Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Bacterial virulence mediated by orthogonal post-translational modification

Abstract

Many bacterial pathogens secrete virulence factors, also known as effector proteins, directly into host cells. These effectors suppress pro-inflammatory host signaling while promoting bacterial infection. A particularly interesting subset of effectors post-translationally modify host proteins using novel chemistry that is not otherwise found in the mammalian proteome, which we refer to as ‘orthogonal post-translational modification’ (oPTM). In this Review, we profile oPTM chemistry for effectors that catalyze serine/threonine acetylation, phosphate β-elimination, phosphoribosyl-linked ubiquitination, glutamine deamidation, phosphocholination, cysteine methylation, arginine N-acetylglucosaminylation, and glutamine ADP-ribosylation on host proteins. AMPylation, a PTM that could be considered orthogonal until only recently, is also discussed. We further highlight known cellular targets of oPTMs and their resulting biological consequences. Developing a complete understanding of oPTMs and the host cell processes they hijack will illuminate critical steps in the infection process, which can be harnessed for a variety of therapeutic, diagnostic, and synthetic applications.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Secreted bacterial effectors wage a biochemical war in host cells.
Fig. 2: A subset of bacterial effectors catalyze orthogonal post-translational modifications (oPTMs) in host cells.
Fig. 3: Bacterial effectors use oPTMs to silence pro-inflammatory signaling through the MAPK and NFκB pathways.
Fig. 4: Bacterial effectors use oPTMs to interfere with the host ubiquitin-proteasome system.
Fig. 5: Bacterial effectors use oPTMs to alter host GTPase activity.

References

  1. Brodsky, I. E. & Medzhitov, R. Targeting of immune signalling networks by bacterial pathogens. Nat. Cell Biol. 11, 521–526 (2009).

    CAS  PubMed  Article  Google Scholar 

  2. Baxt, L. A., Garza-Mayers, A. C. & Goldberg, M. B. Bacterial subversion of host innate immune pathways. Science 340, 697–701 (2013).

    CAS  PubMed  Article  Google Scholar 

  3. Costa, T. R. D. et al. Secretion systems in Gram-negative bacteria: structural and mechanistic insights. Nat. Rev. Microbiol. 13, 343–359 (2015).

    CAS  PubMed  Article  Google Scholar 

  4. Buchrieser, C. et al. The virulence plasmid pWR100 and the repertoire of proteins secreted by the type III secretion apparatus of Shigella flexneri. Mol. Microbiol. 38, 760–771 (2000).

    CAS  PubMed  Article  Google Scholar 

  5. Hubber, A. & Roy, C. R. Modulation of host cell function by Legionella pneumophila type IV effectors. Annu. Rev. Cell Dev. Biol. 26, 261–283 (2010).

    CAS  PubMed  Article  Google Scholar 

  6. Ribet, D. & Cossart, P. Post-translational modifications in host cells during bacterial infection. FEBS Lett. 584, 2748–2758 (2010).

    CAS  PubMed  Article  Google Scholar 

  7. Collier, R. J. & Cole, H. A. Diphtheria toxin subunit active in vitro. Science 164, 1179–1181 (1969).

    CAS  PubMed  Article  Google Scholar 

  8. Mukherjee, S. et al. Yersinia YopJ acetylates and inhibits kinase activation by blocking phosphorylation. Science 312, 1211–1214 (2006). This article reports the discovery of Ser/Thr acetylation.

    CAS  PubMed  Article  Google Scholar 

  9. Mittal, R., Peak-Chew, S. Y. & McMahon, H. T. Acetylation of MEK2 and I kappa B kinase (IKK) activation loop residues by YopJ inhibits signaling. Proc. Natl. Acad. Sci. USA 103, 18574–18579 (2006).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  10. Ma, K.-W. & Ma, W. YopJ family effectors promote bacterial infection through a unique acetyltransferase activity. Microbiol. Mol. Biol. Rev. 80, 1011–1027 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  11. Jones, R. M. et al. Salmonella AvrA coordinates suppression of host immune and apoptotic defenses via JNK pathway blockade. Cell Host Microbe 3, 233–244 (2008).

    CAS  PubMed  Article  Google Scholar 

  12. Trosky, J. E. et al. VopA inhibits ATP binding by acetylating the catalytic loop of MAPK kinases. J. Biol. Chem. 282, 34299–34305 (2007).

    CAS  PubMed  Article  Google Scholar 

  13. Orth, K. et al. Disruption of signaling by Yersinia effector YopJ, a ubiquitin-like protein protease. Science 290, 1594–1597 (2000).

    CAS  PubMed  Article  Google Scholar 

  14. Orth, K. et al. Inhibition of the mitogen-activated protein kinase kinase superfamily by a Yersinia effector. Science 285, 1920–1923 (1999).

    CAS  PubMed  Article  Google Scholar 

  15. Meinzer, U. et al. Yersinia pseudotuberculosis effector YopJ subverts the Nod2/RICK/TAK1 pathway and activates caspase-1 to induce intestinal barrier dysfunction. Cell Host Microbe 11, 337–351 (2012).

    CAS  PubMed  Article  Google Scholar 

  16. Paquette, N. et al. Serine/threonine acetylation of TGFβ-activated kinase (TAK1) by Yersinia pestis YopJ inhibits innate immune signaling. Proc. Natl. Acad. Sci. USA 109, 12710–12715 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  17. Mukherjee, S., Hao, Y. H. & Orth, K. A newly discovered post-translational modification—the acetylation of serine and threonine residues. Trends Biochem. Sci. 32, 210–216 (2007).

    CAS  PubMed  Article  Google Scholar 

  18. Zhang, Z. M. et al. Structure of a pathogen effector reveals the enzymatic mechanism of a novel acetyltransferase family. Nat. Struct. Mol. Biol. 23, 847–852 (2016).

    CAS  PubMed  Article  Google Scholar 

  19. Zhang, Z. M. et al. Mechanism of host substrate acetylation by a YopJ family effector. Nat. Plants 3, 17115 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  20. Monack, D. M., Mecsas, J., Bouley, D. & Falkow, S. Yersinia-induced apoptosis in vivo aids in the establishment of a systemic infection of mice. J. Exp. Med. 188, 2127–2137 (1998).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  21. Du, F. & Galán, J. E. Selective inhibition of type III secretion activated signaling by the Salmonella effector AvrA. PLoS Pathog. 5, e1000595 (2009).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  22. Li, H. et al. The phosphothreonine lyase activity of a bacterial type III effector family. Science 315, 1000–1003 (2007). This article reports the discovery of phosphothreonine lyase activity.

    CAS  PubMed  Article  Google Scholar 

  23. Arbibe, L. et al. An injected bacterial effector targets chromatin access for transcription factor NF-kappaB to alter transcription of host genes involved in immune responses. Nat. Immunol. 8, 47–56 (2007).

    CAS  PubMed  Article  Google Scholar 

  24. Gulig, P. A. et al. Molecular analysis of spv virulence genes of the Salmonella virulence plasmids. Mol. Microbiol. 7, 825–830 (1993).

    CAS  PubMed  Article  Google Scholar 

  25. Zhu, Y. et al. Structural insights into the enzymatic mechanism of the pathogenic MAPK phosphothreonine lyase. Mol. Cell 28, 899–913 (2007).

    CAS  PubMed  Article  Google Scholar 

  26. Chen, L. et al. Structural basis for the catalytic mechanism of phosphothreonine lyase. Nat. Struct. Mol. Biol. 15, 101–102 (2008).

    PubMed  Article  CAS  Google Scholar 

  27. Ke, Z., Smith, G. K., Zhang, Y. & Guo, H. Molecular mechanism for eliminylation, a newly discovered post-translational modification. J. Am. Chem. Soc. 133, 11103–11105 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  28. Chambers, K. A., Abularrage, N. S. & Scheck, R. A. Selectivity within a family of bacterial phosphothreonine lyases. Biochemistry 57, 3790–3796 (2018).

    CAS  PubMed  Article  Google Scholar 

  29. Schmutz, C. et al. Systems-level overview of host protein phosphorylation during Shigella flexneri infection revealed by phosphoproteomics. Mol. Cell. Proteomics 12, 2952–2968 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  30. Lippmann, J. et al. Bacterial internalization, localization, and effectors shape the epithelial immune response during Shigella flexneri Infection. Infect. Immun. 83, 3624–3637 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  31. Chambers, K. A., Abularrage, N. S., Hill, C. J., Khan, I. H. & Scheck, R. A. A chemical probe for dehydrobutyrine. Angew. Chem. Int. Edn Engl. 59, 7350–7355 (2020).

    CAS  Article  Google Scholar 

  32. Peeler, J. C., Schedin-Weiss, S., Soula, M., Kazmi, M. A. & Sakmar, T. P. Isopeptide and ester bond ubiquitination both regulate degradation of the human dopamine receptor 4. J. Biol. Chem. 292, 21623–21630 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  33. Golnik, R., Lehmann, A., Kloetzel, P. M. & Ebstein, F. Major histocompatibility complex (MHC) class I processing of the NY-ESO-1 antigen is regulated by Rpn10 and Rpn13 proteins and immunoproteasomes following non-lysine ubiquitination. J. Biol. Chem. 291, 8805–8815 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  34. Bhogaraju, S. et al. Phosphoribosylation of ubiquitin promotes serine ubiquitination and impairs conventional ubiquitination. Cell 167, 1636–1649.e13 (2016). This article, along with ref. 35, reports the discovery of phosphoribose ubiquitin transferase activity.

    CAS  PubMed  Article  Google Scholar 

  35. Kotewicz, K. M. et al. A single Legionella effector catalyzes a multistep ubiquitination pathway to rearrange tubular endoplasmic reticulum for replication. Cell Host Microbe 21, 169–181 (2017). This article, along with ref. 34, reports the discovery of phosphoribose ubiquitin transferase activity.

    CAS  PubMed  Article  Google Scholar 

  36. Qiu, J. et al. Ubiquitination independent of E1 and E2 enzymes by bacterial effectors. Nature 533, 120–124 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  37. Dong, Y. et al. Structural basis of ubiquitin modification by the Legionella effector SdeA. Nature 557, 674–678 (2018).

    CAS  PubMed  Article  Google Scholar 

  38. Wang, Y. et al. Structural insights into non-canonical ubiquitination catalyzed by SidE. Cell 173, 1231–1243.e16 (2018).

    CAS  PubMed  Article  Google Scholar 

  39. Akturk, A. et al. Mechanism of phosphoribosyl-ubiquitination mediated by a single Legionella effector. Nature 557, 729–733 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  40. Kalayil, S. et al. Insights into catalysis and function of phosphoribosyl-linked serine ubiquitination. Nature 557, 734–738 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  41. Qiu, J. et al. A unique deubiquitinase that deconjugates phosphoribosyl-linked protein ubiquitination. Cell Res. 27, 865–881 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  42. Wan, M. et al. Deubiquitination of phosphoribosyl-ubiquitin conjugates by phosphodiesterase-domain-containing Legionella effectors. Proc. Natl. Acad. Sci. USA 116, 23518–23526 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  43. Shin, D. et al. Regulation of phosphoribosyl-linked serine ubiquitination by deubiquitinases DupA and DupB. Mol. Cell 77, 164–179.e6 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  44. Bhogaraju, S. et al. Inhibition of bacterial ubiquitin ligases by SidJ-calmodulin catalysed glutamylation. Nature 572, 382–386 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  45. Black, M. H. et al. Bacterial pseudokinase catalyzes protein polyglutamylation to inhibit the SidE-family ubiquitin ligases. Science 364, 787–792 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  46. Robinson, N. E. & Robinson, A. B. Use of Merrifield solid phase peptide synthesis in investigations of biological deamidation of peptides and proteins. Biopolymers 90, 297–306 (2008).

    CAS  PubMed  Article  Google Scholar 

  47. Flatau, G. et al. Toxin-induced activation of the G protein p21 Rho by deamidation of glutamine. Nature 387, 729–733 (1997). This article, along with ref. 48, reports the discovery of Gln deamidase activity for CNF family effectors.

    CAS  PubMed  Article  Google Scholar 

  48. Schmidt, G. et al. Gln 63 of Rho is deamidated by Escherichia coli cytotoxic necrotizing factor-1. Nature 387, 725–729 (1997). This article, along with ref. 47, reports the discovery of Gln deamidase activity for CNF family effectors.

    CAS  PubMed  Article  Google Scholar 

  49. Cui, J. et al. Glutamine deamidation and dysfunction of ubiquitin/NEDD8 induced by a bacterial effector family. Science 329, 1215–1218 (2010). This article reports the discovery of Gln deamidase activity for Cif family effectors.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  50. Marchès, O. et al. Enteropathogenic and enterohaemorrhagic Escherichia coli deliver a novel effector called Cif, which blocks cell cycle G2/M transition. Mol. Microbiol. 50, 1553–1567 (2003).

    PubMed  Article  CAS  Google Scholar 

  51. Taieb, F., Nougayrède, J. P., Watrin, C., Samba-Louaka, A. & Oswald, E. Escherichia coli cyclomodulin Cif induces G2 arrest of the host cell cycle without activation of the DNA-damage checkpoint-signalling pathway. Cell. Microbiol. 8, 1910–1921 (2006).

    CAS  PubMed  Article  Google Scholar 

  52. Samba-Louaka, A. et al. Bacterial cyclomodulin Cif blocks the host cell cycle by stabilizing the cyclin-dependent kinase inhibitors p21 and p27. Cell. Microbiol. 10, 2496–2508 (2008).

    CAS  PubMed  Article  Google Scholar 

  53. Yao, Q. et al. A bacterial type III effector family uses the papain-like hydrolytic activity to arrest the host cell cycle. Proc. Natl. Acad. Sci. USA 106, 3716–3721 (2009).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  54. Hsu, Y. et al. Structure of the cyclomodulin Cif from pathogenic Escherichia coli. J. Mol. Biol. 384, 465–477 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  55. Yu, C. et al. Gln40 deamidation blocks structural reconfiguration and activation of SCF ubiquitin ligase complex by Nedd8. Nat. Commun. 6, 10053 (2015).

    CAS  PubMed  Article  Google Scholar 

  56. Sanada, T. et al. The Shigella flexneri effector OspI deamidates UBC13 to dampen the inflammatory response. Nature 483, 623–626 (2012).

    CAS  PubMed  Article  Google Scholar 

  57. Valleau, D. et al. Discovery of ubiquitin deamidases in the pathogenic arsenal of Legionella pneumophila. Cell Rep. 23, 568–583 (2018).

    CAS  PubMed  Article  Google Scholar 

  58. Gan, N. et al. Legionella pneumophila regulates the activity of UBE2N by deamidase-mediated deubiquitination. EMBO J. 39, e102806 (2020).

    CAS  PubMed  Article  Google Scholar 

  59. Gan, N., Nakayasu, E. S., Hollenbeck, P. J. & Luo, Z. Q. Legionella pneumophila inhibits immune signalling via MavC-mediated transglutaminase-induced ubiquitination of UBE2N. Nat. Microbiol. 4, 134–143 (2019).

    CAS  PubMed  Article  Google Scholar 

  60. Cruz-Migoni, A. et al. A Burkholderia pseudomallei toxin inhibits helicase activity of translation factor eIF4A. Science 334, 821–824 (2011).

    CAS  PubMed  Article  Google Scholar 

  61. Hoffmann, C. et al. The Yersinia pseudotuberculosis cytotoxic necrotizing factor (CNFY) selectively activates RhoA. J. Biol. Chem. 279, 16026–16032 (2004).

    CAS  PubMed  Article  Google Scholar 

  62. Zhang, L. et al. Type III effector VopC mediates invasion for Vibrio species. Cell Rep. 1, 453–460 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  63. Mukherjee, S. et al. Modulation of Rab GTPase function by a protein phosphocholine transferase. Nature 477, 103–106 (2011). This article reports the discovery of phosphocholine transferase activity.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  64. Yarbrough, M. L. et al. AMPylation of Rho GTPases by Vibrio VopS disrupts effector binding and downstream signaling. Science 323, 269–272 (2009).

    CAS  PubMed  Article  Google Scholar 

  65. Worby, C. A. et al. The fic domain: regulation of cell signaling by adenylylation. Mol. Cell 34, 93–103 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  66. Campanacci, V., Mukherjee, S., Roy, C. R. & Cherfils, J. Structure of the Legionella effector AnkX reveals the mechanism of phosphocholine transfer by the FIC domain. EMBO J. 32, 1469–1477 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  67. Engel, P. et al. Adenylylation control by intra- or intermolecular active-site obstruction in Fic proteins. Nature 482, 107–110 (2012).

    CAS  PubMed  Article  Google Scholar 

  68. Sreelatha, A. et al. Protein AMPylation by an evolutionarily conserved pseudokinase. Cell 175, 809–821.e819 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  69. Gavriljuk, K. et al. Unraveling the phosphocholination mechanism of the Legionella pneumophila enzyme AnkX. Biochemistry 55, 4375–4385 (2016).

    CAS  PubMed  Article  Google Scholar 

  70. Goody, P. R. et al. Reversible phosphocholination of Rab proteins by Legionella pneumophila effector proteins. EMBO J. 31, 1774–1784 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  71. Yao, Q. et al. Structure and specificity of the bacterial cysteine methyltransferase effector NleE suggests a novel substrate in human DNA repair pathway. PLoS Pathog. 10, e1004522 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  72. Zhang, L. et al. Cysteine methylation disrupts ubiquitin-chain sensing in NF-κB activation. Nature 481, 204–208 (2011). This article reports the discovery of cysteine methylation.

    PubMed  Article  CAS  Google Scholar 

  73. Zhang, Y., Mühlen, S., Oates, C. V., Pearson, J. S. & Hartland, E. L. Identification of a distinct substrate-binding domain in the bacterial cysteine methyltransferase effectors NleE and OspZ. J. Biol. Chem. 291, 20149–20162 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  74. Ding, J. et al. Structural and functional insights into host death domains inactivation by the bacterial arginine GlcNAcyltransferase effector. Mol Cell 74, 922–935.e926 (2019).

    CAS  PubMed  Article  Google Scholar 

  75. Li, S. et al. Pathogen blocks host death receptor signalling by arginine GlcNAcylation of death domains. Nature 501, 242–246 (2013). This article, along with ref. 76, reports the discovery of arginine GlcNAcylation.

    CAS  PubMed  Article  Google Scholar 

  76. Pearson, J. S. et al. A type III effector antagonizes death receptor signalling during bacterial gut infection. Nature 501, 247–251 (2013). This article, along with ref. 75, reports the discovery of arginine GlcNAcylation.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  77. Newson, J. P. M. et al. Salmonella effectors SseK1 and SseK3 target death domain proteins in the TNF and TRAIL signaling pathways. Mol. Cell. Proteomics 18, 1138–1156 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  78. Xu, Y. et al. A bacterial effector reveals the V-ATPase-ATG16L1 axis that initiates xenophagy. Cell 178, 552–566.e520 (2019). This article reports the discovery of glutamine ADP-ribosylation.

    CAS  PubMed  Article  Google Scholar 

  79. Lim, D. V., Simpson, J. M., Kearns, E. A. & Kramer, M. F. Current and developing technologies for monitoring agents of bioterrorism and biowarfare. Clin. Microbiol. Rev. 18, 583–607 (2005).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  80. Enninga, J., Mounier, J., Sansonetti, P. & Tran Van Nhieu, G. Secretion of type III effectors into host cells in real time. Nat. Methods 2, 959–965 (2005).

    CAS  PubMed  Article  Google Scholar 

  81. Isberg, R. R., O’Connor, T. J. & Heidtman, M. The Legionella pneumophila replication vacuole: making a cosy niche inside host cells. Nat. Rev. Microbiol. 7, 13–24 (2009).

    CAS  PubMed  Article  Google Scholar 

  82. Mitchell, A., Wei, P. & Lim, W. A. Oscillatory stress stimulation uncovers an Achilles’ heel of the yeast MAPK signaling network. Science 350, 1379–1383 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  83. Zhao, J. et al. Bioorthogonal engineering of bacterial effectors for spatial-temporal modulation of cell signaling. ACS Cent. Sci. 5, 145–152 (2019).

    CAS  PubMed  Article  Google Scholar 

  84. Wei, P. et al. Bacterial virulence proteins as tools to rewire kinase pathways in yeast and immune cells. Nature 488, 384–388 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  85. Ochtrop, P., Ernst, S., Itzen, A. & Hedberg, C. Exploring the substrate scope of the bacterial phosphocholine transferase AnkX for versatile protein functionalization. ChemBioChem 20, 2336–2340 (2019).

    CAS  PubMed  Article  Google Scholar 

  86. Heller, K. et al. Covalent protein labeling by enzymatic phosphocholination. Angew. Chem. Int. Edn Engl. 54, 10327–10330 (2015).

    CAS  Article  Google Scholar 

  87. Baker, S. J., Payne, D. J., Rappuoli, R. & De Gregorio, E. Technologies to address antimicrobial resistance. Proc. Natl. Acad. Sci. USA 115, 12887–12895 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  88. Allen, R. C., Popat, R., Diggle, S. P. & Brown, S. P. Targeting virulence: can we make evolution-proof drugs? Nat. Rev. Microbiol. 12, 300–308 (2014).

    CAS  PubMed  Article  Google Scholar 

  89. Dickey, S. W., Cheung, G. Y. C. & Otto, M. Different drugs for bad bugs: antivirulence strategies in the age of antibiotic resistance. Nat. Rev. Drug Discov. 16, 457–471 (2017).

    CAS  PubMed  Article  Google Scholar 

  90. Lakemeyer, M., Zhao, W., Mandl, F. A., Hammann, P. & Sieber, S. A. Thinking outside the box-novel antibacterials to tackle the resistance crisis. Angew. Chem. Int. Edn Engl. 57, 14440–14475 (2018).

    CAS  Article  Google Scholar 

  91. McShan, A. C. & De Guzman, R. N. The bacterial type III secretion system as a target for developing new antibiotics. Chem. Biol. Drug Des. 85, 30–42 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  92. Kauppi, A. M., Nordfelth, R., Uvell, H., Wolf-Watz, H. & Elofsson, M. Targeting bacterial virulence: inhibitors of type III secretion in Yersinia. Chem. Biol. 10, 241–249 (2003).

    CAS  PubMed  Article  Google Scholar 

  93. Slepenkin, A., Chu, H., Elofsson, M., Keyser, P. & Peterson, E. M. Protection of mice from a Chlamydia trachomatis vaginal infection using a Salicylidene acylhydrazide, a potential microbicide. J. Infect. Dis. 204, 1313–1320 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  94. Lewallen, D. M. et al. Inhibiting AMPylation: a novel screen to identify the first small molecule inhibitors of protein AMPylation. ACS Chem. Biol. 9, 433–442 (2014).

    CAS  PubMed  Article  Google Scholar 

  95. Salomon, D. & Orth, K. What pathogens have taught us about posttranslational modifications. Cell Host Microbe 14, 269–279 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  96. Kingdon, H. S., Shapiro, B. M. & Stadtman, E. R. Regulation of glutamine synthetase. 8. ATP: glutamine synthetase adenylyltransferase, an enzyme that catalyzes alterations in the regulatory properties of glutamine synthetase. Proc. Natl. Acad. Sci. USA 58, 1703–1710 (1967).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  97. Müller, M. P. et al. The Legionella effector protein DrrA AMPylates the membrane traffic regulator Rab1b. Science 329, 946–949 (2010).

    PubMed  Article  Google Scholar 

  98. Ham, H. et al. Unfolded protein response-regulated Drosophila Fic (dFic) protein reversibly AMPylates BiP chaperone during endoplasmic reticulum homeostasis. J. Biol. Chem. 289, 36059–36069 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  99. Sanyal, A. et al. A novel link between Fic (filamentation induced by cAMP)-mediated adenylylation/AMPylation and the unfolded protein response. J. Biol. Chem. 290, 8482–8499 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  100. Broncel, M., Serwa, R. A., Bunney, T. D., Katan, M. & Tate, E. W. Global profiling of Huntingtin-associated protein E (HYPE)-mediated AMPylation through a chemical proteomic approach. Mol. Cell. Proteomics 15, 715–725 (2016).

    CAS  PubMed  Article  Google Scholar 

  101. Grammel, M., Luong, P., Orth, K. & Hang, H. C. A chemical reporter for protein AMPylation. J. Am. Chem. Soc. 133, 17103–17105 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  102. Kielkowski, P. et al. FICD activity and AMPylation remodelling modulate human neurogenesis. Nat. Commun. 11, 517 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by a Tufts Collaborates Award to R.A.S. The authors gratefully acknowledge K. Allen, D. Walt, and J. Kritzer for helpful feedback regarding the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rebecca A. Scheck.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chambers, K.A., Scheck, R.A. Bacterial virulence mediated by orthogonal post-translational modification. Nat Chem Biol 16, 1043–1051 (2020). https://doi.org/10.1038/s41589-020-0638-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41589-020-0638-2

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing