxic and protumoural effects induced by colibactin-producing bacteria. Gut 65, 278–285 (2016).

    CAS  PubMed  Article  Google Scholar 

  93. 93.

    Povolotsky, T. L. & Hengge, R. ‘Life-style’ control networks in Escherichia coli: signaling by the second messenger c-di-GMP. J. Biotechnol. 160, 10–16 (2012).

    CAS  PubMed  Article  Google Scholar 

  94. 94.

    Jenal, U., Reinders, A. & Lori, C. Cyclic di-GMP: second messenger extraordinaire. Nat. Rev. Microbiol. 15, 271–284 (2017).

    CAS  PubMed  Article  Google Scholar 

  95. 95.

    Davies, B. W., Bogard, R. W., Young, T. S. & Mekalanos, J. J. Coordinated regulation of accessory genetic elements produces cyclic di-nucleotides for V. cholerae virulence. Cell 149, 358–370 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  96. 96.

    Whiteley, A. T. et al. Bacterial cGAS-like enzymes synthesize diverse nucleotide signals. Nature 567, 194–199 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  97. 97.

    Cohen, D. et al. Cyclic GMP-AMP signalling protects bacteria against viral infection. Nature 574, 691–695 (2019).

    CAS  PubMed  Article  Google Scholar 

  98. 98.

    McFarland, A. P. et al. Sensing of bacterial cyclic dinucleotides by the oxidoreductase RECON promotes NF-κB activation and shapes a proinflammatory antibacterial state. Immunity 46, 433–445 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  99. 99.

    Scallan, E. et al. Foodborne illness acquired in the United States—major pathogens. Emerg. Infect. Dis. 17, 7–15 (2011).

    PubMed  PubMed Central  Article  Google Scholar 

  100. 100.

    Martinson, J. N. V. et al. Rethinking gut microbiome residency and the Enterobacteriaceae in healthy human adults. ISME J. 13, 2306–2318 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

Download references

Acknowledgements

Our work on E. coli metabolism at the host–microorganism interface is supported by the National Institutes of Health (R01CA215553), the Burroughs Wellcome Fund (1016720), the Camille & Henry Dreyfus Foundation (TC-17-011), the Yale Comprehensive Cancer Center (18-001952) and Yale University.

Author information

Affiliations

Authors

Contributions

A.G. prepared the figures and text. A.G., C.S.K. and J.M.C. discussed, reviewed and edited the manuscript.

Corresponding author

Correspondence to Jason M. Crawford.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Chemical Biology thanks Jan Claesen and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gatsios, A., Kim, C.S. & Crawford, J.M. Escherichia coli small molecule metabolism at the host–microorganism interface. Nat Chem Biol 17, 1016–1026 (2021). https://doi.org/10.1038/s41589-021-00807-5

Download citation

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing