Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

RNA structure probing uncovers RNA structure-dependent biological functions

Abstract

RNA molecules fold into complex structures that enable their diverse functions in cells. Recent revolutionary innovations in transcriptome-wide RNA structural probing of living cells have ushered in a new era in understanding RNA functions. Here, we summarize the latest technological advances for probing RNA secondary structures and discuss striking discoveries that have linked RNA regulation and biological processes through interrogation of RNA structures. In particular, we highlight how different long noncoding RNAs form into distinct secondary structures that determine their modes of interactions with protein partners to realize their unique functions. These dynamic structures mediate RNA regulatory functions through altering interactions with proteins and other RNAs. We also outline current methodological hurdles and speculate about future directions for development of the next generation of RNA structure-probing technologies of higher sensitivity and resolution, which could then be applied in increasingly physiologically relevant studies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Summary of RNA secondary structure-probing methods.
Fig. 2: Recent technological innovations in RNA secondary structure probing.
Fig. 3: Recent technological innovations of crosslinking and proximity ligation-based methods.
Fig. 4: Understanding RNA secondary structures facilitates RNA functional studies.
Fig. 5: RNA regulation revealed by differential RNA structure analysis.

Similar content being viewed by others

References

  1. Cech, T. R. & Steitz, J. A. The noncoding RNA revolution-trashing old rules to forge new ones. Cell 157, 77–94 (2014).

    Article  CAS  PubMed  Google Scholar 

  2. Serganov, A. & Patel, D. J. Ribozymes, riboswitches and beyond: regulation of gene expression without proteins. Nat. Rev. Genet. 8, 776–790 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Thomas, C. & Gluick, D. E. D. Tertiary structure of ribosomal RNA. Curr. Opin. Struct. Biol. 2, 338–344 (1992).

    Article  Google Scholar 

  4. Mattick, J. S. RNA regulation: a new genetics? Nat. Rev. Genet. 5, 316–323 (2004).

    Article  CAS  PubMed  Google Scholar 

  5. Yao, R. W., Wang, Y. & Chen, L. L. Cellular functions of long noncoding RNAs. Nat. Cell Biol. 21, 542–551 (2019).

    Article  CAS  PubMed  Google Scholar 

  6. Wang, K. C. & Chang, H. Y. Molecular mechanisms of long noncoding RNAs. Mol. Cell 43, 904–914 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Underwood, J. G. et al. FragSeq: transcriptome-wide RNA structure probing using high-throughput sequencing. Nat. Methods 7, 995–1001 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kertesz, M. et al. Genome-wide measurement of RNA secondary structure in yeast. Nature 467, 103–107 (2010).

    Article  CAS  PubMed  Google Scholar 

  9. Lucks, J. B. et al. Multiplexed RNA structure characterization with selective 2′-hydroxyl acylation analyzed by primer extension sequencing (SHAPE-Seq). Proc. Natl Acad. Sci. USA 108, 11063–11068 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kudla, G., Granneman, S., Hahn, D., Beggs, J. D. & Tollervey, D. Cross-linking, ligation, and sequencing of hybrids reveals RNA–RNA interactions in yeast. Proc. Natl Acad. Sci. USA 108, 10010–10015 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Li, F. et al. Global analysis of RNA secondary structure in two metazoans. Cell Rep. 1, 69–82 (2012).

    Article  CAS  PubMed  Google Scholar 

  12. Ding, Y. et al. In vivo genome-wide profiling of RNA secondary structure reveals novel regulatory features. Nature 505, 696–700 (2014).

    Article  CAS  PubMed  Google Scholar 

  13. Incarnato, D., Neri, F., Anselmi, F. & Oliviero, S. Genome-wide profiling of mouse RNA secondary structures reveals key features of the mammalian transcriptome. Genome Biol. 15, 491 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Rouskin, S., Zubradt, M., Washietl, S., Kellis, M. & Weissman, J. S. Genome-wide probing of RNA structure reveals active unfolding of mRNA structures in vivo. Nature 505, 701–705 (2014).

    Article  CAS  PubMed  Google Scholar 

  15. Siegfried, N. A., Busan, S., Rice, G. M., Nelson, J. A. & Weeks, K. M. RNA motif discovery by SHAPE and mutational profiling (SHAPE-MaP). Nat. Methods 11, 959–965 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Silverman, I. M. et al. RNase-mediated protein footprint sequencing reveals protein-binding sites throughout the human transcriptome. Genome Biol. 15, R3 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Talkish, J., May, G., Lin, Y., Woolford, J. L. Jr. & McManus, C. J. Mod-seq: high-throughput sequencing for chemical probing of RNA structure. RNA 20, 713–720 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ramani, V., Qiu, R. & Shendure, J. High-throughput determination of RNA structure by proximity ligation. Nat. Biotechnol. 33, 980–984 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Spitale, R. C. et al. Structural imprints in vivo decode RNA regulatory mechanisms. Nature 519, 486–490 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sugimoto, Y. et al. hiCLIP reveals the in vivo atlas of mRNA secondary structures recognized by Staufen 1. Nature 519, 491–494 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Nguyen, T. C. et al. Mapping RNA–RNA interactome and RNA structure in vivo by MARIO. Nat. Commun. 7, 12023 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Aw, J. G. et al. In vivo mapping of eukaryotic RNA interactomes reveals principles of higher-order organization and regulation. Mol. Cell 62, 603–617 (2016).

    Article  CAS  PubMed  Google Scholar 

  23. Lu, Z. et al. RNA duplex map in living cells reveals higher-order transcriptome structure. Cell 165, 1267–1279 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sharma, E., Sterne-Weiler, T., O’Hanlon, D. & Blencowe, B. J. Global mapping of human RNA–RNA interactions. Mol. Cell 62, 618–626 (2016).

    Article  CAS  PubMed  Google Scholar 

  25. Ritchey, L. E. et al. Structure-seq2: sensitive and accurate genome-wide profiling of RNA structure in vivo. Nucleic Acids Res. 45, e135 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Foley, S. W. et al. A global view of RNA–protein interactions identifies post-transcriptional regulators of root hair cell fate. Dev. Cell 41, 204–220.e5 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zubradt, M. et al. DMS-MaPseq for genome-wide or targeted RNA structure probing in vivo. Nat. Methods 14, 75–82 (2017).

    Article  CAS  PubMed  Google Scholar 

  28. Metkar, M. et al. Higher-order organization principles of pre-translational mRNPs. Mol. Cell 72, 715–726.e3 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ziv, O. et al. COMRADES determines in vivo RNA structures and interactions. Nat. Methods 15, 785–788 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Morf, J. et al. RNA proximity sequencing reveals the spatial organization of the transcriptome in the nucleus. Nat. Biotechnol. 37, 793–802 (2019).

    Article  CAS  PubMed  Google Scholar 

  31. Zinshteyn, B. et al. Assaying RNA structure with LASER-seq. Nucleic Acids Res. 47, 43–55 (2019).

    Article  CAS  PubMed  Google Scholar 

  32. Cai, Z. et al. RIC-seq for global in situ profiling of RNA–RNA spatial interactions. Nature 582, 432–437 (2020). This paper presents RIC-seq, a technology to globally capture higher-order transcriptome structure via proximity ligation. The study also uncovered a widespread role of RNA in gene regulation by remodeling chromatin structure.

    Article  CAS  PubMed  Google Scholar 

  33. Twittenhoff, C. et al. Lead-seq: transcriptome-wide structure probing in vivo using lead(ii) ions. Nucleic Acids Res. 48, e71 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Weng, X. et al. Keth-seq for transcriptome-wide RNA structure mapping. Nat. Chem. Biol. 16, 489–492 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Li, F. et al. Regulatory impact of RNA secondary structure across the Arabidopsis transcriptome. Plant Cell 24, 4346–4359 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Gosai, S. J. et al. Global analysis of the RNA–protein interaction and RNA secondary structure landscapes of the Arabidopsis nucleus. Mol. Cell 57, 376–388 (2015).

    Article  CAS  PubMed  Google Scholar 

  37. Bevilacqua, P. C., Ritchey, L. E., Su, Z. & Assmann, S. M. Genome-wide analysis of RNA secondary structure. Annu. Rev. Genet. 50, 235–266 (2016).

    Article  CAS  PubMed  Google Scholar 

  38. Guo, C. J. et al. Distinct processing of lncRNAs contributes to non-conserved functions in stem cells. Cell 181, 621–636.e22 (2020).

    Article  CAS  PubMed  Google Scholar 

  39. Smola, M. J. et al. SHAPE reveals transcript-wide interactions, complex structural domains, and protein interactions across the Xist lncRNA in living cells. Proc. Natl Acad. Sci. USA 113, 10322–10327 (2016). This paper developed SHAPE-MaP by mutational profiling and used the technology to obtain a detailed structural architecture of Xist.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Somarowthu, S. et al. HOTAIR forms an intricate and modular secondary structure. Mol. Cell 58, 353–361 (2015). This study illustrates a tour-de-force example for advancing understanding of lncRNA function (for example, proteinRNA interaction) through RNA secondary structure probing.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Xue, Z. et al. A G-rich motif in the lncRNA Braveheart interacts with a zinc-finger transcription factor to specify the cardiovascular lineage. Mol. Cell 64, 37–50 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Coleman, K. M., Lam, V., Jaber, B. M., Lanz, R. B. & Smith, C. L. SRA coactivation of estrogen receptor-α is phosphorylation-independent, and enhances 4-hydroxytamoxifen agonist activity. Biochem. Biophys. Res. Commun. 323, 332–338 (2004).

    Article  CAS  PubMed  Google Scholar 

  43. Liu, C. X. et al. Structure and degradation of circular RNAs regulate PKR activation in innate immunity. Cell 177, 865–880.e21 (2019).

    Article  CAS  PubMed  Google Scholar 

  44. Uroda, T. et al. Conserved pseudoknots in lncRNA MEG3 are essential for stimulation of the p53 pathway. Mol. Cell 75, 982–995.e9 (2019). This study characterizes the secondary and tertiary structures of MEG3 in vivo and in vitro, and identifies the conserved long-range tertiary interactions between motifs, which is essential for its tumor suppressive function.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Spitale, R. C. et al. RNA SHAPE analysis in living cells. Nat. Chem. Biol. 9, 18–20 (2013).

    Article  CAS  PubMed  Google Scholar 

  46. Strobel, E. J., Yu, A. M. & Lucks, J. B. High-throughput determination of RNA structures. Nat. Rev. Genet. 19, 615–634 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Bevilacqua, P. C. & Assmann, S. M. Technique development for probing RNA structure in vivo and genome-wide. Cold Spring Harb. Perspect. Biol. https://doi.org/10.1101/cshperspect.a032250 (2018).

  48. Huber, R. G. et al. Structure mapping of dengue and Zika viruses reveals functional long-range interactions. Nat. Commun. 10, 1408 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Li, P. et al. Integrative analysis of Zika virus genome RNA structure reveals critical determinants of viral infectivity. Cell Host Microbe 24, 875–886.e5 (2018).

    Article  CAS  PubMed  Google Scholar 

  50. Helwak, A., Kudla, G., Dudnakova, T. & Tollervey, D. Mapping the human miRNA interactome by CLASH reveals frequent noncanonical binding. Cell 153, 654–665 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Xiang, J. F. et al. Human colorectal cancer-specific CCAT1-L lncRNA regulates long-range chromatin interactions at the MYC locus. Cell Res. 24, 513–531 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Nicholson, B. L. & White, K. A. Functional long-range RNA–RNA interactions in positive-strand RNA viruses. Nat. Rev. Microbiol. 12, 493–504 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Chillon, I. & Marcia, M. The molecular structure of long non-coding RNAs: emerging patterns and functional implications. Crit. Rev. Biochem. Mol. Biol. 55, 662–690 (2020).

    Article  CAS  PubMed  Google Scholar 

  54. Kopp, F. & Mendell, J. T. Functional classification and experimental dissection of long noncoding RNAs. Cell 172, 393–407 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Wan, Y. et al. Genome-wide measurement of RNA folding energies. Mol. Cell 48, 169–181 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Clark, M. B. et al. Genome-wide analysis of long noncoding RNA stability. Genome Res. 22, 885–898 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. McHugh, C. A. et al. The Xist lncRNA interacts directly with SHARP to silence transcription through HDAC3. Nature 521, 232–236 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Chu, C. et al. Systematic discovery of Xist RNA binding proteins. Cell 161, 404–416 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Minajigi, A. et al. A comprehensive Xist interactome reveals cohesin repulsion and an RNA-directed chromosome conformation. Science https://doi.org/10.1126/science.aab2276 (2015).

  60. Maenner, S. et al. 2-D structure of the A region of Xist RNA and its implication for PRC2 association. PLoS Biol. 8, e1000276 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Ilik, I. & Akhtar, A. roX RNAs: non-coding regulators of the male X chromosome in flies. RNA Biol. 6, 113–121 (2009).

    Article  CAS  PubMed  Google Scholar 

  62. Ilik, I. A. et al. Tandem stem-loops in roX RNAs act together to mediate X chromosome dosage compensation in Drosophila. Mol. Cell 51, 156–173 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Rinn, J. L. et al. Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell 129, 1311–1323 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Tsai, M. C. et al. Long noncoding RNA as modular scaffold of histone modification complexes. Science 329, 689–693 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Davidovich, C. et al. Toward a consensus on the binding specificity and promiscuity of PRC2 for RNA. Mol. Cell 57, 552–558 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Klattenhoff, C. A. et al. Braveheart, a long noncoding RNA required for cardiovascular lineage commitment. Cell 152, 570–583 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Lanz, R. B. et al. A steroid receptor coactivator, SRA, functions as an RNA and is present in an SRC-1 complex. Cell 97, 17–27 (1999).

    Article  CAS  PubMed  Google Scholar 

  68. Csorba, T., Questa, J. I., Sun, Q. & Dean, C. Antisense COOLAIR mediates the coordinated switching of chromatin states at FLC during vernalization. Proc. Natl Acad. Sci. USA 111, 16160–16165 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Hawkes, E. J. et al. COOLAIR antisense RNAs form evolutionarily conserved elaborate secondary structures. Cell Rep. 16, 3087–3096 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Wilusz, J. E. A 360 degrees view of circular RNAs: from biogenesis to functions. Wiley Interdiscip. Rev. RNA 9, e1478 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Chen, L. L. The expanding regulatory mechanisms and cellular functions of circular RNAs. Nat. Rev. Mol. Cell Biol. 21, 475–490 (2020).

    Article  CAS  PubMed  Google Scholar 

  72. Chen, T. et al. ADAR1 is required for differentiation and neural induction by regulating microRNA processing in a catalytically independent manner. Cell Res. 25, 459–476 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Patino, C., Haenni, A. L. & Urcuqui-Inchima, S. NF90 isoforms, a new family of cellular proteins involved in viral replication? Biochimie 108, 20–24 (2015).

    Article  CAS  PubMed  Google Scholar 

  74. Li, X. et al. Coordinated circRNA biogenesis and function with NF90/NF110 in viral infection. Mol. Cell 67, 214–227.e7 (2017).

    Article  CAS  PubMed  Google Scholar 

  75. Banani, S. F., Lee, H. O., Hyman, A. A. & Rosen, M. K. Biomolecular condensates: organizers of cellular biochemistry. Nat. Rev. Mol. Cell Biol. 18, 285–298 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Shin, Y. & Brangwynne, C. P. Liquid phase condensation in cell physiology and disease. Science https://doi.org/10.1126/science.aaf4382 (2017).

  77. Langdon, E. M. et al. mRNA structure determines specificity of a polyQ-driven phase separation. Science 360, 922–927 (2018). This paper is one of the first reports about experimentally investigating how mRNA secondary structure can drive phase separation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. La Spada, A. R. & Taylor, J. P. Repeat expansion disease: progress and puzzles in disease pathogenesis. Nat. Rev. Genet. 11, 247–258 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Jain, A. & Vale, R. D. RNA phase transitions in repeat expansion disorders. Nature 546, 243–247 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Chujo, T., Yamazaki, T. & Hirose, T. Architectural RNAs (arcRNAs): a class of long noncoding RNAs that function as the scaffold of nuclear bodies. Biochim. Biophys. Acta 1859, 139–146 (2016).

    Article  CAS  PubMed  Google Scholar 

  81. West, J. A. et al. Structural, super-resolution microscopy analysis of paraspeckle nuclear body organization. J. Cell Biol. 214, 817–830 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Yu, X., Li, Z., Zheng, H., Chan, M. T. & Wu, W. K. NEAT1: a novel cancer-related long non-coding RNA. Cell Prolif. https://doi.org/10.1111/cpr.12329 (2017).

  83. Yamazaki, T. et al. Functional domains of NEAT1 architectural lncRNA induce paraspeckle assembly through phase separation. Mol. Cell 70, 1038–1053.e7 (2018).

    Article  CAS  PubMed  Google Scholar 

  84. Sun, L. et al. RNA structure maps across mammalian cellular compartments. Nat. Struct. Mol. Biol. 26, 322–330 (2019). This study generated a comprehensive resource on the secondary structures of RNAs isolated from different subcelluar locations, compared the structural changes for the same RNA in different locations and studied how protein binding and RNA modification correlated with these structural changes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Smola, M. J., Calabrese, J. M. & Weeks, K. M. Detection of RNA–protein interactions in living cells with SHAPE. Biochemistry 54, 6867–6875 (2015).

    Article  CAS  PubMed  Google Scholar 

  86. Mustoe, A. M. et al. Pervasive regulatory functions of mRNA structure revealed by high-resolution SHAPE probing. Cell 173, 181–195.e18 (2018). This paper applied SHAPE-MaP to derive high-resolution structure models for endogenous transcripts in E. coli, and provides new insights for understanding the pervasive and fundamental roles of RNA structure in gene expression.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Shi, B. et al. RNA structural dynamics regulate early embryogenesis through controlling transcriptome fate and function. Genome Biol. 21, 120 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Beaudoin, J. D. et al. Analyses of mRNA structure dynamics identify embryonic gene regulatory programs. Nat. Struct. Mol. Biol. 25, 677–686 (2018). By applying DMS-seq and icSHAPE—two RNA secondary structure-probing methods—this paper and ref. 87, respectively, characterized mRNA structuromes during early zebrafish embryogenesis and revealed regulatory roles of RNA structures in mRNA translation and maternal RNA degradation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Tadros, W. & Lipshitz, H. D. The maternal-to-zygotic transition: a play in two acts. Development 136, 3033–3042 (2009).

    Article  CAS  PubMed  Google Scholar 

  90. Giraldez, A. J. et al. Zebrafish MiR-430 promotes deadenylation and clearance of maternal mRNAs. Science 312, 75–79 (2006).

    Article  CAS  PubMed  Google Scholar 

  91. Schon, P. Imaging and force probing RNA by atomic force microscopy. Methods 103, 25–33 (2016).

    Article  PubMed  CAS  Google Scholar 

  92. Uroda, T. et al. Visualizing the functional 3D shape and topography of long noncoding RNAs by single-particle atomic force microscopy and in-solution hydrodynamic techniques. Nat. Protoc. 15, 2107–2139 (2020).

    Article  CAS  PubMed  Google Scholar 

  93. Buxbaum, A. R., Haimovich, G. & Singer, R. H. In the right place at the right time: visualizing and understanding mRNA localization. Nat. Rev. Mol. Cell Biol. 16, 95–109 (2015).

    Article  CAS  PubMed  Google Scholar 

  94. Van Treeck, B. & Parker, R. Emerging roles for intermolecular RNA–RNA interactions in RNP assemblies. Cell 174, 791–802 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Singh, J., Hanson, J., Paliwal, K. & Zhou, Y. RNA secondary structure prediction using an ensemble of two-dimensional deep neural networks and transfer learning. Nat. Commun. 10, 5407 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Sato, K., Akiyama, M. & Sakakibara, Y. RNA secondary structure prediction using deep learning with thermodynamic integration. Nat. Commun. 12, 941 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Sun, L. et al. Predicting dynamic cellular protein–RNA interactions by deep learning using in vivo RNA structures. Cell Res. https://doi.org/10.1038/s41422-021-00476-y (2021). This study describes the development of PrismNet, a deep neural network that accurately predicts in vivo protein–RNA interactions based on models generated from RNA structure data alongside RNARBP profiling data obtained from the same cell types of interest.

  98. Liu, N. et al. N6-methyladenosine-dependent RNA structural switches regulate RNA–protein interactions. Nature 518, 560–564 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Kim, D. N. et al. Zinc-finger protein CNBP alters the 3-D structure of lncRNA Braveheart in solution. Nat. Commun. 11, 148 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Liu, F., Somarowthu, S. & Pyle, A. M. Visualizing the secondary and tertiary architectural domains of lncRNA RepA. Nat. Chem. Biol. 13, 282–289 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NSFC) (91940303, 31725009, 31830108, 31821004) and the HHMI International Program (55008728) to L.-L.C., and the National Natural Science Foundation of China (Grants No. 91740204, 91940306 and 31761163007) and the State Key Research Development Program of China (Grant No. 2018YFA0107603) to Q.C.Z. L.-L.C. acknowledges the support from the XPLORER PRIZE.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ling-Ling Chen or Qiangfeng Cliff Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Chemical Biology thanks Yiliang Ding, Brian Gregory and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, XW., Liu, CX., Chen, LL. et al. RNA structure probing uncovers RNA structure-dependent biological functions. Nat Chem Biol 17, 755–766 (2021). https://doi.org/10.1038/s41589-021-00805-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41589-021-00805-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing