Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Water-processable, biodegradable and coatable aquaplastic from engineered biofilms

Abstract

Petrochemical-based plastics have not only contaminated all parts of the globe, but are also causing potentially irreversible damage to our ecosystem because of their non-biodegradability. As bioplastics are limited in number, there is an urgent need to design and develop more biodegradable alternatives to mitigate the plastic menace. In this regard, we report aquaplastic, a new class of microbial biofilm-based biodegradable bioplastic that is water-processable, robust, templatable and coatable. Here, Escherichia coli was genetically engineered to produce protein-based hydrogels, which are cast and dried under ambient conditions to produce aquaplastic, which can withstand strong acid/base and organic solvents. In addition, aquaplastic can be healed and welded to form three-dimensional architectures using water. The combination of straightforward microbial fabrication, water processability and biodegradability makes aquaplastic a unique material worthy of further exploration for packaging and coating applications.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Fabrication of aquaplastic directly from engineered microbial biofilms.
Fig. 2: Physical and chemical properties of aquaplastics.
Fig. 3: Chemically resistant aquaplastic and its templated surface structure properties.
Fig. 4: Aqua-healing and aqua-welding of aquaplastic.

Data availability

All relevant data supporting the findings of this study and the plasmids and strains used are available within the Article and its Supplementary Information or from the corresponding authors upon request. Source data are provided with this paper.

References

  1. 1.

    Khalil, A. S. & Collins, J. J. Synthetic biology: applications come of age. Nat. Rev. Genet. 11, 367–379 (2010).

    CAS  Article  Google Scholar 

  2. 2.

    Nguyen, P. Q., Courchesne, N. D., Duraj-Thatte, A., Praveschotinunt, P. & Joshi, N. S. Engineered living materials: prospects and challenges for using biological systems to direct the assembly of smart materials. Adv. Mater. 30, e1704847 (2018).

    Article  Google Scholar 

  3. 3.

    Chen, A. Y., Zhong, C. & Lu, T. K. Engineering living functional materials. ACS Synth. Biol. 4, 8–11 (2015).

    Article  Google Scholar 

  4. 4.

    Gilbert, C. & Ellis, T. Biological engineered living materials: growing functional materials with genetically programmable properties. ACS Synth. Biol. 8, 1–15 (2019).

    CAS  Article  Google Scholar 

  5. 5.

    Duraj-Thatte, A. M. et al. Genetically programmable self-regenerating bacterial hydrogels. Adv. Mater. 31, e1901826 (2019).

    Article  Google Scholar 

  6. 6.

    Botyanszki, Z., Tay, P. K., Nguyen, P. Q., Nussbaumer, M. G. & Joshi, N. S. Engineered catalytic biofilms: site-specific enzyme immobilization onto E. coli curli nanofibers. Biotechnol. Bioeng. 112, 2016–2024 (2015).

    CAS  Article  Google Scholar 

  7. 7.

    Nguyen, P. Q., Botyanszki, Z., Tay, P. K. & Joshi, N. S. Programmable biofilm-based materials from engineered curli nanofibres. Nat. Commun. 5, 4945 (2014).

    CAS  Article  Google Scholar 

  8. 8.

    Chen, A. Y. et al. Synthesis and patterning of tunable multiscale materials with engineered cells. Nat. Mater. 13, 515–523 (2014).

    CAS  Article  Google Scholar 

  9. 9.

    Zhong, C. et al. Strong underwater adhesives made by self-assembling multi-protein nanofibres. Nat. Nanotechnol. 9, 858–866 (2014).

    CAS  Article  Google Scholar 

  10. 10.

    Gonzalez, L. M., Mukhitov, N. & Voigt, C. A. Resilient living materials built by printing bacterial spores. Nat. Chem. Biol. 16, 126–133 (2020).

    CAS  Article  Google Scholar 

  11. 11.

    Tay, P. K. R., Manjula-Basavanna, A. & Joshi, N. S. Repurposing bacterial extracellular matrix for selective and differential abstraction of rare earth elements. Green Chem. 20, 3512–3520 (2018).

    CAS  Article  Google Scholar 

  12. 12.

    Liu, X. et al. Stretchable living materials and devices with hydrogel–elastomer hybrids hosting programmed cells. Proc. Natl Acad. Sci. USA 114, 2200–2205 (2017).

    CAS  Article  Google Scholar 

  13. 13.

    Geyer, R., Jambeck, J. R. & Law, K. L. Production, use and fate of all plastics ever made. Sci. Adv. 3, e1700782 (2017).

    Article  Google Scholar 

  14. 14.

    Chiellini, E., Corti, A., D’Antone, S. & Solaro, R. Biodegradation of poly (vinyl alcohol) based materials. Prog. Polym. Sci. 28, 963–1014 (2003).

    CAS  Article  Google Scholar 

  15. 15.

    Flemming, H. C. & Wingender, J. The biofilm matrix. Nat. Rev. Microbiol. 8, 623–633 (2010).

    CAS  Article  Google Scholar 

  16. 16.

    Barnhart, M. M. & Chapman, M. R. Curli biogenesis and function. Annu. Rev. Microbiol. 60, 131–147 (2006).

    CAS  Article  Google Scholar 

  17. 17.

    Nussbaumer, M. G. et al. Bootstrapped biocatalysis: biofilm-derived materials as reversibly functionalizable multienzyme surfaces. ChemCatChem 9, 4328–4333 (2017).

    CAS  Article  Google Scholar 

  18. 18.

    Duraj-Thatte, A. M., Praveschotinunt, P., Nash, T. R., Ward, F. R. & Joshi, N. S. Modulating bacterial and gut mucosal interactions with engineered biofilm matrix proteins. Sci. Rep. 8, 3475 (2018).

    Article  Google Scholar 

  19. 19.

    Wu, X. et al. Sodium dodecyl sulfate-induced rapid gelation of silk fibroin. Acta Biomater. 8, 2185–2192 (2012).

    CAS  Article  Google Scholar 

  20. 20.

    Wei, G. et al. Self-assembling peptide and protein amyloids: from structure to tailored function in nanotechnology. Chem. Soc. Rev. 46, 4661–4708 (2017).

    CAS  Article  Google Scholar 

  21. 21.

    Adamcik, J. et al. Measurement of intrinsic properties of amyloid fibrils by the peak force QNM method. Nanoscale 4, 4426–4429 (2012).

    CAS  Article  Google Scholar 

  22. 22.

    Avinash, M. B., Raut, D., Mishra, M. K., Ramamurty, U. & Govindaraju, T. Bioinspired reductionistic peptide engineering for exceptional mechanical properties. Sci. Rep. 5, 16070 (2015).

    CAS  Article  Google Scholar 

  23. 23.

    Phan, D. C., Goodwin, D. G. Jr, Frank, B. P., Bouwer, E. J. & Fairbrother, D. H. Biodegradability of carbon nanotube/polymer nanocomposites under aerobic mixed culture conditions. Sci. Total Environ. 639, 804–814 (2018).

    CAS  Article  Google Scholar 

  24. 24.

    Knowles, T. P. & Mezzenga, R. Amyloid fibrils as building blocks for natural and artificial functional materials. Adv. Mater. 28, 6546–6561 (2016).

    CAS  Article  Google Scholar 

  25. 25.

    Du, Z. et al. The review of powder coatings. Chem. Mater. Sci. 4, 54–59 (2016).

    Google Scholar 

  26. 26.

    Avinash, M. B., Verheggen, E., Schmuck, C. & Govindaraju, T. Self-cleaning functional molecular materials. Angew. Chem. Int. Ed. 51, 10324–10328 (2012).

    CAS  Article  Google Scholar 

  27. 27.

    Albertsson, A. C. & Hakkarainen, M. Designed to degrade. Science 358, 872–873 (2017).

    CAS  Article  Google Scholar 

  28. 28.

    Abdullah, Z. W., Dong, Y., Davies, I. J. & Barbhuiya, S. PVA, PVA blends, and their nanocomposites for biodegradable packaging application. Polym. Plast. Technol. Eng. 56, 1307–1344 (2017).

    CAS  Article  Google Scholar 

  29. 29.

    Amsden, J. J. et al. Rapid nanoimprinting of silk fibroin films for biophotonic applications. Adv. Mater. 22, 1746–1749 (2010).

    CAS  Article  Google Scholar 

  30. 30.

    Kim, D. H. et al. Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics. Nat. Mater. 9, 511–517 (2010).

    CAS  Article  Google Scholar 

  31. 31.

    Perry, H., Gopinath, A., Kaplan, D. L., Dal Negro, L. & Omenetto, F. Nano‐ and micropatterning of optically transparent, mechanically robust, biocompatible silk fibroin films. Adv. Mater. 20, 3070–3072 (2008).

    CAS  Article  Google Scholar 

  32. 32.

    Brenckle, M. et al. Methods and applications of multilayer silk fibroin laminates based on spatially controlled welding in protein films. Adv. Funct. Mater. 26, 44–50 (2015).

    Article  Google Scholar 

  33. 33.

    Moreau, D., Chauvet, C., Etienne, F., Rannou, F. P. & Corte, L. Hydrogel films and coatings by swelling-induced gelation. Proc. Natl Acad. Sci. USA 113, 13295–13300 (2016).

    CAS  Article  Google Scholar 

  34. 34.

    Fernandez, J. G. & Ingber, D. E. Manufacturing of large-scale functional objects using biodegradable chitosan bioplastic. Macromol. Mater. Eng. 299, 932–938 (2014).

    CAS  Article  Google Scholar 

  35. 35.

    Guo, C. et al. Thermoplastic moulding of regenerated silk. Nat. Mater. 19, 102–108 (2020).

    CAS  Article  Google Scholar 

  36. 36.

    Latza, V. et al. Multi-scale thermal stability of a hard thermoplastic protein-based material. Nat. Commun. 6, 8313 (2015).

    CAS  Article  Google Scholar 

  37. 37.

    Beguin, P. & Aubert, J. P. The biological degradation of cellulose. FEMS Microbiol. Rev. 13, 25–58 (1994).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

Work was performed in part at the Center for Nanoscale Systems at Harvard. Work in the N.S.J. laboratory is supported by the National Institutes of Health (1R01DK110770, N.S.J.), the National Science Foundation (DMR 2004875, N.S.J.) and the Wyss Institute for Biologically Inspired Engineering at Harvard University. Parts of the schematics were adapted from BioRender.com.

Author information

Affiliations

Authors

Contributions

A.M.D.-T. and A.M.-B. conceived the idea. A.M.D.-T. and A.M.-B. prepared aquagels, fabricated aquaplastics, tested the chemical resistance of the aquaplastic, performed aquaplastic coating, templating and rehydration studies as well as aqua-healing and aqua-welding. A.M.-B. performed FESEM and nanoindentation studies. N.-M.D.C. and G.I.C. performed initial experiments with aquagels and aquaplastic. A.S.-F. carried out WAXS and DSC studies. L.v.H. performed TGA and DSC studies. B.P.F. performed biodegradation studies. S.K.C. performed tensile tests. D.H.F. supervised B.P.F. R.M. supervised A.S.-F. and L.v.H. A.M.D.-T., A.M.-B. and N.S.J. wrote and/or edited the manuscript. All authors discussed and commented on the manuscript.

Corresponding author

Correspondence to Neel S. Joshi.

Ethics declarations

Competing interests

A.M.D.-T., N.-M.D.C. and N.S.J. are inventors on patent application WO2017201428A8, submitted by Harvard University.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Coating of curli aquaplastic on various surfaces.

Coating of curli aquaplastic on various surfaces. Optical images of a. Cow leather, b. Plywood c. Mobile phone touch screen, d. Aluminum automobile exterior body part and e. Copper wire coated with curli aquaplastic. FESEM images of coated and uncoated surfaces are shown below.

Supplementary information

Supplementary Information

Supplementary Figs. 1–17 and Tables 1 and 2.

Reporting Summary

Source data

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Duraj-Thatte, A.M., Manjula-Basavanna, A., Courchesne, NM.D. et al. Water-processable, biodegradable and coatable aquaplastic from engineered biofilms. Nat Chem Biol (2021). https://doi.org/10.1038/s41589-021-00773-y

Download citation

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing