Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Strategies for monitoring cell–cell interactions

Abstract

Multicellular organisms depend on physical cell–cell interactions to control physiological processes such as tissue formation, neurotransmission and immune response. These intercellular binding events can be both highly dynamic in their duration and complex in their composition, involving the participation of many different surface and intracellular biomolecules. Untangling the intricacy of these interactions and the signaling pathways they modulate has greatly improved insight into the biological processes that ensue upon cell–cell engagement and has led to the development of protein- and cell-based therapeutics. The importance of monitoring physical cell–cell interactions has inspired the development of several emerging approaches that effectively interrogate cell–cell interfaces with molecular-level detail. Specifically, the merging of chemistry- and biology-based technologies to deconstruct the complexity of cell–cell interactions has provided new avenues for understanding cell–cell interaction biology and opened opportunities for therapeutic development.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Emerging technologies for investigating cell–cell interactions.
Fig. 2: Fluorescent microscopy-based methods for visualizing cell–cell interactions.
Fig. 3: Contact-dependent chemical tagging techniques for profiling cell–cell interfaces.
Fig. 4: Contact-independent chemical tagging techniques for profiling interactions at cell–cell interfaces.
Fig. 5: Functional exploitation of cell–cell interactions via cell engineering.
Fig. 6: Immunotherapies leveraging cell–cell interactions.

References

  1. 1.

    Yamada, S. & Nelson, W. J. Synapses: sites of cell recognition, adhesion and functional specification. Annu. Rev. Biochem. 76, 267–294 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Belardi, B., Son, S., Felce, J. H., Dustin, M. L. & Fletcher, D. A. Cell–cell interfaces as specialized compartments directing cell function. Nat. Rev. Mol. Cell Biol. 21, 750–764 (2020).

    CAS  PubMed  Google Scholar 

  3. 3.

    Darvin, P., Toor, S. M., Sasidharan Nair, V. & Elkord, E. Immune checkpoint inhibitors: recent progress and potential biomarkers. Exp. Mol. Med. 50, 1–11 (2018).

    PubMed  Google Scholar 

  4. 4.

    Rafiq, S., Hackett, C. S. & Brentjens, R. J. Engineering strategies to overcome the current roadblocks in CAR T-cell therapy. Nat. Rev. Clin. Oncol. 17, 147–167 (2020).

    PubMed  Google Scholar 

  5. 5.

    Huse, M. Mechanical forces in the immune system. Nat. Rev. Immunol. 17, 679–690 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Polacheck, W. J. & Chen, C. S. Measuring cell-generated forces: a guide to the available tools. Nat. Methods 13, 415–423 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Armingol, E., Officer, A., Harismendy, O. & Lewis, N. E. Deciphering cell-cell interactions and communication from gene expression. Nat. Rev. Genet. 22, 71–88 (2021).

    CAS  PubMed  Google Scholar 

  8. 8.

    Wilson, H. V. On some phenomena of coalescence and regeneration in sponges. J. Exp. Zool. 5, 245–258 (1907).

    Google Scholar 

  9. 9.

    Townes, P. L. & Holtfreter, J. Directed movements and selective adhesion of embryonic amphibian cells. J. Exp. Zool. 128, 53–120 (1955).

    Google Scholar 

  10. 10.

    Moscona, A. & Moscona, H. The dissociation and aggregation of cells from organ rudiments of the early chick embryo. J. Anat. 86, 287–301 (1952).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Davidson, M. W. & Abramowitz, M. in Encyclopedia of Imaging Science and Technology (ed. Hornak, J.) 1106–1141 (Wiley, 2002).

  12. 12.

    Wollman, A. J. M., Nudd, R., Hedlund, E. G. & Leake, M. C. From Animaculum to single molecules: 300 years of the light microscope. Open Biol. 5, 150019 (2015).

    PubMed  PubMed Central  Google Scholar 

  13. 13.

    Werner, M., von Wasielewski, R. & Komminoth, P. Antigen retrieval, signal amplification and intensification in immunohistochemistry. Histochem. Cell Biol. 105, 253–260 (1996).

    CAS  PubMed  Google Scholar 

  14. 14.

    Stack, E. C., Wang, C. C., Roman, K. A. & Hoyt, C. C. Multiplexed immunohistochemistry, imaging and quantitation: a review, with an assessment of Tyramide signal amplification, multispectral imaging and multiplex analysis. Methods 70, 46–58 (2014).

    CAS  PubMed  Google Scholar 

  15. 15.

    Wang, L., Frei, M. S., Salim, A. & Johnsson, K. Small-molecule fluorescent probes for live-cell super-resolution microscopy. J. Am. Chem. Soc. 141, 2770–2781 (2019).

    CAS  PubMed  Google Scholar 

  16. 16.

    Specht, E. A., Braselmann, E. & Palmer, A. E. A critical and comparative review of fluorescent tools for live-cell imaging. Annu. Rev. Physiol. 79, 93–117 (2017).

    CAS  PubMed  Google Scholar 

  17. 17.

    Yap, A. S., Michael, M. & Parton, R. G. Seeing and believing: recent advances in imaging cell–cell interactions. F1000Res. 4, 273 (2015).

    PubMed  PubMed Central  Google Scholar 

  18. 18.

    Baharlou, H., Canete, N. P., Cunningham, A. L., Harman, A. N. & Patrick, E. Mass cytometry imaging for the study of human diseases—applications and data analysis strategies. Front. Immunol. 10, 2657 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Jackson, H. W. et al. The single-cell pathology landscape of breast cancer. Nature 578, 615–620 (2020).

    CAS  Google Scholar 

  20. 20.

    Barteneva, N. S., Fasler-Kan, E. & Vorobjev, I. A. Imaging flow cytometry: coping with heterogeneity in biological systems. J. Histochem. Cytochem. 60, 723–733 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Burel, J. G. et al. Circulating T cell–monocyte complexes are markers of immune perturbations. eLife 8, e46045 (2019).

    PubMed  PubMed Central  Google Scholar 

  22. 22.

    Popescu, D. M. et al. Decoding human fetal liver haematopoiesis. Nature 574, 365–371 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Groves, J. T. & Dustin, M. L. Supported planar bilayers in studies on immune cell adhesion and communication. J. Immunol. Methods 278, 19–32 (2003).

    CAS  PubMed  Google Scholar 

  24. 24.

    Monks, C. R., Freiberg, B. A., Kupfer, H., Sciaky, N. & Kupfer, A. Three-dimensional segregation of supramolecular activation clusters in T cells. Nature 395, 82–86 (1998).

    CAS  PubMed  Google Scholar 

  25. 25.

    Grakoui, A. et al. The immunological synapse: a molecular machine controlling T cell activation. Science 285, 221–227 (1999).

    CAS  PubMed  Google Scholar 

  26. 26.

    Kaizuka, Y., Douglass, A. D., Varma, R., Dustin, M. L. & Vale, R. D. Mechanisms for segregating T cell receptor and adhesion molecules during immunological synapse formation in Jurkat T cells. Proc. Natl Acad. Sci. USA 104, 20296–20301 (2007).

    CAS  PubMed  Google Scholar 

  27. 27.

    Rust, M. J., Bates, M. & Zhuang, X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat. Methods 3, 793–796 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Huang, B., Wang, W., Bates, M. & Zhuang, X. Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy. Science 319, 810–813 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Dani, A., Huang, B., Bergan, J., Dulac, C. & Zhuang, X. Superresolution imaging of chemical synapses in the brain. Neuron 68, 843–856 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Wu, Y., Kanchanawong, P. & Zaidel-Bar, R. Actin-delimited adhesion-independent clustering of E-cadherin forms the nanoscale building blocks of adherens junctions. Dev. Cell 32, 139–154 (2015).

    CAS  PubMed  Google Scholar 

  31. 31.

    Chamma, I. et al. Mapping the dynamics and nanoscale organization of synaptic adhesion proteins using monomeric streptavidin. Nat. Commun. 7, 10773 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Ries, J., Kaplan, C., Platonova, E., Eghlidi, H. & Ewers, H. A simple, versatile method for GFP-based super-resolution microscopy via nanobodies. Nat. Methods 9, 582–584 (2012).

    CAS  PubMed  Google Scholar 

  33. 33.

    Rothbauer, U. et al. Targeting and tracing antigens in live cells with fluorescent nanobodies. Nat. Methods 3, 887–889 (2006).

    CAS  PubMed  Google Scholar 

  34. 34.

    Beghein, E. & Gettemans, J. Nanobody technology: a versatile toolkit for microscopic imaging, protein–protein interaction analysis, and protein function exploration. Front. Immunol. 8, 771 (2017).

    PubMed  PubMed Central  Google Scholar 

  35. 35.

    Feinberg, E. H. et al. GFP Reconstitution Across Synaptic Partners (GRASP) defines cell contacts and synapses in living nervous systems. Neuron 57, 353–363 (2008).

    CAS  PubMed  Google Scholar 

  36. 36.

    Kim, J. et al. mGRASP enables mapping mammalian synaptic connectivity with light microscopy. Nat. Methods 9, 96–102 (2011).

    PubMed  PubMed Central  Google Scholar 

  37. 37.

    Macpherson, L. J. et al. Dynamic labelling of neural connections in multiple colours by trans-synaptic fluorescence complementation. Nat. Commun. 6, 10024 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Liu, D. S., Loh, K. H., Lam, S. S., White, K. A. & Ting, A. Y. Imaging trans-cellular neurexin–neuroligin interactions by enzymatic probe ligation. PLoS ONE 8, e52823 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Martell, J. D. et al. A split horseradish peroxidase for the detection of intercellular protein–protein interactions and sensitive visualization of synapses. Nat. Biotechnol. 34, 774–780 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Carpenter, M. A. et al. Protein proximity observed using fluorogen activating protein and dye activated by proximal anchoring (FAP–DAPA) system. ACS Chem. Biol. 15, 2433–2443 (2020).

    CAS  PubMed  Google Scholar 

  41. 41.

    Stein, J. V. & Gonzalez, S. F. Dynamic intravital imaging of cell–cell interactions in the lymph node. J. Allergy Clin. Immunol. 139, 12–20 (2017).

    PubMed  Google Scholar 

  42. 42.

    Miller, M. J., Wei, S. H., Parker, I. & Cahalan, M. D. Two-photon imaging of lymphocyte motility and antigen response in intact lymph node. Science 296, 1869–1873 (2002).

    CAS  PubMed  Google Scholar 

  43. 43.

    Miller, M. J., Hejazi, A. S., Wei, S. H., Cahalan, M. D. & Parker, I. T cell repertoire scanning is promoted by dynamic dendritic cell behavior and random T cell motility in the lymph node. Proc. Natl Acad. Sci. USA 101, 998–1003 (2004).

    CAS  PubMed  Google Scholar 

  44. 44.

    Pasqual, G. et al. Monitoring T cell–dendritic cell interactions in vivo by intercellular enzymatic labelling. Nature 553, 496–500 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Ge, Y. et al. Enzyme-mediated intercellular proximity labeling for detecting cell–cell interactions. J. Am. Chem. Soc. 141, 1833–1837 (2019).

    CAS  PubMed  Google Scholar 

  46. 46.

    Liu, Q. et al. A proximity-tagging system to identify membrane protein–protein interactions. Nat. Methods 15, 715–722 (2018).

    CAS  PubMed  Google Scholar 

  47. 47.

    Liu, Z. L. et al. Detecting tumor antigen-specific T cells via interaction-dependent fucosyl-biotinylation. Cell 183, 1117–1133 (2020).

    CAS  PubMed  Google Scholar 

  48. 48.

    Piersimoni, L. & Sinz, A. Cross-linking/mass spectrometry at the crossroads. Anal. Bioanal. Chem. 412, 5981–5987 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Gonzalez-Lozano, M. A. et al. Stitching the synapse: cross-linking mass spectrometry into resolving synaptic protein interactions. Sci. Adv. 6, eaax5783 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. 50.

    Cho, K. F. et al. Proximity labeling in mammalian cells with TurboID and split-TurboID. Nat. Protoc. 15, 3971–3999 (2020).

    PubMed  Google Scholar 

  51. 51.

    Qin, W., Cho, K. F., Cavanagh, P. E. & Ting, A. Y. Deciphering molecular interactions by proximity labeling. Nat. Methods 18, 133–143 (2021).

    CAS  PubMed  Google Scholar 

  52. 52.

    Kim, D. I. et al. Probing nuclear pore complex architecture with proximity-dependent biotinylation. Proc. Natl Acad. Sci. USA 111, E2453–E2461 (2014).

    CAS  PubMed  Google Scholar 

  53. 53.

    Martell, J. D. et al. Engineered ascorbate peroxidase as a genetically encoded reporter for electron microscopy. Nat. Biotechnol. 30, 1143–1148 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. 54.

    Rhee, H. W. et al. Proteomic mapping of mitochondria in living cells via spatially restricted enzymatic tagging. Science 339, 1328–1331 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. 55.

    Loh, K. H. et al. Proteomic analysis of unbounded cellular compartments: synaptic clefts. Cell 166, 1295–1307 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. 56.

    Roux, K. J., Kim, D. I., Raida, M. & Burke, B. A promiscuous biotin ligase fusion protein identifies proximal and interacting proteins in mammalian cells. J. Cell Biol. 196, 801–810 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. 57.

    Branon, T. C. et al. Efficient proximity labeling in living cells and organisms with TurboID. Nat. Biotechnol. 36, 880–887 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. 58.

    Shafraz, O., Xie, B., Yamada, S. & Sivasankar, S. Mapping transmembrane binding partners for E-cadherin ectodomains. Proc. Natl Acad. Sci. USA 117, 31157–31165 (2020).

    CAS  PubMed  Google Scholar 

  59. 59.

    Kwak, C. et al. Contact-ID, a tool for profiling organelle contact sites, reveals regulatory proteins of mitochondrial-associated membrane formation. Proc. Natl Acad. Sci. USA 117, 12109–12120 (2020).

    CAS  PubMed  Google Scholar 

  60. 60.

    Cho, K. F. et al. Split-TurboID enables contact-dependent proximity labeling in cells. Proc. Natl Acad. Sci. USA 117, 12143–12154 (2020).

    CAS  PubMed  Google Scholar 

  61. 61.

    Samavarchi-Tehrani, P., Samson, R. & Gingras, A. C. Proximity dependent biotinylation: key enzymes and adaptation to proteomics approaches. Mol. Cell Proteom. 19, 757–773 (2020).

    CAS  Google Scholar 

  62. 62.

    Prier, C. K., Rankic, D. A. & MacMillan, D. W. C. Visible light photoredox catalysis with transition metal complexes: applications in organic synthesis. Chem. Rev. 113, 5322–5363 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. 63.

    Geri, J. B. et al. Microenvironment mapping via Dexter energy transfer on immune cells. Science 367, 1091–1097 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. 64.

    Patel, S. J. et al. Identification of essential genes for cancer immunotherapy. Nature 548, 537–542 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. 65.

    Vredevoogd, D. W. et al. Augmenting immunotherapy impact by lowering tumor TNF cytotoxicity threshold. Cell 178, 585–599 (2019).

    CAS  PubMed  Google Scholar 

  66. 66.

    Kula, T. et al. T-Scan: a genome-wide method for the systematic discovery of T cell epitopes. Cell 178, 1016–1028 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. 67.

    Morsut, L. et al. Engineering customized cell sensing and response behaviors using synthetic notch receptors. Cell 164, 780–791 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. 68.

    Toda, S., Blauch, L. R., Tang, S. K. Y., Morsut, L. & Lim, W. A. Programming self-organizing multicellular structures with synthetic cell–cell signaling. Science 361, 156–162 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. 69.

    Roybal, K. T. et al. Engineering T cells with customized therapeutic response programs using synthetic notch receptors. Cell 167, 419–432 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. 70.

    Tang, R. et al. A versatile system to record cell–cell interactions. eLife 9, e61080 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. 71.

    Talay, M. et al. Transsynaptic mapping of second-order taste neurons in flies by trans-Tango. Neuron 96, 783–795 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. 72.

    Waldman, A. D., Fritz, J. M. & Lenardo, M. J. A guide to cancer immunotherapy: from T cell basic science to clinical practice. Nat. Rev. Immunol. 20, 651–668 (2020).

    CAS  PubMed  Google Scholar 

  73. 73.

    Kontermann, R. E. & Brinkmann, U. Bispecific antibodies. Drug Discov. Today 20, 838–847 (2015).

    CAS  PubMed  Google Scholar 

  74. 74.

    Labrijn, A. F., Janmaat, M. L., Reichert, J. M. & Parren, P. Bispecific antibodies: a mechanistic review of the pipeline. Nat. Rev. Drug Discov. 18, 585–608 (2019).

    CAS  PubMed  Google Scholar 

  75. 75.

    Labanieh, L., Majzner, R. G. & Mackall, C. L. Programming CAR-T cells to kill cancer. Nat. Biomed. Eng. 2, 377–391 (2018).

    CAS  PubMed  Google Scholar 

  76. 76.

    Bommareddy, P. K., Shettigar, M. & Kaufman, H. L. Integrating oncolytic viruses in combination cancer immunotherapy. Nat. Rev. Immunol. 18, 498–513 (2018).

    CAS  PubMed  Google Scholar 

  77. 77.

    Twumasi-Boateng, K., Pettigrew, J. L., Kwok, Y. Y. E., Bell, J. C. & Nelson, B. H. Oncolytic viruses as engineering platforms for combination immunotherapy. Nat. Rev. Cancer 18, 419–432 (2018).

    CAS  PubMed  Google Scholar 

  78. 78.

    Dura, B. et al. Longitudinal multiparameter assay of lymphocyte interactions from onset by microfluidic cell pairing and culture. Proc. Natl Acad. Sci. USA 113, E3599–E3608 (2016).

    CAS  PubMed  Google Scholar 

  79. 79.

    Ben-Moshe, S. et al. Spatial sorting enables comprehensive characterization of liver zonation. Nat. Metab. 1, 899–911 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. 80.

    Moor, A. E. et al. Spatial reconstruction of single enterocytes uncovers broad zonation along the intestinal villus axis. Cell 175, 1156–1167 (2018).

    CAS  PubMed  Google Scholar 

  81. 81.

    Giladi, A. et al. Dissecting cellular crosstalk by sequencing physically interacting cells. Nat. Biotechnol. 38, 629–637 (2020).

    CAS  PubMed  Google Scholar 

  82. 82.

    Williams, J. Z. et al. Precise T cell recognition programs designed by transcriptionally linking multiple receptors. Science 370, 1099–1104 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. 83.

    Lajoie, M. J. et al. Designed protein logic to target cells with precise combinations of surface antigens. Science 369, 1637–1643 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Y. Zheng of Yizheng Illustrations for figure design work.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Olugbeminiyi O. Fadeyi or Rob C. Oslund.

Ethics declarations

Competing interests

T.J.B., T.R.R., O.O.F. and R.C.O. are employees of Merck Sharp & Dohme Corp., a subsidiary of Merck & Co., Inc., Kenilworth, NJ, USA.

Additional information

Peer review information Nature Chemical Biology thanks Cheng Zhu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bechtel, T.J., Reyes-Robles, T., Fadeyi, O.O. et al. Strategies for monitoring cell–cell interactions. Nat Chem Biol 17, 641–652 (2021). https://doi.org/10.1038/s41589-021-00790-x

Download citation

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing