The importance of the membrane for biophysical measurements

Abstract

Within cell membranes numerous protein assemblies reside. Among their many functions, these assemblies regulate the movement of molecules between membranes, facilitate signaling into and out of cells, allow movement of cells by cell-matrix attachment, and regulate the electric potential of the membrane. With such critical roles, membrane protein complexes are of considerable interest for human health, yet they pose an enduring challenge for structural biologists because it is difficult to study these protein structures at atomic resolution in in situ environments. To advance structural and functional insights for these protein assemblies, membrane mimetics are typically employed to recapitulate some of the physical and chemical properties of the lipid bilayer membrane. However, extraction from native membranes can sometimes change the structure and lipid-binding properties of these complexes, leading to conflicting results and fueling a drive to study complexes directly from native membranes. Here we consider the co-development of membrane mimetics with technological breakthroughs in both cryo-electron microscopy (cryo-EM) and native mass spectrometry (nMS). Together, these developments are leading to a plethora of high-resolution protein structures, as well as new knowledge of their lipid interactions, from different membrane-like environments.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: The resolution revolution has transformed EM and MS.
Fig. 2: From micelles to membranes.
Fig. 3: The effect of detergents on lipid binding and structural integrity.
Fig. 4: Variation in the subunit stoichiometry of the Patched receptor, Bam and Ton complexes.

References

  1. 1.

    Callaway, E. The revolution will not be crystallized: a new method sweeps through structural biology. Nature 525, 172–174 (2015).

    CAS  PubMed  Google Scholar 

  2. 2.

    Davies, K. M., Anselmi, C., Wittig, I., Faraldo-Gómez, J. D. & Kühlbrandt, W. Structure of the yeast F1Fo-ATP synthase dimer and its role in shaping the mitochondrial cristae. Proc. Natl. Acad. Sci. USA 109, 13602–13607 (2012).

    CAS  PubMed  Google Scholar 

  3. 3.

    Baker, L. A., Watt, I. N., Runswick, M. J., Walker, J. E. & Rubinstein, J. L. Arrangement of subunits in intact mammalian mitochondrial ATP synthase determined by cryo-EM. Proc. Natl. Acad. Sci. USA 109, 11675–11680 (2012).

    CAS  PubMed  Google Scholar 

  4. 4.

    Murphy, B. J. et al. Rotary substates of mitochondrial ATP synthase reveal the basis of flexible F1-Fo coupling. Science 364, eaaw9128 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Gu, J. et al. Cryo-EM structure of the mammalian ATP synthase tetramer bound with inhibitory protein IF1. Science 364, 1068–1075 (2019).

    CAS  PubMed  Google Scholar 

  6. 6.

    Spikes, T. E., Montgomery, M. G. & Walker, J. E. Structure of the dimeric ATP synthase from bovine mitochondria. Proc. Natl Acad. Sci. USA 117, 23519–23526 (2020).

    CAS  PubMed  Google Scholar 

  7. 7.

    Pinke, G., Zhou, L. & Sazanov, L. A. Cryo-EM structure of the entire mammalian F-type ATP synthase. Nat. Struct. Mol. Biol. https://doi.org/10.1038/s41594-020-0503-8 (2020).

  8. 8.

    Seddon, A. M., Curnow, P. & Booth, P. J. Membrane proteins, lipids and detergents: not just a soap opera. Biochim. Biophys. Acta 1666, 105–117 (2004).

    CAS  PubMed  Google Scholar 

  9. 9.

    Burgess, N. K., Stanley, A. M. & Fleming, K. G. Determination of membrane protein molecular weights and association equilibrium constants using sedimentation equilibrium and sedimentation velocity. Methods Cell Biol. 84, 181–211 (2008).

    CAS  PubMed  Google Scholar 

  10. 10.

    Vukoti, K., Kimura, T., Macke, L., Gawrisch, K. & Yeliseev, A. Stabilization of functional recombinant cannabinoid receptor CB(2) in detergent micelles and lipid bilayers. PLoS One 7, e46290 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Barrera, N. P., Di Bartolo, N., Booth, P. J. & Robinson, C. V. Micelles protect membrane complexes from solution to vacuum. Science 321, 243–246 (2008). This is a report of a membrane protein complex ejected from a detergent micelle into the gas phase of a mass spectrometer with cytoplasmic and membrane domains intact.

    CAS  PubMed  Google Scholar 

  12. 12.

    Reading, E. et al. The role of the detergent micelle in preserving the structure of membrane proteins in the gas phase. Angew. Chem. Int. Edn Engl. 54, 4577–4581 (2015).

    CAS  Google Scholar 

  13. 13.

    Liko, I. et al. Dimer interface of bovine cytochrome c oxidase is influenced by local posttranslational modifications and lipid binding. Proc. Natl. Acad. Sci. USA 113, 8230–8235 (2016).

    CAS  PubMed  Google Scholar 

  14. 14.

    Zhou, M. et al. Mass spectrometry of intact V-type ATPases reveals bound lipids and the effects of nucleotide binding. Science 334, 380–385 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Sušac, L., Eddy, M. T., Didenko, T., Stevens, R. C. & Wüthrich, K. A2A adenosine receptor functional states characterized by 19F-NMR. Proc. Natl. Acad. Sci. USA 115, 12733–12738 (2018).

    PubMed  Google Scholar 

  16. 16.

    Palczewski, K. et al. Crystal structure of rhodopsin: A G protein-coupled receptor. Science 289, 739–745 (2000). This study reports the structure of an unmodified wild-type GPCR, allowing insights into the propagation of signals in vision.

    CAS  PubMed  Google Scholar 

  17. 17.

    Cherezov, V. et al. High-resolution crystal structure of an engineered human beta2-adrenergic G protein-coupled receptor. Science 318, 1258–1265 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Rosenbaum, D. M. et al. GPCR engineering yields high-resolution structural insights into beta2-adrenergic receptor function. Science 318, 1266–1273 (2007).

    CAS  PubMed  Google Scholar 

  19. 19.

    Rasmussen, S. G. et al. Crystal structure of the β2 adrenergic receptor-Gs protein complex. Nature 477, 549–555 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Chae, P. S. et al. Maltose-neopentyl glycol (MNG) amphiphiles for solubilization, stabilization and crystallization of membrane proteins. Nat. Methods 7, 1003–1008 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Caffrey, M. A comprehensive review of the lipid cubic phase or in meso method for crystallizing membrane and soluble proteins and complexes. Acta Crystallogr. F Struct. Biol. Commun. 71, 3–18 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Yen, H. Y. et al. PtdIns(4,5)P2 stabilizes active states of GPCRs and enhances selectivity of G-protein coupling. Nature 559, 423–427 (2018). This study reports the use of mass spectrometry to uncover the role of PIP2 in stabilizing downstream coupling of class A GPCRs.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Huang, W. et al. Structure of the neurotensin receptor 1 in complex with β-arrestin 1. Nature 579, 303–308 (2020). This paper reports the cryo-EM structure of an arrestin-bound receptor, also revealing a PIP2 molecule forming a bridge between the membrane side of the receptor and arrestin.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Shen, H., Liu, D., Wu, K., Lei, J. & Yan, N. Structures of human Nav1.7 channel in complex with auxiliary subunits and animal toxins. Science 363, 1303–1308 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Urner, L. H. et al. Modular detergents tailor the purification and structural analysis of membrane proteins including G-protein coupled receptors. Nat. Commun. 11, 564 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Dorwart, M. R., Wray, R., Brautigam, C. A., Jiang, Y. & Blount, P. S. aureus MscL is a pentamer in vivo but of variable stoichiometries in vitro: implications for detergent-solubilized membrane proteins. PLoS Biol. 8, e1000555 (2010).

    PubMed  PubMed Central  Google Scholar 

  27. 27.

    Reading, E. et al. The effect of detergent, temperature, and lipid on the oligomeric state of MscL constructs: insights from mass spectrometry. Chem. Biol. 22, 593–603 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Chipot, C. et al. Perturbations of native membrane protein structure in alkyl phosphocholine detergents: a critical assessment of NMR and biophysical studies. Chem. Rev. 118, 3559–3607 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Lemieux, M. J., Reithmeier, R. A. & Wang, D. N. Importance of detergent and phospholipid in the crystallization of the human erythrocyte anion-exchanger membrane domain. J. Struct. Biol. 137, 322–332 (2002).

    PubMed  Google Scholar 

  30. 30.

    Drachmann, N. D. et al. Comparing crystal structures of Ca(2+) -ATPase in the presence of different lipids. FEBS J. 281, 4249–4262 (2014).

    CAS  PubMed  Google Scholar 

  31. 31.

    Laganowsky, A. et al. Membrane proteins bind lipids selectively to modulate their structure and function. Nature 510, 172–175 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Gupta, K. et al. The role of interfacial lipids in stabilizing membrane protein oligomers. Nature 541, 421–424 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Sanders, M. R., Findlay, H. E. & Booth, P. J. Lipid bilayer composition modulates the unfolding free energy of a knotted α-helical membrane protein. Proc. Natl. Acad. Sci. USA 115, E1799–E1808 (2018).

    CAS  PubMed  Google Scholar 

  34. 34.

    Karabadzhak, A. G. et al. Bilayer thickness and curvature influence binding and insertion of a pHLIP peptide. Biophys. J. 114, 2107–2115 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Landreh, M., Costeira-Paulo, J., Gault, J., Marklund, E. G. & Robinson, C. V. Effects of detergent micelles on lipid binding to proteins in electrospray ionization mass spectrometry. Anal. Chem. 89, 7425–7430 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Zoonens, M., Catoire, L. J., Giusti, F. & Popot, J. L. NMR study of a membrane protein in detergent-free aqueous solution. Proc. Natl. Acad. Sci. USA 102, 8893–8898 (2005).

    CAS  PubMed  Google Scholar 

  37. 37.

    Calabrese, A. N., Watkinson, T. G., Henderson, P. J., Radford, S. E. & Ashcroft, A. E. Amphipols outperform dodecylmaltoside micelles in stabilizing membrane protein structure in the gas phase. Anal. Chem. 87, 1118–1126 (2015).

    CAS  PubMed  Google Scholar 

  38. 38.

    Chien, C. H. et al. An adaptable phospholipid membrane mimetic system for solution NMR studies of membrane proteins. J. Am. Chem. Soc. 139, 14829–14832 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Elter, S. et al. The use of amphipols for NMR structural characterization of 7-TM proteins. J. Membr. Biol. 247, 957–964 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Diver, M. M., Cheng, Y. & Julius, D. Structural insights into TRPM8 inhibition and desensitization. Science 365, 1434–1440 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. 41.

    McLean, M. A., Gregory, M. C. & Sligar, S. G. Nanodiscs: a controlled bilayer surface for the study of membrane proteins. Annu. Rev. Biophys. 47, 107–124 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Autzen, H. E., Julius, D. & Cheng, Y. Membrane mimetic systems in CryoEM: keeping membrane proteins in their native environment. Curr. Opin. Struct. Biol. 58, 259–268 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. 43.

    Yokogawa, M., Fukuda, M. & Osawa, M. Nanodiscs for structural biology in a membranous environment. Chem. Pharm. Bull. (Tokyo) 67, 321–326 (2019).

    CAS  Google Scholar 

  44. 44.

    Gao, Y., Cao, E., Julius, D. & Cheng, Y. TRPV1 structures in nanodiscs reveal mechanisms of ligand and lipid action. Nature 534, 347–351 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Qiu, W. et al. Structure and activity of lipid bilayer within a membrane-protein transporter. Proc. Natl. Acad. Sci. USA 115, 12985–12990 (2018).

    CAS  PubMed  Google Scholar 

  46. 46.

    Postis, V. et al. The use of SMALPs as a novel membrane protein scaffold for structure study by negative stain electron microscopy. Biochim. Biophys. Acta 1848, 496–501 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. 47.

    Sun, C. et al. Structure of the alternative complex III in a supercomplex with cytochrome oxidase. Nature 557, 123–126 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. 48.

    Brady, N. G., Li, M., Ma, Y., Gumbart, J. C. & Bruce, B. D. Non-detergent isolation of a cyanobacterial photosystem I using styrene maleic acid alternating copolymers. RSC Advances 9, 31781–31796 (2019).

    CAS  Google Scholar 

  49. 49.

    Hall, S. C. L. et al. An acid-compatible co-polymer for the solubilization of membranes and proteins into lipid bilayer-containing nanoparticles. Nanoscale 10, 10609–10619 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. 50.

    Ruan, J., Xia, S., Liu, X., Lieberman, J. & Wu, H. Cryo-EM structure of the gasdermin A3 membrane pore. Nature 557, 62–67 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. 51.

    Peng, W., de Souza Santos, M., Li, Y., Tomchick, D. R. & Orth, K. High-resolution cryo-EM structures of the E. coli hemolysin ClyA oligomers. PLoS One 14, e0213423 (2019).

    PubMed  PubMed Central  Google Scholar 

  52. 52.

    Wang, L. & Sigworth, F. J. Structure of the BK potassium channel in a lipid membrane from electron cryomicroscopy. Nature 461, 292–295 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. 53.

    Jiang, Q. X., Chester, D. W. & Sigworth, F. J. Spherical reconstruction: a method for structure determination of membrane proteins from cryo-EM images. J. Struct. Biol. 133, 119–131 (2001).

    CAS  PubMed  Google Scholar 

  54. 54.

    Markones, M. et al. Stairway to asymmetry: five steps to lipid-asymmetric proteoliposomes. Biophys. J. 118, 294–302 (2020).

    CAS  PubMed  Google Scholar 

  55. 55.

    Carlson, M. L. et al. The Peptidisc, a simple method for stabilizing membrane proteins in detergent-free solution. eLife 7, e34085 (2018).

    PubMed  PubMed Central  Google Scholar 

  56. 56.

    Frauenfeld, J. et al. A saposin-lipoprotein nanoparticle system for membrane proteins. Nat. Methods 13, 345–351 (2016).

    PubMed  PubMed Central  Google Scholar 

  57. 57.

    Carlson, M. L. et al. Profiling the Escherichia coli membrane protein interactome captured in Peptidisc libraries. eLife 8, e46615 (2019).

    PubMed  PubMed Central  Google Scholar 

  58. 58.

    Zeev-Ben-Mordehai, T., Vasishtan, D., Siebert, C. A., Whittle, C. & Grünewald, K. Extracellular vesicles: a platform for the structure determination of membrane proteins by Cryo-EM. Structure 22, 1687–1692 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. 59.

    Zeev-Ben-Mordehai, T., Vasishtan, D., Siebert, C. A. & Grünewald, K. The full-length cell-cell fusogen EFF-1 is monomeric and upright on the membrane. Nat. Commun. 5, 3912 (2014). This study reports the cryo-EM structure of a cell–cell fusogen imaged while in a membrane environment.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. 60.

    Chorev, D. S. et al. Protein assemblies ejected directly from native membranes yield complexes for mass spectrometry. Science 362, 829–834 (2018). This paper reports a mass spectrometry study of membrane protein complexes ejected directly from their membrane environments including bacterial and mitochnodrial membranes.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. 61.

    Danev, R., Yanagisawa, H. & Kikkawa, M. Cryo-electron microscopy methodology: current aspects and future directions. Trends Biochem. Sci. 44, 837–848 (2019).

    CAS  PubMed  Google Scholar 

  62. 62.

    Laverty, D. et al. Cryo-EM structure of the human α1β3γ2 GABAA receptor in a lipid bilayer. Nature 565, 516–520 (2019).

    CAS  PubMed  Google Scholar 

  63. 63.

    Zhu, S. et al. Structure of a human synaptic GABAA receptor. Nature 559, 67–72 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. 64.

    Phulera, S. et al. Cryo-EM structure of the benzodiazepine-sensitive α1β1γ2S tri-heteromeric GABAA receptor in complex with GABA. eLife 7, e39383 (2018).

    PubMed  PubMed Central  Google Scholar 

  65. 65.

    Rose, R. J., Damoc, E., Denisov, E., Makarov, A. & Heck, A. J. High-sensitivity Orbitrap mass analysis of intact macromolecular assemblies. Nat. Methods 9, 1084–1086 (2012). This study demonstrates a high-resolution Orbitrap for native MS of soluble protein complexes.

    CAS  PubMed  Google Scholar 

  66. 66.

    Gault, J. et al. High-resolution mass spectrometry of small molecules bound to membrane proteins. Nat. Methods 13, 333–336 (2016). This study covers the development of the Orbitrap platform for membrane proteins and demonstrates that the chain length of lipids could be distinguished while bound to the membrane protein.

    PubMed  PubMed Central  Google Scholar 

  67. 67.

    Fort, K. L. et al. Expanding the structural analysis capabilities on an Orbitrap-based mass spectrometer for large macromolecular complexes. Analyst 143, 100–105 (2017).

    PubMed  Google Scholar 

  68. 68.

    Liu, Y. et al. Selective binding of a toxin and phosphatidylinositides to a mammalian potassium channel. Nat. Commun. 10, 1352 (2019).

    PubMed  PubMed Central  Google Scholar 

  69. 69.

    Liko, I., Allison, T. M., Hopper, J. T. & Robinson, C. V. Mass spectrometry guided structural biology. Curr. Opin. Struct. Biol. 40, 136–144 (2016).

    CAS  PubMed  Google Scholar 

  70. 70.

    Abbas, Y. M., Wu, D., Bueler, S. A., Robinson, C. V. & Rubinstein, J. L. Structure of V-ATPase from the mammalian brain. Science 367, 1240–1246 (2020). This study reports the cryo-EM structure of the V-type ATPase isolated from rat brain synaptic vesicles. MS was used to define the isoform and subunit stoichiometry and composition of the intact V1 complex.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. 71.

    Hellwig, N. et al. Native mass spectrometry goes more native: investigation of membrane protein complexes directly from SMALPs. Chem. Commun. (Camb.) 54, 13702–13705 (2018).

    CAS  Google Scholar 

  72. 72.

    Keener, J. E. et al. Chemical additives enable native mass spectrometry measurement of membrane protein oligomeric state within intact nanodiscs. J. Am. Chem. Soc. 141, 1054–1061 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. 73.

    Sousa, J. S., Mills, D. J., Vonck, J. & Kühlbrandt, W. Functional asymmetry and electron flow in the bovine respirasome. eLife 5, e21290 (2016).

    PubMed  PubMed Central  Google Scholar 

  74. 74.

    Jussupow, A., Di Luca, A. & Kaila, V. R. I. How cardiolipin modulates the dynamics of respiratory complex I. Sci. Adv. 5, eaav1850 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. 75.

    Lu, F. et al. Structure and mechanism of the uracil transporter UraA. Nature 472, 243–246 (2011).

    CAS  PubMed  Google Scholar 

  76. 76.

    Yu, X. et al. Dimeric structure of the uracil:proton symporter UraA provides mechanistic insights into the SLC4/23/26 transporters. Cell Res. 27, 1020–1033 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. 77.

    Gong, X. et al. Structural basis for the recognition of Sonic Hedgehog by human Patched1. Science 361, eaas8935 (2018).

    PubMed  Google Scholar 

  78. 78.

    Zhang, Y. et al. Structural basis for cholesterol transport-like activity of the hedgehog receptor patched. Cell 175, 1352–1364.e14 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. 79.

    Qian, H. et al. Inhibition of tetrameric Patched1 by Sonic Hedgehog through an asymmetric paradigm. Nat. Commun. 10, 2320 (2019).

    PubMed  PubMed Central  Google Scholar 

  80. 80.

    Bakelar, J., Buchanan, S. K. & Noinaj, N. The structure of the β-barrel assembly machinery complex. Science 351, 180–186 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. 81.

    Han, L. et al. Structure of the BAM complex and its implications for biogenesis of outer-membrane proteins. Nat. Struct. Mol. Biol. 23, 192–196 (2016).

    CAS  PubMed  Google Scholar 

  82. 82.

    Iadanza, M. G. et al. Lateral opening in the intact β-barrel assembly machinery captured by cryo-EM. Nat. Commun. 7, 12865 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. 83.

    Celia, H. et al. Structural insight into the role of the Ton complex in energy transduction. Nature 538, 60–65 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. 84.

    Maki-Yonekura, S. et al. Hexameric and pentameric complexes of the ExbBD energizer in the Ton system. eLife 7, e35419 (2018).

    PubMed  PubMed Central  Google Scholar 

  85. 85.

    Celia, H. et al. Cryo-EM structure of the bacterial Ton motor subcomplex ExbB-ExbD provides information on structure and stoichiometry. Commun Biol 2, 358 (2019).

    PubMed  PubMed Central  Google Scholar 

  86. 86.

    Danev, R. & Baumeister, W. Expanding the boundaries of cryo-EM with phase plates. Curr. Opin. Struct. Biol. 46, 87–94 (2017).

    CAS  PubMed  Google Scholar 

  87. 87.

    Schwartz, O. et al. Laser phase plate for transmission electron microscopy. Nat. Methods 16, 1016–1020 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. 88.

    Zhou, A. et al. Structure and conformational states of the bovine mitochondrial ATP synthase by cryo-EM. eLife 4, e10180 (2015).

    PubMed  PubMed Central  Google Scholar 

  89. 89.

    Raschle, T., Hiller, S., Etzkorn, M. & Wagner, G. Nonmicellar systems for solution NMR spectroscopy of membrane proteins. Curr. Opin. Struct. Biol. 20, 471–479 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank all members of the Robinson group for helpful discussions and the many collaborators who have contributed to this work. We are also grateful to S.L. Rouse, L.A. Baker, N. Yan and C. Gerle for critical review of the manuscript. We would also like to thank F. Samsudin and S. Khalid for the MD based model of the Bam Complex. We acknowledge with thanks funding from an ERC Advanced Grant ENABLE (695511) and a Wellcome Trust Investigator Award (104633/Z/14/Z).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Carol V. Robinson.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chorev, D.S., Robinson, C.V. The importance of the membrane for biophysical measurements. Nat Chem Biol 16, 1285–1292 (2020). https://doi.org/10.1038/s41589-020-0574-1

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing